
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

Transformer Pretrained & Large Language Models
Ondřej Dušek

JSALT Workshop

13.6.2025

Neural language models

• Transformer neural architecture
• (sub)word representation: embedding = vector of numbers

• blocks: attention (combining context) + fully-connected (abstracting)

• predicting next (sub)word = classification: choosing 1 out of ca. 50k (low level!)

• trained from data: initialize randomly & iteratively improve

• Shapes
• encoder: build representation of inputs

• older models (BERT), good for classification

• decoder: left-to-right, input stuff by prompting (prefixing)
• most current LLMs

• encoder-decoder: encode, attend, decode
(original, from MT, what OB showed most of the time)

2Transformer PLMs &
LLMs

Transformer neural language model

3Transformer PLMs & LLMs

0.4 -0.3 2.1 -0.2

-1.1 0.8 -0.9 4.3

0.0 2.7 -0.6 -3.0

…

embeddings (~100s of numbers)

numbered
(sub)words

layer = Transformer block:
attention & fully connected

m
u

lt
ip

le
 (6

-1
0

0)
 la

ye
rs

predicting next word (prob. dist.)

when generating: predicted word fed back inencoding position

Inference

4Transformer PLMs & LLMs

prompting: ignore predictions, feed in your own text in parallel

continue
auto-regressively:
feed generated back in

Decoding Algorithms

• for each time step t, the decoder outputs a probability distribution: P(yt| y1:t-1, X)
• how to use it?
• exact inference: find a sequence maximizing P(y1:T| X)

• not possible in practice (why? and is it our goal?)

• approximation algorithms
• greedy search
• beam search

• stochastic algorithms
• random sampling
• top-k sampling
• nucleus sampling (=top-p sampling)

(+ repetition penalty → decreasing probabilities of generated tokens)

5Transformer PLMs &
LLMs

Decoding Algorithms

6

https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc

Greedy search: always take the argmax
● does not necessarily produce the most probable sequence (why?)
● often produces dull responses

Example:

Context: Try this cake. I baked it myself.
Optimal Response : This cake tastes great.
Greedy search: This is okay.

many examples start with
“This is”, no possibility to
backtrack

Transformer PLMs &
LLMs

https://huggingface.co/blog/how-to-generate
https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation-ba95ee0faadc

Decoding Algorithms

7

https://huggingface.co/blog/how-to-generate

Beam search: try k continuations of k hypotheses, keep k best
● better approximation of the most probable sequence, bounded memory & time
● allows re-ranking generated outputs
● k=1 → greedy search

Reranking:

(Ondřej’s PhD thesis, Fig. 7.7)
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pd
f

NPFL099 L8 2023
Transformer PLMs &
LLMs

https://huggingface.co/blog/how-to-generate

Decoding Algorithms

8

https://huggingface.co/blog/how-to-generate

Top-k sampling: choose top k options (~5-500), sample from them
● avoids the long tail of the distribution
● more diverse outputs

NPFL099 L8 2023
Transformer PLMs &
LLMs

https://huggingface.co/blog/how-to-generate

Decoding Algorithms

9

https://huggingface.co/blog/how-to-generate

Top-p (nucleus) sampling: choose top options that cover >= p probability mass (~0.9)
● can be viewed as “k” from top-k adapted according to the distribution shape

NPFL099 L8 2023
Transformer PLMs &
LLMs

https://huggingface.co/blog/how-to-generate

The shape of the distribution can be adjusted using the temperature T:

10Transformer PLMs & LLMs

Temperature

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/

https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/

11

Is greediness all you need?

Transformer PLMs & LLMs

https://www.reddit.com/r/MachineLearning/comments/1e42das/

https://www.reddit.com/r/MachineLearning/comments/1e42das/

Training a neural language model the basic way

• Reproduce sentences from data
• replicate exact word at each position

• always only one next word, not the whole text in one

• Fully trained from data
• initialize model with random parameters

• input example: didn’t hit the right word → update parameters

• Very low level, no concept of sentence / text / aim

12

cheap
pricey
in the expensive price range

expensive

Blue Spice is

Blue Spice is expensivereference: LM

Transformer PLMs &
LLMs

Training

13Transformer PLMs & LLMs

in parallel: feed in training data & try to predict 1 next token at each position, incur loss

Training

• Gradient descent
• much like any NN or most other machine learning

• backpropagation

• we’re doing multi-class classification: logistic loss (cross entropy)

• Learning rate
• optimizers

• per-parameter, momentum

• Adam(W) etc.

