FORGe at E2E 2017

Simon Mille and Stamatia Dasiopoulou
Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain
firstname.lastname@upf.edu

Abstract

This paper describes the FORGe generator
at E2E. The input triples are mapped onto
sentences by applying a series of rule-based
graph-transducers and aggregation grammars
to template predicate-argument structures as-
sociated to each property. We submitted two
primary systems to the task, one based on the
grammars, and one based on templates, and
one secondary system, which is a variation of
the grammar-based one.

1 Introduction

The FORGe rule-based generator was originally
designed to take linguistic predicate-argument
structures as input. It has been further developed
in order to support RDF triples as input in the
framework of the WebNLG challenge (Gardent
et al., 2017), in which the task consisted in gen-
erating texts from up to 7 DBpedia triples from
9 categories' and covering 373 different DBpedia
properties.

The input for the E2E shared task (Novikova
etal., 2017) is very similar to the WebNLG one in
the sense that it consists of a list of up to 8 triples
2 corresponding to 8 different properties from the
Restaurant domain. However, the task is slightly
different as, while the reference texts are in most
cases well aligned with the input properties, they
also can contain (i) not all the information present
in the input, and (ii) some information that is not
present in the input. Consider for example the
properties/values list found in the training data:

name[Strada]
eatType[pub]
food[English]

! Astronaut, University, Monument, Building, Comic-
sCharacter, Food, Airport, SportsTeam and WrittenWork.

2All properties can be seen as triples, with their value as
object and the restaurant itself as the subject.

priceRange[moderate]
customerRating[average]
near|Yippee Noodle Bar]

And one corresponding expected generated
text: Come with your best friend to Strada restau-
rant and eat the best food in town near the
Yippee Noodle Bar. On the one hand, the prop-
erties food[English], eatType[pub] and customer-
Rating[average] are not verbalized in the gener-
ated text; on the other hand, the fact that Strada
serves the best food in town, or that you should go
there with a friend is not explicitly encoded in the
input structure.

From this perspective, the E2E challenge is not
a typical NLG task. It focuses on the (many) dif-
ferent ways to render a set of triples starting from
exactly the same information, and thus addresses
primarily data-driven systems. The E2E data con-
sists of about 50K instances; 108 different combi-
nations of properties are found in the training set,
which gives an average of about 500 references
by set of properties. The evaluation data does not
contain new combinations of properties, only of
property values.

The FORGe generator is a rule-based system
that generates all and only the input properties.>.
We submitted 3 outputs for evaluation:

e E2E UPF_1 is the output of FORGe with the
complete set of aggregation rules (Primary
system 1);

o E2E UPF_2 is the output FORGe with a se-
lected subset of aggregation rules;

e E2E _UPF _3 is a reference output that consists
of handcrafted templates filled with the val-
3Note that it would be possible to couple it with a statis-

tical module that indicates which content to trim or add; this
has not been done in the context of this challenge.

ues found for each property (Primary system
2).

Sections 2 to 5 describe the main system;
the generation process involves the following
steps: (i) mapping of properties onto Predicate-
Argument (PredArg) templates (Section 2); (ii)
template population (Section 3); (iii) sentence
planning (Section 4); (iv) linguistic generation
(Section 5). Section 6 briefly describes the ap-
proach for the full template-based approach fol-
lowed for E2E_UPF_3, and Section 8 discusses the
results of the evaluation.

2 Mapping of properties to PredArg
templates

As stated in the Introduction, we consider the
properties of the dataset and their values as triples,
taking as subject the value of the name/ | property,
and as object their own value. We defined 32 hand-
crafted predicate-argument templates; in order to
allow for some variation in the way the properties
are verbalized, we associated (also manually) each
of the 7 properties (8 minus name/]) found in the
training data to one or more of these templates:

Property

area[]
customerRating[]
eatType(]
familyFriendly[]
food[]

nearf|]
priceRange[]

U3 O QSRR 1S
—_

Table 1: Number of predicate argument template for
each property

Parts of speech (e.g., NP (proper noun)), gram-
matical features (e.g., verbal tense or nominal def-
initeness), or, e.g., classes, for instance, can be
specified in the template.* Figure 1 shows sam-
ple PredArg templates associated to the properties
near and customerRating respectively.

