
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Transformer Pretrained & Large Language Models
Ondřej Dušek

JSALT Workshop

13.6.2025



Neural language models

• Transformer neural architecture
• (sub)word  representation: embedding = vector of numbers

• blocks: attention (combining context) + fully-connected (abstracting)

• predicting next (sub)word = classification: choosing 1 out of ca. 50k (low level!)

• trained from data: initialize randomly & iteratively improve

• Shapes
• encoder: build representation of inputs

• older models (BERT), good for classification

• decoder: left-to-right, input stuff by prompting (prefixing)
• most current LLMs

• encoder-decoder: encode, attend, decode
(original, from MT, what OB showed most of the time)
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Transformer neural language model
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Inference
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prompting: ignore predictions, feed in your own text in parallel

continue
auto-regressively: 
feed generated back in



Decoding Algorithms

• for each time step t, the decoder outputs a probability distribution: P(yt| y1:t-1, X)
• how to use it?
• exact inference: find a sequence maximizing P(y1:T| X)

• not possible in practice (why? and is it our goal?)

• approximation algorithms
• greedy search
• beam search

• stochastic algorithms
• random sampling
• top-k sampling
• nucleus sampling (=top-p sampling)

(+ repetition penalty → decreasing probabilities of generated tokens)

5Transformer PLMs & 
LLMs



Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc 

Greedy search: always take the argmax
● does not necessarily produce the most probable sequence (why?)
● often produces dull responses

Example:

Context:   Try this cake. I baked it myself.
Optimal Response : This cake tastes great.
Greedy search: This is okay.

many examples start with 
“This is”, no possibility to 
backtrack
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https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc


Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

Beam search: try k continuations of k hypotheses, keep k best
● better approximation of the most probable sequence, bounded memory & time
● allows re-ranking generated outputs
● k=1 → greedy search

Reranking:

(Ondřej’s PhD thesis, Fig. 7.7)
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pd
f
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Decoding Algorithms
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https://huggingface.co/blog/how-to-generate 

Top-k sampling: choose top k options (~5-500), sample from them
● avoids the long tail of the distribution
● more diverse outputs
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Decoding Algorithms
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https://huggingface.co/blog/how-to-generate

Top-p (nucleus) sampling: choose top options that cover >= p probability mass (~0.9)
● can be viewed as “k” from top-k adapted according to the distribution shape
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https://huggingface.co/blog/how-to-generate


The shape of the distribution can be adjusted using the temperature T:
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Temperature

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/ 

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/
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Is greediness all you need?
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https://www.reddit.com/r/MachineLearning/comments/1e42das/ 

https://www.reddit.com/r/MachineLearning/comments/1e42das/


Training a neural language model the basic way

• Reproduce sentences from data
• replicate exact word at each position

• always only one next word, not the whole text in one

• Fully trained from data
• initialize model with random parameters

• input example: didn’t hit the right word → update parameters

• Very low level, no concept of sentence / text / aim
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cheap
pricey
in the expensive price range 

expensive

Blue Spice is 

Blue Spice is expensivereference: LM
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Training
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in parallel: feed in training data & try to predict 1 next token at each position, incur loss



Training

• Gradient descent
• much like any NN or most other machine learning

• backpropagation

• we’re doing multi-class classification: logistic loss (cross entropy)

• Learning rate
• optimizers

• per-parameter, momentum

• Adam(W) etc.