• schedulers: warmups & taper-offs (e.g. Noam)

• Overfitting
• bias vs. variance trade-off

• large models: overfit so much they interpolate

14Transformer PLMs &
LLMs

https://ruder.io/optimizing-gradient-descent/

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

෍

𝑐=1

𝐶

𝑦𝑐 ⋅ log(ෝ𝑦𝑐)

pred. prob. when true label=1

lo
ss

SGD
momentum
AdaGrad
RMSProp
Adam

local
minimum

global
minimum

(Dar et al., 2021) https://arxiv.org/abs/2109.02355
(Power et al., 2022) http://arxiv.org/abs/2201.02177

Train error

https://ruder.io/optimizing-gradient-descent/
https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://arxiv.org/abs/2109.02355
http://arxiv.org/abs/2201.02177

Self-supervised training

• Train supervised, but don’t provide labels
• use naturally occurring labels

• create labels automatically somehow
• corrupt data & learn to fix them

• Good to train on huge amounts of data
• language modelling

• next-word prediction (~ most LLMs)

• MLM – masked word prediction (~ encoder LMs, e.g. BERT)

• Good to pretrain a LM self-supervised
before you finetune it fully supervised (on your own task-specific data)

15Transformer PLMs &
LLMs

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning

http://jalammar.github.io/illustrated-bert/

https://ai.stackexchange.com/questions/10623/what-is-self-supervised-learning-in-machine-learning
http://jalammar.github.io/illustrated-bert/

Pretraining & Finetuning: Pretrained LMs

• 2-step training:
1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)

2. Fine-tune for your own task on your smaller data (supervised)

• ~ pretrained “contextual embeddings” (“better word2vec”, typically Transformer)

• Model capability is all about the data
• the larger model, the more you need (“Chinchilla scaling laws”)

• anyway the more, the better
https://twitter.com/Thom_Wolf/status/1766783830839406596

https://lifearchitect.ai/chinchilla/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

https://twitter.com/Thom_Wolf/status/1766783830839406596
https://www.harmdevries.com/post/model-size-vs-compute-overhead/
https://www.harmdevries.com/post/model-size-vs-compute-overhead/

Ready-made (P/L)LMs

• PLM vs. LLM distinction a bit vague
• generally >1B, but more on behavior

• PLMs: ready to finetune

• LLMs: ready to prompt (→ →)

• many models released plug-and-play
• !! others (GPT-3/3.5/4, Claude… closed & API-only)

• Huggingface – repo & libraries to run & customize

• Ollama – repo + tool for running locally

• encoder PLMs: BERT/RoBERTa/ModernBERT

• encoder-decoder PLMs: BART, T5

• decoder GPT-2, most LLMs (GPT-3/4,Llama,Mistral,Gemma, Phi, Qwen…)

https://huggingface.co/
https://ollama.com/

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

(controversial! see discussion)

https://x.com/yoavgo/status/1828383882317549765

https://huggingface.co/
https://ollama.com/
http://arxiv.org/abs/2303.18223
https://x.com/yoavgo/status/1828383882317549765

18

LLMs

Transformer PLMs & LLMs

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

LLMs: Prompting = In-context Learning

• No model finetuning, just show a few examples in the input (=prompt)

• pretrained LMs can do various tasks,
given the right prompt
• they’ve seen many tasks in training data

• only works with the larger LMs (>1B)

• adjusting prompts often helps
• “prompt engineering”

• zero-shot (no examples) vs. few-shot

• chain-of-thought prompting:
“let’s think step by step”

• adding / rephrasing instructions
(see → →)

19Transformer PLMs &
LLMs

http://ai.stanford.edu/blog/understanding-incontext/

(Liu et al., 2023) https://arxiv.org/abs/2107.13586

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

http://ai.stanford.edu/blog/understanding-incontext/
https://arxiv.org/abs/2107.13586
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

Instruction Tuning

• Finetune for use with prompting
• “in-domain” for what it’s used later

• Use instructions (task description) + solution in prompts
• Many different tasks, specific datasets available

• Some LLMs released as base (“foundation”) & instruction-tuned versions

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1
https://arxiv.org/abs/2109.01652

Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence ~ whole generated text

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for text generation too

• state = generation so far (prefix)

• action = one generation output (subword)

• defining rewards is an issue (→→)

• Training: maximizing long-term reward
• optimizing policy = way of choosing actions, i.e. predicting tokens

21

(Sutton & Barto, 2018)
http://incompleteideas.net/book/the-book-2nd.html

your model

some definition
of rewards

http://incompleteideas.net/book/the-book-2nd.html

RL from Human/AI Feedback (RLHF/RLAIF)

• RL improvements on top of instruction tuning (~InstructGPT/ChatGPT):
1) generate lots of outputs for instructions

2) have humans rate them (RLAIF variant: replace humans with an off-the-shelf LLM)

3) learn a reward model (some kind of other LM: instruction + solution → score)

4) use rating model’s score as reward in RL

• main point: reward is global (not token-by-token)

22

(Ouyang et al., 2022)
http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt

https://huggingface.co/blog/rlhf

1)

2)

3)

4)

http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
https://huggingface.co/blog/rlhf

Direct Preference Optimization

• Trying to do the same thing, but without RL, with supervised learning

• Special loss function to check pairwise text preference
• increases probability of preferred response

• includes weighting w.r.t. reference model

23Transformer PLMs &
LLMs

(Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

𝑦𝑤 preferred

𝑦𝑙 dispreferred

optimized model

http://arxiv.org/abs/2305.18290

24

Recap – LLMs: Better Training

Prague is the capital of Czechia (...)