3 Population of the templates

Using the aforementioned mappings between
properties and predicative-argument templates,
each input entry is transformed into a respective
set of PredArg structures. First, for each consid-
ered triple, we find the set of admissible templates
by looking at the combination of the respective

*Unspecified values are assigned as needed later in the
generation process.

name[] near nearf[]

dpos=NP definiteness=INDEF dpos=NP
class=Location class=Location

namel] find near near[]
dpos=NP modality=DYN dpos=RB dpos=NP
class=Location modType=PSB class=Location
rateType=Qnt

customer rate name[] customerRating[|
number=PL dpos=VB dpos=NP dpos=NP
class=Location class=Rating
rateType=Qnt

Figure 1: Sample PredArg templates: near (top, mid-
dle), and customerRating (bottom)

property and its object value type, namely quanti-
tative or qualitative in the case of the customerRat-
ing[] and priceRange[| properties, and positive or
negative in the case of the familyFriendly[] prop-
erty, as depending on the combination, different
predicate-argument templates apply.

From the resulting set of matching templates,
and following a uniform distribution selection pro-
cess, a predicate-argument template is chosen for
each input entry triple. The population of the
subject value, as afore-explained, is straightfor-
ward and corresponds to the value of the name/]
property. For the object values, an additional
step of pre-processing takes is required in order
to normalize the “yes”/“no” values of the fami-
lyFriendly[] property and to convert the quantita-
tive priceRange[] values (e.g. less than £20) into
qualitative ones (e.g. low-priced) adopted in this
implementation.

4 Aggregation of PredArg structures

Feeding the PredArg structures as such to the
FORGe generator would render each property as
an independent sentence. In order to group triples
into complex sentences, a graph-transduction
module is applied that performs aggregation in
two steps.

On the one hand, generic rules look for shared
pairs of predicate and subject argument in the
populated templates, and introduce coordinations
or quasi-coordinations between the two objects as

in:

[Blue Spice]g is locatedp [in the city center]py
[near Rainbow Cafe]oo.)

Other generic rules check if an argument of
a predicate appears further down in the ordered
list of PredArg structures. If so, the PredArg struc-
tures are merged by fusing the common argument;
during linguistic generation, this results in the
introduction of post-nomimal modifiers such as
relative and participial clauses or appositions; e.g.:

The Cricketersg, which servesps [Italian food]os,
has [a customer rating]py of 1 out of 501).

On the other hand, rules specific to the E2E
data have been implemented so as to aggregate ob-
jects that have not been aggregated by the generic
rules; between the brackets, detail of the restric-
tions about co-occurring properties:

e catTypep; + priceRangeps:
puboy.

a cheapoo

e catTypep; +
no priceRange):
restauranto .

familyFriendly po af
a family-friendlyoo

o *eatTypep; + foodps (if no other prop-
erty, or if one of the above): an Iltalianps
restaurantoy .

e catTypep; + areap, (if none of the above): a
fast-foodo [in the riverside area]ps.

e catTypep; + nearps (if none of the above): a
pubo1 [near Clowns]oo.

e catTypep; + customerRatingpo (if none of
the above): a [high-rated]os restaurantp .

e areap; + nearpy (if priceRange or if fami-
lyFriendly): [in the riverside area]o: [near
Clowns]opo.

e *foodp; + priceRangepy (if no eatType):
cheapoo [Italian]o, food.

The difference between the first two runs sub-
mitted lies in the deactivation of the two rules
marked with a for E2E_UPF_2, while E2E_UPF_1
makes use of all available rules. The two rules
were added at a later stage in order to add variety

in the proposed outputs, with the risk of producing
less natural aggregations sometimes; as aforemen-
tioned, only E2E_UPF_1 was submitted as primary
system.

Finally, another round of aggregation is run in
order to bring together properties or values left
alone after the application of the generic and spe-
cific rules. Referring expressions are introduced
during linguistic generation.

5 Linguistic generation

The next and last step is the rendering of the aggre-
gated PredArg structures into sentences. For this,
we use the core FORGe grammars (Mille et al.,
2017), but instead of the statistical linearization,
we use a rule-based linearization component in
order to have more control over the output qual-
ity. This part of the system follows the theoreti-
cal model of the Meaning-Text Theory (Mel’Cuk,
1988), and performs the following actions: (i)
syntacticization of predicate-argument graphs; (ii)
introduction of function words; (iii) linearization
and retrieval of surface forms.

