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Abstract

In this paper, we introduce an end-to-end neu-
ral networks model for Data-to-Text which
aims to generate natural language description
from structured data. Our model is based on
the sequence-to-sequence model where three
additional components are added to tackle
challenges in Data-to-Text. First, we ap-
ply structured data embedding with both field
name and field value information to repre-
sent the table better. Second, we apply the
copy mechanism to tackle the rare or unknown
problem in Data-to-Text. Third, we apply
a kind of coverage mechanism to discourage
the model from generating repetitive contents.
Experiments on E2E NLG shared task indi-
cate that our system show promising results in
some of the automatic metrics (eg. BLEU) and
naturalness from human evaluation.

1 Introduction

Automatic text generation from structured data
(Data-to-Text) is an import task in natural lan-
guage generation. Data-to-Text is often formu-
lated into two subproblems: content selection
which decides what contents should be included
in the text and surface realization which deter-
mines how to realize the text based on selected
contents. Previous researches exploit this task
in various domains, so several datasets are cre-
ated in the meantime. For example, Liang et al.
(2009) generates weather forecasts from meteoro-
logical records in WeatherGov dataset and Chen
and Mooney (2008) generates sportscasting text
from robot soccer events in RoboCup dataset. Re-
cently, end-to-end (E2E) neural networks model
based on encoder-decoder has been widely ex-
plored in this task (Wen et al., 2015; Mei et al.,
2015; Dušek and Jurčı́ček, 2016) etc.
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However, E2E neural networks model is lim-
ited to small dataset with generic patterns. Re-
cently, Novikova et al. (2017) provided a new
crowd-sourced data sets of 50k instances in the
restaurant domain. Each instance is paired with a
dialogue act-based meaning representation (MR)
and 8.1 references on average. In contrast to
previous Data-to-Text dataset, this dataset shows
additional characteristics, such as open vocabu-
lary, complex syntactic structures and diverse dis-
course phenomena. Moreover, multiple references
in this dataset make the automatic evaluation met-
rics based on words overlap more convincible.

We propose a general neural networks model
based on attentional sequence-to-sequence model
(Sutskever et al., 2014; Bahdanau et al., 2014)
with three additional components to tackle the
challenges of this problem. Compared with neu-
ral machine translation and abstractive summa-
rization, Data-to-Text using sequence-to-sequence
model not only shares some common challenges
but also has unique characteristics. First, we apply
structured data embedding with both field name
and field value representation (Sha et al., 2017) to
encode the table information in contrast to repre-
sentation of unstructured text in machine transla-
tion or summarization. Second, compared with
machine translation and summarization, rare or
unknown words problems in Data-to-Text is more
serious because of occurrences of certain entity
names in the input table. Although some research
works (Dušek and Jurčı́ček, 2016) try to solve this
problem by pre-processing and post-processing.
That is, they anonymized certain fields with an
abstract placeholder(eg. ”name”, ”near”). How-
ever, we declare that this simple approach will loss
certain information related with the anonymized
fields, and be infeasible when there is no clear cor-
respondence between source and target. So we ap-
ply the copy mechanism (See et al., 2017) to tackle



the rare and unknown words efficiently. Finally,
we found that sequence-to-sequence model tends
to generate repetitive contents especially for long
sentence. So we apply a kind of coverage mech-
anism (See et al., 2017) to discourage the model
from generating repetitive contents by remember-
ing what has been attended so far.

To sum up, our system is an attention based
sequence-to-sequence model with three additional
components: structured data embedding, copy
mechanism and coverage mechanism. We conduct
experiments on the E2E NLG shared task. Exper-
iment results (Dušek et al., 2018) indicate that our
model achieve state of art performance with re-
spect to some automatic evaluation metrics (rank 6
of 60 systems in BLEU) and human evaluation on
naturalness (rank in the second cluster among pri-
mary systems). However, our primary system per-
form poorly in human evaluation on quality. Next,
we are prepared to organize this article in the fol-
lowing order. Firstly, we will introduce our sys-
tem components one by one, specifically in this or-
der: attention based sequence-to-sequence model,
structured data embedding, copy mechanism and
coverage mechanism. Secondly, we will introduce
the experiments part. Thirdly, we will give a con-
clusion and put forward some insights which we
found during this challenge.

2 Task Definition

We formulate the Data-to-Text task as generating
text S conditioned on table T . The table T con-
sists of several field-value records. In dialogue, the
set of records is called dialogue act-based mean-
ing representation (MR), while the fields and cor-
responding values are called as slots and values.