• schedulers: warmups & taper-offs (e.g. Noam)

• Overfitting
• bias vs. variance trade-off

• large models: overfit so much they interpolate 
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https://ruder.io/optimizing-gradient-descent/ 

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da 
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(Dar et al., 2021) https://arxiv.org/abs/2109.02355 
(Power et al., 2022) http://arxiv.org/abs/2201.02177 

Train error

https://ruder.io/optimizing-gradient-descent/
https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://arxiv.org/abs/2109.02355
http://arxiv.org/abs/2201.02177


Self-supervised training

• Train supervised, but don’t provide labels
• use naturally occurring labels

• create labels automatically somehow
• corrupt data & learn to fix them

• Good to train on huge amounts of data
• language modelling

• next-word prediction (~ most LLMs)

• MLM – masked word prediction (~ encoder LMs, e.g. BERT)

• Good to pretrain a LM self-supervised 
before you finetune it fully supervised (on your own task-specific data)
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https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning 

http://jalammar.github.io/illustrated-bert/ 

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/


Pretraining & Finetuning: Pretrained LMs

• 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)

2. Fine-tune for your own task on your smaller data (supervised)

• ~ pretrained “contextual embeddings” (“better word2vec”, typically Transformer)

• Model capability is all about the data
• the larger model, the more you need (“Chinchilla scaling laws”)

• anyway the more, the better
https://twitter.com/Thom_Wolf/status/1766783830839406596 

https://lifearchitect.ai/chinchilla/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

https://twitter.com/Thom_Wolf/status/1766783830839406596
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/


Ready-made (P/L)LMs

• PLM vs. LLM distinction a bit vague
• generally >1B, but more on behavior

• PLMs: ready to finetune 

• LLMs: ready to prompt (→ →)

• many models released plug-and-play
• !! others (GPT-3/3.5/4, Claude… closed & API-only)

• Huggingface – repo & libraries to run & customize

• Ollama – repo + tool for running locally

• encoder PLMs: BERT/RoBERTa/ModernBERT

• encoder-decoder PLMs: BART, T5 

• decoder GPT-2, most LLMs (GPT-3/4,Llama,Mistral,Gemma, Phi, Qwen…)

https://huggingface.co/
https://ollama.com/  

(Zhao et al., 2023) 
http://arxiv.org/abs/2303.18223 

(controversial! see discussion )

https://x.com/yoavgo/status/1828383882317549765 

https://huggingface.co/
https://ollama.com/
http://arxiv.org/abs/2303.18223
https://x.com/yoavgo/status/1828383882317549765
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LLMs
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https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/  

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/


LLMs: Prompting = In-context Learning

• No model finetuning, just show a few examples in the input (=prompt)

• pretrained LMs can do various tasks, 
given the right prompt
• they’ve seen many tasks in training data

• only works with the larger LMs (>1B)

• adjusting prompts often helps
• “prompt engineering”

• zero-shot (no examples) vs. few-shot

• chain-of-thought prompting: 
“let’s think step by step”

• adding / rephrasing instructions
(see → →)
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http://ai.stanford.edu/blog/understanding-incontext/ 

(Liu et al., 2023)  https://arxiv.org/abs/2107.13586 

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/ 

http://ai.stanford.edu/blog/understanding-incontext/
https://arxiv.org/abs/2107.13586
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/


Instruction Tuning

• Finetune for use with prompting 
• “in-domain” for what it’s used later

• Use instructions (task description) + solution in prompts
• Many different tasks, specific datasets available

• Some LLMs released as base (“foundation”) & instruction-tuned versions

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1 

(Wei et al., 2022) https://arxiv.org/abs/2109.01652 

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://arxiv.org/abs/2109.01652


Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence ~ whole generated text

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for text generation too

• state = generation so far (prefix)

• action = one generation output (subword)

• defining rewards is an issue (→→)

• Training: maximizing long-term reward
• optimizing policy = way of choosing actions, i.e. predicting tokens
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(Sutton & Barto, 2018)
http://incompleteideas.net/book/the-book-2nd.html 

your model

some definition
of rewards

http://incompleteideas.net/book/the-book-2nd.html


RL from Human/AI Feedback (RLHF/RLAIF)

• RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions

2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)

3) learn a reward model (some kind of other LM: instruction + solution → score)

4) use rating model’s score as reward in RL 

• main point: reward is global (not token-by-token)
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(Ouyang et al., 2022)
http://arxiv.org/abs/2203.02155 
https://openai.com/blog/chatgpt 

https://huggingface.co/blog/rlhf 

1)

2)

3)

4)

http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf


Direct Preference Optimization

• Trying to do the same thing, but without RL, with supervised learning

• Special loss function to check pairwise text preference
• increases probability of preferred response

• includes weighting w.r.t. reference model
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(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290 

𝑦𝑤  preferred

𝑦𝑙  dispreferred

optimized model

http://arxiv.org/abs/2305.18290
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Recap – LLMs: Better Training

Prague is the capital of Czechia (...)