5.1 Syntacticization

Before building the syntactic structures, we assign
parts of speech to each node of the structure. This
tagging is very rudimentary: rules check in a lex-
icon if a node label matches an entry and retrieve
the part of speech from that entry. Since more than
one part of speech is often possible for a given
string, rules consult the context in the graph, if
necessary, in order to take a decision.

Then, a top-down recursive syntacticization of
the semantic graph takes place. It looks for the
syntactic root of the sentence, and from there for
its syntactic dependent(s), for the dependent(s) of
the dependent(s), and so on. At this point, the
structure contains all content words and the syn-
tactic relations; it is a deep-syntactic structure in
the sense of the Meaning-Text Theory.?

The rules in this level are organized in a cluster
of three grammars. The purpose of the first two
grammars is to identify the root of a syntactic tree.
Verbs are the best candidates for being the root,
and special attention is given to the number and
complexity of dependents that a verb has. If no
verb is available, adjectives, adverbs or nouns are

SFor more details on the deep-syntactic structures and
their relation with surface-syntactic structures in an NLP
pipeline, see, e.g., (Ballesteros et al., 2015).

A2 Al A2 A2
N TN N AN
kid welcome Giraffe find near Clowns

1
ATTR 1 11

1l I
N NN N
kid welcome Giraffe find Giraffe near Clowns

Figure 2: PredArg (top) and deep-syntactic (bot-
tom) structures for the properties name([Giraffe], kids-
Friendy[yes], near[Clowns]

selected and a support verb is introduced (as, e.g.,
in Giraffe isgy near Clowns).

In the following example, welcome is chosen
as the root, and has two dependents kid and Gi-
raffe. Giraffe is also the second argument of find,
which is realized as an attribute of Giraffe, as the
head of a relative clause. Figure 2 shows the ag-
gregated PredArg structure and the corresponding
deep-syntactic structure:

Note that the majority of the rules in the
transduction grammars at this level are language-
independent, since most of the language-specific
information is encoded outside of the grammars,
namely, in the lexical resources.

5.2 Introduction of functional words

The next step towards the realization of the sen-
tence is the introduction of all idiosyncratic words
and of a fine-grained (surface-)syntactic structure
that gives enough information for linearizing and
resolving agreements between the different words.
For this task, we use valency (subcategorization)
information extracted automatically from Prop-
Bank (Kingsbury and Palmer, 2002) and Nom-
Bank (Meyers et al., 2004): lexical units in the
lexicon contain information about part of speech
of dependents, bound prepositions, lexical func-
tions, etc.; see (Mille and Wanner, 2015).

Functional words such as bound prepositions,
determiners, and auxiliaries are introduced at this
point. For instance, the predicate find, which is as-
signed a Dynamic modality of type Possibility in
the PredArg template (see Figure 1) triggers the
realization of a modal can. Moreover, the fact that
there is no first argument below find means that
the embedded clause needs to be realized in pas-
sive voice, its second argument (Giraffe) becom-
ing the syntactic subject. Figure 3 shows a sample
surface-syntactic structure.

Due to time constraints, we sometimes indi-
cated which functional prepositions to use as a fea-

SBJ

OBJ
N

Giraffe can which be found near clowns welcome kid

EXT

Figure 3: The surface-syntactic structure generated
from the deep-syntactic structure in Figure2

ture in the template in order to overrule an erro-
neous or missing entry in the lexicon.

During this transduction, anaphora are resolved,
and personal pronouns are introduced in the tree
(this includes possessive, relative and personal
pronouns). Some syntactic post-processing rules
fix ill-formed structures when possible.

5.3 Resolution of morpho-syntactic
agreements

Every word must be assigned all necessary mor-
phological information; some information comes
from the deeper strata of the pipeline (as, e.g., ver-
bal tense or finiteness), but some features come
from some other elements of the tree. In En-
glish, for instance, verbs get their person and num-
ber from their syntactic subject, and determiners
get their number and/or gender from their govern-
ing noun. In order to resolve these agreements,
the rules for this transduction check the gover-
nor/dependent pairs, together with the syntactic
relation that links them together.