3 Our Approach

Figure 1 gives an overview of our approach, the
model is based on encoder-decoder framework.
First, the table is flatted into a sequence of tokens
in the form of field value word and correspond-
ing field name. And these sequence of tokens are
fed into the encoder sequentially to learn the table
representation. Second, the decoder learns to gen-
erate words based on the table representation. We
augment the decoder with copy mechanism pro-
posed by (See et al., 2017). Third, we also apply
the coverage mechanism proposed by (See et al.,
2017) to relieve the repetition problems.

3.1 Sequence-to-sequence attentional model
As shown in Figure 1, our model is built on
the sequence-to-sequence attentional model (Bah-
danau et al., 2014). The encoder is based on the
bi-directional Gated Recurrent Unit (GRU) (Cho
et al., 2014), while the decoder is a single direc-
tion GRU with attention mechanism. The role
of encoder is to read the input sequence x =
(x1, x2, ..., xn), where xi is the ith token repre-
sentation, to build basic representation. Here we
apply bidirectional GRU (BiGRU) as the recurrent
unit, where GRU is defined as:

zi = σ(Wz[xi, hi−1]) (1)

ri = σ(Wr[xi, hi−1]) (2)

h̃i = tanh(Wh[xi, ri � hi−1]) (3)

hi = (1− zi)� hi−1 + zi � h̃i (4)

where Wz , Wr and Wh are weight matrices.
The BiGRU consists of a forward GRU and a

backward GRU, where the forward GRU reads the
sequence from left to right while the backward
GRU reads them in reverse order. The final en-
coder states (h1, h2, ..., hn) is a concatenation of
the forward hidden states (

−→
h 1,
−→
h 2, ...,

−→
h n) and

backward hidden states(
←−
h 1,
←−
h 2, ...,

←−
h n):

−→
h i = GRU(xi,

−→
h i−1) (5)

←−
h i = GRU(xi,

←−
h i−1) (6)

hi = [
−→
h i;
←−
h i] (7)

The decoder is a single directional GRU with at-
tention mechanism. Concretely, at decoding time
step t, GRU update the hidden states st with the
word embedding wt−1 of previously generated
word and previous context vector ct−1. The for-
mula is defined as:

st = GRU(wt−1, ct−1, st−1) (8)

s0 = tanh(Wd
←−
h 1 + b) (9)

where Wd is the weight matrix, b is the bias vec-
tor, and

←−
h 1 is the last backward encoder hidden

states.
The attention mechanism is defined as follows:

αt,i =
exp(et,i)∑n
i=1 exp(et,i)

(10)

et,i = vTa tanh(Wast−1 +Uahi) (11)

ct =
n∑

i=1

αt,ihi (12)

where Wa and Ua are learnable parameters.
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Figure 1: Overall model illustration

3.2 Structured data embedding

As shown in Table 1, we flatten the table into a
sequence of tokens in the form of field value and
corresponding field name. Each token in the se-
quence contains both field name and field value in-
formation. Here we apply the table representation
methods which has been used in (Sha et al., 2017)
to represent the table information better. Specially,
let n be the number of field value words in the ta-
ble T ; let vi and fi be the embeddings of a value
word and its corresponding field name, respec-
tively (i = 1...n). So the input to GRU xi in For-
mula 1 is the concatenation of fi and vi which is
defined as xi = [fi; vi].

3.3 Copy mechanism

To tackle the rare and unknown words in Data-to-
Text, we augment the decoder with the copy mech-
anism from (See et al., 2017) where they call it the
pointer-generator network. This mechanism allow
the model to generate words from a fixed vocab-

ulary while maintaining the ability to copy from
source words. As shown in Figure 1, we introduce
a gate called generation probability pgen ∈ [0, 1]
at timestep t to control when to copy and when to
generate. pgen is calculated using the context vec-
tor ct, the decoder states st and the decoder input
wt−1:

pgen = σ(wT
c ct + wT

s st + wT
xwt−1 + bptr) (13)

Field Name Field Value
name the
name eagle

eat type coffee
eat type shop

... ...
near berger
near king

Table 1: Flattened table example



where vectorswc, ws, wx and scalar bptr are learn-
able parameters. We define an extended vocabu-
lary as the union of original fixed target vocab-
ulary and all field value words appearing in the
source table. Then the final word distribution
P (w) is a probability over the extend vocabulary.
Since the gate pgen is a latent variable, so we opti-
mize the marginal probability distribution defined
as:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati (14)

So if w is an out-of-vocabulary word, then
Pvocab(w) is zero. Similarly, if w does not appear
in source sentence, then

∑
i:wi=w a

t
i is zero.