Pre-training1

Instruction tuning2

user: What is the capital of Czechia?
assistant: Prague

random neural 
network

Model stages:

helpful assistant

3

“autocomplete on steroids”

1

base / foundational model

assistant

2

instruction-tuned model 3 Human preference optimization

user: What is the capital of Czechia?

answer #1: Prague.
answer #2: The capital of Czechia is Prague.

Training stages:

Transformer PLMs & LLMs



● LLMs are eager to please, easily swayed, often incorrect (why?)
● No training step forces correctness

● “Bullshitting”
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Hallucination

The problem here isn’t that large language models hallucinate, lie, or 
misrepresent the world in some way. It’s that they are not designed to represent 
the world at all; instead, they  are  designed  to  convey  convincing  lines  of  text. 

(Hicks et al., 2024)
http://doi.org/10.1007/s10676-024-09775-5 

https://tradescantia.uk/article/dont-ask-an-ai-for-plant-advice/ 

https://www.reddit.com/r/ChatGPT/comments/11brmiv/gaslighting_the_ai_into_225/ 

http://doi.org/10.1007/s10676-024-09775-5
https://tradescantia.uk/article/dont-ask-an-ai-for-plant-advice/
https://www.reddit.com/r/ChatGPT/comments/11brmiv/gaslighting_the_ai_into_225/


Scaling Test-time Compute – Reasoning Models

• Glorified chain-of-thought
• make chains very long

• train models with intermediate rewards (process reward models)

• The longer you compute, the better
• can be tree search (over intermediate steps, with backtrack), but linear seems OK

• budget-forcing: inserting “Wait” / force-terminating

• RL again (GRPO: sample a lot, baseline = average, upvote better-than-average)
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https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1 
(Muennighoff et al., 2025) http://arxiv.org/abs/2501.19393 

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
http://arxiv.org/abs/2501.19393


Synthetic Data

• Generate stuff via base model, train on the result
• like what we did with RLHF/DPO, but for standard training – earlier & more 

• Useful for
• detailed annotation (like process rewards)

• cleaner data

• generally more data

• better-aligned data (rewrite as problem-solution pairs, flip problem direction…)

• target modality data (text → audio)

• Needs careful filtering 
• iterative refinement – model evaluates itself

• synthetic code: validate via execution
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(Abdin et al., 2024) http://arxiv.org/abs/2412.08905 
(Defossez et al., 2024) https://arxiv.org/abs/2410.00037 

http://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2410.00037


Tool Use

• Retrieval “as you go”

• LM decodes special tokens for call ID & params

• LLMs tuned to do this
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(Schick et al., 2023) http://arxiv.org/abs/2302.04761 

(ChatGPT)

http://arxiv.org/abs/2302.04761


Thanks

Contacts:

 Ondřej Dušek
 odusek@ufal.mff.cuni.cz
 https://tuetschek.github.io
 @tuetschek

Supported by: European Research Council (ERC StG No. 101039303 NG-NLG) 
Using LINDAT/CLARIAH-CZ Research Infrastructure resources (Czech Ministry of Education, Youth and Sports project No. LM2018101).

Thanks to Zdeněk Kasner (https://kasnerz.github.io/) for some of these slides

mailto:odusek@ufal.mff.cuni.cz
https://tuetschek.github.io/
https://kasnerz.github.io/
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