Then the syntactic tree is linearized: first, gov-
ernor/dependent pairs are ordered, and then depen-
dents with respect to each other; during this step,
punctuation marks are also introduced.

Finally, with the morpho-syntactic information
at hand for each word, we just need to find the
corresponding surface form. We match the tuple
<lemma><POS><morpho-syntactic features>
with an entry of a morphological dictionary and
simply replace the triple by the surface form. In
order to build such a dictionary, we analyzed a
large amount of data and retrieved all possible
combinations of lemma, part of speech and mor-
phological features:

e nouns: number
kid<NN><SG>=kid
kid<NN><PL>=kids;

e verbs: finiteness (, tense, person, number)

find<VB><GER>=finding
find<VB><FIN><PRES><3><SG>=finds

If several surface forms are found for a combina-
tion of features, we select the most frequent one.

Continuing with the running example, the re-
sulting sentence would be He peeks at the black
dog that barks.

5.4 Post-processing

Last, a few post-processing rules are applied to
make the output more readable: the first letter of
a sentence is converted to upper case, final punc-
tuation signs are added, underscores are replaced
by spaces, and spaces before contracted elements
(*’s” and “n’t”) are removed.

6 Full template-based generation

For E2E_UPF_3, our second primary submission,
we implemented a very simple template-based
generator: for each of the 108 combinations of
properties, we manually (i) gathered between 2
and 9 different realizations in the training set, and
(i) replaced the values of the different properties
by placeholders. Note that not all reference sen-
tences can serve as templates, as certain verbal-
izations are bound to specific types of property
values;® only suitable references have been sin-
gled out. In order to speed up the process, and to
cover for cases in which no adequate template was
found, we sometimes used as basis valid templates
resulting from similar combinations of properties,
and performed further manual edits if needed. See
for instance the 5 possible templates for the com-
bination name/ | eatType[] areal | near{]:

AcatType[] called name[], can be found near the area[]
next to nearf[].

There is a eatType[] name[] in the area[] area. It is near
near|].

In the area[] area, there is a eatType[] called name[] near
near|].

A eatType[] called namef[] is located in the area[] area.
It is near near]].

name[] is a eatType[] located in the area[] near nearf[].

For the same property, there are different tem-
plates in the case of (i) customer ratings, depend-
ing on if the value is qualitative (e.g. high/low)
or quantitative (e.g. I out of 5); and (ii) fami-
lyFriendly, depending on whether the value is yes
or no. We compiled a total of 797 templates.

SE.g., the reference sentence “There is a jpriceRange;
jeatType; that serves jfood;.” is a valid candidate tem-

plate for qualitative-only price ranges (low-priced, moder-
ately priced, etc.).

The values for each property of the evaluation
set simply substitutes the placeholders in each
template.

7 Examples and error analysis

7.1 Correct outputs

In this section, we give a few sample outputs of
both primary systems with no apparent issue.

Rule-based System (E2E_UPF _1)

1 Blue Spice, which is in riverside near Rainbow Vegetar-
ian Café, is a non-family-friendly restaurant that offers
Chinese food.

2 Blue Spice is a family-friendly restaurant that serves
English cuisine. It is located in the city centre area and
can be found near Rainbow Vegetarian Café.

3 Giraffe, which offers fast food, is a non-kid-friendly
restaurant. It is in the city centre area by Rainbow Veg-
etarian Café.

4 The Cricketers, which customers rate 5 out of 5, is a
non-family-friendly coffee shop. It can be found near
Crowne Plaza Hotel.

5 The Cricketers, which has a high customer rating, is an
average-priced restaurant that serves Chinese cuisine.
It is located in the city centre area and can be found
near All Bar One. It is kid-friendly.

Template-based System (E2E_UPF_3)

1 Blue Spice serves English food that is kids-friendly. It
is in the city centre area near Rainbow Vegetarian Caf.

2 French food is available in a non children-friendly
restaurant called Giraffe, near Raja Indian Cuisine in
the riverside area.

3 The Cricketers is a cheap restaurant that serves Chinese
food. It is not children-friendly and has an average cus-
tomer rating. Itis located in the city centre area near All
Bar One.