Pre-training1

Instruction tuning2

user: What is the capital of Czechia?
assistant: Prague

random neural
network

Model stages:

helpful assistant

3

“autocomplete on steroids”

1

base / foundational model

assistant

2

instruction-tuned model 3 Human preference optimization

user: What is the capital of Czechia?

answer #1: Prague.
answer #2: The capital of Czechia is Prague.

Training stages:

Transformer PLMs & LLMs

● LLMs are eager to please, easily swayed, often incorrect (why?)
● No training step forces correctness

● “Bullshitting”

25Transformer PLMs & LLMs

Hallucination

The problem here isn’t that large language models hallucinate, lie, or
misrepresent the world in some way. It’s that they are not designed to represent
the world at all; instead, they are designed to convey convincing lines of text.

(Hicks et al., 2024)
http://doi.org/10.1007/s10676-024-09775-5

https://tradescantia.uk/article/dont-ask-an-ai-for-plant-advice/

https://www.reddit.com/r/ChatGPT/comments/11brmiv/gaslighting_the_ai_into_225/

http://doi.org/10.1007/s10676-024-09775-5
https://tradescantia.uk/article/dont-ask-an-ai-for-plant-advice/
https://www.reddit.com/r/ChatGPT/comments/11brmiv/gaslighting_the_ai_into_225/

Scaling Test-time Compute – Reasoning Models

• Glorified chain-of-thought
• make chains very long

• train models with intermediate rewards (process reward models)

• The longer you compute, the better
• can be tree search (over intermediate steps, with backtrack), but linear seems OK

• budget-forcing: inserting “Wait” / force-terminating

• RL again (GRPO: sample a lot, baseline = average, upvote better-than-average)

26Transformer PLMs &
LLMs

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
(Muennighoff et al., 2025) http://arxiv.org/abs/2501.19393

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://timkellogg.me/blog/2025/01/25/r1
http://arxiv.org/abs/2501.19393

Synthetic Data

• Generate stuff via base model, train on the result
• like what we did with RLHF/DPO, but for standard training – earlier & more

• Useful for
• detailed annotation (like process rewards)

• cleaner data

• generally more data

• better-aligned data (rewrite as problem-solution pairs, flip problem direction…)

• target modality data (text → audio)

• Needs careful filtering
• iterative refinement – model evaluates itself

• synthetic code: validate via execution

27Transformer PLMs &
LLMs

(Abdin et al., 2024) http://arxiv.org/abs/2412.08905
(Defossez et al., 2024) https://arxiv.org/abs/2410.00037

http://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2410.00037

Tool Use

• Retrieval “as you go”

• LM decodes special tokens for call ID & params

• LLMs tuned to do this

28

(Schick et al., 2023) http://arxiv.org/abs/2302.04761

(ChatGPT)

http://arxiv.org/abs/2302.04761

Thanks

Contacts:

 Ondřej Dušek
 odusek@ufal.mff.cuni.cz
 https://tuetschek.github.io
 @tuetschek

Supported by: European Research Council (ERC StG No. 101039303 NG-NLG)
Using LINDAT/CLARIAH-CZ Research Infrastructure resources (Czech Ministry of Education, Youth and Sports project No. LM2018101).

Thanks to Zdeněk Kasner (https://kasnerz.github.io/) for some of these slides

mailto:odusek@ufal.mff.cuni.cz
https://tuetschek.github.io/
https://kasnerz.github.io/

	Slide 1: Transformer Pretrained & Large Language Models
	Slide 2: Neural language models
	Slide 3: Transformer neural language model
	Slide 4: Inference
	Slide 5: Decoding Algorithms
	Slide 6: Decoding Algorithms
	Slide 7: Decoding Algorithms
	Slide 8: Decoding Algorithms
	Slide 9: Decoding Algorithms
	Slide 10: Temperature
	Slide 11: Is greediness all you need?
	Slide 12: Training a neural language model the basic way
	Slide 13: Training
	Slide 14: Training
	Slide 15: Self-supervised training
	Slide 16: Pretraining & Finetuning: Pretrained LMs
	Slide 17: Ready-made (P/L)LMs
	Slide 18: LLMs
	Slide 19: LLMs: Prompting = In-context Learning
	Slide 20: Instruction Tuning
	Slide 21: Reinforcement Learning
	Slide 22: RL from Human/AI Feedback (RLHF/RLAIF)
	Slide 23: Direct Preference Optimization
	Slide 24: Recap – LLMs: Better Training
	Slide 25: Hallucination
	Slide 26: Scaling Test-time Compute – Reasoning Models
	Slide 27: Synthetic Data
	Slide 28: Tool Use
	Slide 29: Thanks