3.4 Coverage mechanism
Sequence-to-sequence model tends to generate
repetitive contents especially when generating
long sentences. In order to relieve this problem,
we also apply the coverage mechanism by See
et al. (2017). The basic idea is to make the model
to explicitly remember what has been attended so
far, and pass this information to direct the atten-
tion model. Formally, we define a coverage vector
acct, which is the sum of attention distributions
until previous timesteps t− 1:

acct =
t−1∑
t′=0

at
′

(15)

Then the coverage vector is used as extra input to
the attention calculation, modifying equation 11
to:

et,i = vTa tanh(Wast−1 +Uahi + wcacc
t
i) (16)

where wc is a learnable parameter vector of same
length as va.

4 Experiments

4.1 Dataset
We conduct experiments on E2E NLG dataset
(Novikova et al., 2017). The baseline model con-
verts the original dataset into format used by TGen
(Dušek and Jurčı́ček, 2016). In order to tackle the
data sparsity problem, they delexicalized the name
and near slots. We refer to this dataset as Abstract
Dataset. Since our model consists of copy mecha-
nism, we can process the data in its original form.
So we precess another E2E dataset with its origi-
nal form (keeping the words in ”near” and ”name”

field instead of using anonymized placeholder)
which we refer to as Non-Abstract Dataset. The
E2E NLG dataset contains 42063 training samples
and 4672 development samples. The test set con-
tains 630 samples with only input. Basic statistics
about this data set is shown in Table 2.

Data Set Abstract Non-Abstract
Source vocab size 35 112
Target vocab size 2392 2442
Number of fields 8 8

Table 2: Statistics of the training dataset

Data Set Abstract Non-Abstract
Source vocab size 37 114
Target vocab size 921 984
Max source #words 15 18
Max target #words 40 40

Table 3: Model parameters settings

4.2 Implementation Details
Model Parameters: As shown in Table 3, we
set the vocabulary size according to the word fre-
quency in the training data. Specially, we cover
all the source words in the source vocabulary
since the minimal frequency of source word is
2929 in Abstract Dataset and 348 in Non-Abstract
Dataset. Similarly, we keep all the target words
with frequency more than 5 times in the target
vocabulary. Please note that eos and unk are in-
cluded in all the vocabularies. Meantime, we set
the maximum length of source words as 15 and 18
respectively. In addition, we set the source word
embedding size, target word embedding size and
field name word embedding size as 512 in both
datasets. The dropout rate is set 0.5.

Model Training: We initialize model param-
eter randomly using a Gaussian distribution with
Xavier scheme (Glorot and Bengio, 2010). Dur-
ing training, we use stochastic gradient descent
(SGD) with batch size 100. The initial learning
rate α = 0.5. We validate the model performance
(BLEU) on the development set for every 2000
batches. If the BLEU score drops for six con-
secutive tests on the development set, we halve
the learning rate. We also apply gradient clipping
(Pascanu et al., 2013) with range [−1, 1] during
training to avoid the exploding gradient problem.



Models BLEU NIST METEOR ROUGE-L CIDEr
TGen 0.6925 8.4781 0.4703 0.7257 2.3987
Our System(Abstract, Greedy) 0.7185 8.6359 0.4579 0.7192 2.2662
Our System(Abstract, Beam-1) 0.6783 8.1401 0.4428 0.7275 2.0787
Our System(Non-Abstract, Greedy) 0.7245 8.5613 0.4596 0.7374 2.4181
Our System(Non-Abstract, Beam-1)∗ 0.6823 7.9823 0.4310 0.7247 2.0416

Table 4: Automatic evaluation results on dev set (∗: Primary system)

Models BLEU NIST METEOR ROUGE-L CIDEr
TGen 0.6593 8.6094 0.4483 0.6850 2.2338
Our System(Abstract, Greedy) 0.6635 8.3977 0.4312 0.6909 2.0788
Our System(Abstract, Beam-1) 0.5854 5.4691 0.3977 0.6747 1.6391
Our System(Non-Abstract, Beam-1)∗ 0.5859 5.4383 0.3836 0.6714 1.5790

Table 5: Automatic evaluation results on test set. (∗: Primary system)
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Figure 2: Generated example from our primary system

At test time, we use the both greedy search and
beam search algorithms to generate texts.