4 The Phoenix, located near Express by Holiday Inn in
the city centre area, is a not kid-friendly restaurant. The
Phoenix serves cheap Indian food and has an average
customer rating.

7.2 Unnatural/Erroneous outputs

I this section, we give a brief overview of the
problems we found.

Rule-based System (E2E_UPF _1)

With the rule-based system, some outputs miss
a comma, which makes the final text unnatural [1]
(8 occurrences in the evaluation set), or a deter-
miner the [2]. In other cases, the fluency is dis-
rupted, with sentences that remain not aggregated
[3], or some descriptive relative clauses [4].

1 The restaurant Blue Spice is located in the city cen-
tre area. It serves Chinese cuisine. Blue Spice which
can be found near Rainbow Vegetarian Café welcomes
kids.

2 The coftee shop Blue Spice is located in city centre.

3 Moderately priced The Cricketers is a restaurant offer-
ing Chinese food. It has a high customer rating. It is in
riverside near All Bar One. It is not child-friendly.

4 The restaurant The Cricketers is by Crowne Plaza Ho-
tel. Customers rate The Cricketers, which welcomes
children, 5 out of 5.

Template-based System (E2E_UPF_3)

The template-based system produced more in-
correct outputs than the rule-based system. The
main reason for this is a confusion when sending
the output files out for evaluation; unfortunately,
we submitted a trial version of the output, in which
the values of the priceRange and food properties
were inserted erroneously: in [1], priced is miss-
ing (moderately priced), in [2] it should be a qual-
itative rating (e.g. mid-priced) instead of a quanti-
tative one (More than £30), while in [3] the word
food is omitted (English food).

1 There is a 3 out of 5 stars moderate family-friendly
restaurant The Cricketers near All Bar One in the city
centre area. It offers Chinese food.

2 More than £30 Chinese food for adults can be found
at The Cricketers restaurant, near All Bar One in the
riverside area. High ratings.

3 For a child-friendly, high-rated restaurant serving En-
glish, try The Cricketers, in the city centre area, near
All Bar One.

8 Results and discussion

Table 2 summarizes the results of the automatic
and human evaluations:

o E2E _UPF_1 is the primary rule-based system,
identical to the one submitted to WebNLG
except for a few specific aggregation rules
(see Section 4);

e E2E _UPF 2 is a variant of UPF_1 with differ-
ent aggregation rules (see Section 4);

e E2E UPF 3 is the other primary system,
which uses handcrafted sentences with place-
holders.

In the automatic evaluation, UPF_3 consistently
outperforms the rule-based systems, but not for
the human one. This is consistent with the fact

E2E_ E2E_ E2E_

UPF_1 UPF2 UPF3 Avg.
BLEU 42.07 41.13 45.99 58.13
NIST 6.51 6.33 7.11 7.62
METEOR 0.37 0.37 0.39 0.42
ROUGE_L 0.54 0.56 0.56 0.64
CIDEr 1.31 1.25 1.56 1.89
Position Q | 2 (10-14) N/A 3(15-16) N/A
Position N | 4(18-19) | N/A | 5(20-21) | N/A

Table 2: Results of the task with automatic metrics

(top) and human evaluations (bottom; Q = Quality, N =
Naturalness)

that UPF_3 was made from sentences taken di-
rectly from the training set, hence more similar to
what can be found in the evaluation set than the
ones generated by the other two systems. The rule-
based systems UPF_1 and UPF_2 achieve compa-
rable scores, which again is expected since only a
few rules are different. UPF_1, which has the final
version of the aggregation rules, seems to perform
slightly better, which is possibly due to the fact
that the few additional rules introduce more vari-
ety in the UPF_1 structures, as in human-generated
utterances.

In the general classification, the three submit-
ted systems are far below average for all automatic
metrics. This is expected in this kind of task, in
which data-driven systems are designed to output
text that is as close to the training data as possi-
ble, which is not the case for rule-based systems
for instance.

For the human evaluation, 21 primary systems
were evaluated according to the quality and
naturalness of the generated sentences, as defined
in the following:’

Quality is defined as an overall quality of the utterance, in
terms of its grammatical correctness, fluency, adequacy and
other important factors. When collecting quality ratings, sys-
tem outputs were presented to crowd workers together with
the corresponding meaning representation.

Naturalness is defined the extent to which the utterance
could have been produced by a native speaker. When col-
lecting naturalness ratings, system outputs were presented to
crowd workers without the corresponding meaning represen-
tation.

If used in a real-life NLG system, quality would be

considered the primary measure.

Human evaluators compared systems outputs
and ranked them according to these criteria; this
intermediate ranking has been used to compute the

"http://www.macs.hw.ac.uk/
InteractionLab/E2E/#results

http://www.macs.hw.ac.uk/InteractionLab/E2E/#results
http://www.macs.hw.ac.uk/InteractionLab/E2E/#results

final ranking, which contains five different clusters
for each criterion (the first cluster contains the best
system(s) according to one criterion). UPF_1 was
ranked in the 2"¢ and 4" clusters for Quality and
Naturalness respectively, and UPF_3 in the 3"¢ and
5t The last two rows of Table 2 also show the
range in which the systems belong (within paren-
thesis).

For UPF_1, the results of the human evaluation
are significantly better than the automatic one: al-
though UPF_1 does not manage to often match the
other systems (17 outputs are ranked higher) in
terms of Naturalness, it is able to compete with
the statistical systems for the Quality metric.

The negative human evaluation of UPF_3 can
be easily explained by the amount of erroneous
sentences (see Section 7), which unfortunately did
not allow us to use this output as a reference, as
planned initially.

9 Conclusions and future work

As shown in Section 7 and the human evaluation,
our generator in a data-to-text context is able to
produce good quality sentences, but it seems like
it currently does not reach the level of naturalness
achieved by statistical systems.

In the future, the aggregation and generation
of referring expressions modules will be refined;
for instance, now we only use string matching to
generate pronouns, and do not control the pos-
sible ambiguities about the antecedent. We will
also work on making the input predicate-argument
more flexible during the population phase.

Acknowledgments

This work has been partially funded by the Eu-
ropean Commission under the contracts H2020-
645012-RIA, H2020-700024-RIA, and H2020-
700475-RIA. We would also like to thank the task
organizers and the anonymous reviewers for their
valuable feedback.

References

Miguel Ballesteros, Bernd Bohnet, Simon Mille, and
Leo Wanner. 2015. Data-driven deep-syntactic de-
pendency parsing. Natural Language Engineering
pages 1-36.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for micro-planners. In Proceedings of

the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, Vancouver,
Canada.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
Bank to PropBank. In Proceedings of the 3rd In-
ternational Conference on Language Resources and
Evaluation (LREC). Las Palmas, Canary Islands,
Spain, pages 1989-1993.

Igor Mel’Cuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press, Al-
bany.

Adam Meyers, Ruth Reeves, Catherine Macleod,
Rachel Szekely, Veronika Zielinska, Brian Young,
and Ralph Grishman. 2004. The NomBank Project:
An interim report. In Proceedings of the Work-
shop on Frontiers in Corpus Annotation, Human
Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (HLT/NAACL). Boston, MA,
USA, pages 24-31.

Simon Mille, Roberto Carlini, Alicia Burga, and Leo
Wanner. 2017. Forge at semeval-2017 task 9: Deep
sentence generation based on a sequence of graph
transducers. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017). Association for Computational Linguistics,
Vancouver, Canada, pages 917-920. http://
www.aclweb.org/anthology/S17-2158.

Simon Mille and Leo Wanner. 2015. Towards large-
coverage detailed lexical resources for data-to-text
generation. In Proceedings of the First International
Workshop on Data-to-text Generation. Edinburgh,
Scotland.

Jekaterina Novikova, Ondrej DuSek, and Verena Rieser.
2017. The E2E dataset: New challenges for
end-to-end generation. In Proceedings of the
18th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Saarbriicken, Ger-
many. ArXiv:1706.09254. https://arxiv.
org/abs/1706.09254.

http://www.aclweb.org/anthology/S17-2158
http://www.aclweb.org/anthology/S17-2158
http://www.aclweb.org/anthology/S17-2158
http://www.aclweb.org/anthology/S17-2158
http://www.aclweb.org/anthology/S17-2158
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254