4.3 Main Results

The E2E NLG Challenge uses both automatic
evaluation metrics and human evaluation to as-
sess the system performance. As for automatic
evaluation, they apply some standard metrics,
BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), METEOR (Denkowski and Lavie,
2014), ROUGE-L (Lin, 2004) and CIDEr (Vedan-
tam et al., 2015) which have been used for eval-
uation in similar tasks. As for human evaluation,
they obtain the human ratings from crowd work-

ers.
We compare our model with the baseline model

TGen (Dušek and Jurčı́ček, 2016). In addition, we
also compare our model trained with the Abstract
Dataset and Non-Abstract Dataset. As for Non-
Abstract Dataset, we will perform lexicalization
of the outputs, that it, filling the placeholder near
and name with corresponding field value. We use
the standard evaluation script1 provided by E2E
NLG Challenge to evaluate our systems. Mean-
while, we also compare the performance of de-
coding using greedy search algorithm and beam
search algorithm.

1https://github.com/tuetschek/e2e-metrics



Table 4 and 5 list performance of the base-
line model and our systems with respect to dif-
ferent automatic evaluation metrics. In the devel-
opment set, our system trained with Non-Abstract
Dataset using greedy search outperforms the base-
line model in BLEU, NIST, ROUGE-L and CIDEr
but loses in METEOR. We set the beam size as
8, and select the top one of the final beam as re-
sult which we called Beam-1. We also found
that greedy search often performs better than beam
search with respect to automatic evaluation met-
rics. In the test set, our system trained with Ab-
stract Dataset outperforms the baseline model in
BLEU and ROUGE-L while loses in NIST, ME-
TEOR and CIDEr. We also can find that there is
a huge margin between performance on develop-
ment set and test set. It shows that generalization
is hard in this specific task. We also conduct hu-
man evaluation on the generate results to exam-
ine the overall quality on the test set. In partic-
ular, we found that the quality of generated result
from (Non-Abstract, Greedy) model perform quite
poorly, that’s why we didn’t submit it although it
performs quite good in the development set w.r.t
automatic metrics.

4.4 Determination on Primary System
Determination on primary system is difficult, be-
cause we found that there is no strong correlation
between automatic evaluation metrics and human
evaluation. In order to determine the primary sys-
tem fairly, we randomly sample 10 generated re-
sults per system and invite human to judge the
quality of them. The quality we consider here
includes fluency, semantic correspondence to the
input and naturalness etc. Due to limit time and
resource, we didn’t conduct quantitative analysis
here and just one person involved into the hu-
man evaluation which may bring bias. Finally,
we select our system trained with Non-Abstract
data with beam search as the primary system. Ac-
cording to the human evaluation results on the test
set from E2E NLG Challenge, our primary sys-
tem ranks in the second cluster with respect to
TrueSkill on naturalness while performs poorly
on the quality evaluation.

4.5 Generated Examples
In order to visualize our model, we show the at-
tention scores between the source and target. As
shown in Figure 2, the attention scores are repre-
sented by the color map and column-wisely nor-

malized. The generated word bracketed with ”[]”
has generation probability pgen (defined in For-
mula 13) less than 0.5 indicating that it is more
likely to be copied from the source table. From
what we can see, our model can learn the semantic
correspondence between the table and generated
text.

5 Conclusion

In this technical report, we present a general model
for Data2Text. This model is built on the atten-
tional sequence-to-sequence model with three ad-
ditional components: structured data embedding,
copy mechanism and coverage mechanism. Our
model achieves the state-of-art results on the E2E
NLG Challenge. For further work, we would like
to consider the characteristic of this dataset, and
build specific improvement on it. Moreover, we
would like to consider the reason why different
metrics result in different rankings and try to find
a better automatic evaluation method.
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2017. The E2E dataset: New challenges for
end-to-end generation. In Proceedings of the
18th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Saarbrücken, Ger-
many. ArXiv:1706.09254. https://arxiv.
org/abs/1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning. pages 1310–1318.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368 .

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian
Li, Baobao Chang, and Zhifang Sui. 2017. Order-
planning neural text generation from structured data.
arXiv preprint arXiv:1709.00155 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recog-
nition. pages 4566–4575.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.
arXiv preprint arXiv:1508.01745 .

https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254

