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Neural Language Generation

• End-to-end
• feed some input data (linearized), context or prompt

• neural network handles everything

• directly generates output text word-by-word, left-to-right

• Transformer neural architecture (see→)

• Very fluent & convincing outputs 

• Opaque & has no guarantees on accuracy
• used essentially as a black box, internals unknown
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Transformer neural language model
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Transformer neural language model
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prompting: ignore predictions, feed in your own text



Transformer neural language model
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training: train to predict just 1 next word, feed training data (in parallel)



Training a Neural NLG System

• Reproduce sentences from data
• replicate exact word at each position

• Fully trained from data
• initialize model with random parameters

• input example: didn’t hit the right word → update parameters

• Very low level, no concept of sentence / text / aim
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cheap
pricey
in the expensive price range 

Blue Spice is Blue Spice | price | expensive NLG

Blue Spice is expensive

reference:

expensive
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Pretraining & Finetuning

1. Pretrain a model on huge data 
(simple language-based tasks)
• predicting next word

• reconstructing garbled texts

2. Fine-tune on your smaller data
• same as training, but starting from

a better model

• Models free for download (https://huggingface.co/)

• BERT/RoBERTa, GPT-2, BART, T5…

• 100k-1B parameters – runs easily on regular GPUs
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(Lewis et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.703
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https://huggingface.co/
https://www.aclweb.org/anthology/2020.acl-main.703
https://jlibovicky.github.io/2023/02/07/Otazky-a-odpovedi-o-ChatGPT-a-jazykovych-modelech.html


Large language models (LLMs): Pretrain & Prompt

• Today’s large models: 
10-100B parameters
• hard(er) to run (OPT, LlaMa, Falcon…) 

• or API only (GPT-3/4, ChatGPT, Bard…)

• architecture mostly the same

• pretrained on more data

• often no need to finetune

• prompting: feed in context / few examples / ask question, get reply
• finetuning can help, but it’s expensive & has less effect than in smaller LMs

• prompt engineering may be required

• still the same problems– hard to control
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(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

http://arxiv.org/abs/2303.18223


Instruction Tuning / RL from Human Feedback

• LLMs finetuned for prompting
• instructions (task description) 

+ solution in prompts

• “in-domain” for what it’s used later

• Datasets available with many tasks

• RL improvements on top (~InstructGPT/ChatGPT/…):
1) generate lots of outputs for instructions

2) have humans rate them

3) learn a rating model (another LM: instruction + solution → score)

4) use rating model score as reward in RL 

• main point: reward is global (not token-by-token) – RL-free alternatives exist

• somewhat safer (low reward for bad behavior)

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1 (Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

(Ouyang et al., 2022) http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
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LLMs Caveats

• Training scheme ~ Be convincing but not necessarily true

• !Not reliable for QA: only uses information it memorized, “hallucinates”

• Can use information provided in the prompt though (→ →)
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no PhD graduate yet

I only teach dialogue systems

16, depending how you count

no other tasks than
generation & dialogue



Describing relations with LMs

• Can we use LMs/LLMs to verbalize simple facts?
• single subject – relation – object triple (RDF)

• expressing the relations may be hard

Rel2Text: 

• we collected a new dataset to test this
• current sets were not diverse enough

• 1.5k relations / 4k examples 
from Wikidata/YAGO/DBPedia

• crowdsourced + manual checks

• It’s actually hard for people (our checks removed ~45% data)

11NPFL099 L1 2019

(Kasner et al., 2023)
https://arxiv.org/abs/2210.07373
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https://arxiv.org/abs/2210.07373


Evaluating LMs on Rel2Text

• Testing on unseen relations only

• Finetuning BART (“old-school” PLM)
• training on Rel2Text works well

• WebNLG (old, less relations) OK (esp. on correctness)

• ~hundreds of examples needed to work well

• Prompting ChatGPT
• requires carefully crafted prompts

• chattier outputs (~less control)

• Error analysis
• Unclear relation labels lead to semantic errors

• Still some “unprovoked” semantic errors

• BART + Rel2Text & ChatGPT produce nicer, less literal verbalizations
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Rel2Text data BLEU % Log. 
Entail

PPL↓ 
(GPT2)

Human - - 5.88

Copy baseline 29.04 91.21 7.55

BART/WebNLG 41.99 89.39 5.65

BART/Rel2Text 52.54 91.85 5.89

ChatGPT 38.23 88.58 5.68

Structure in Dialogue with LLMs (Kasner et al., 2023) https://arxiv.org/abs/2210.07373
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Task-oriented Dialogue

• Assistant: fulfill user requests (book a hotel/restaurant/taxi etc.)

• MultiWOZ: benchmark for multiple connected domains 
• 10k dialogues, extensive annotation (but noisy!) 
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user: I am looking for a train from Cambridge to London Kinks Cross.
state: {train {departure = cambridge, destination = london kings cross}}
DB: {train (70) {…}}

[count]                                                                  [departure]                 [destination]

system: There are   70    trains departing from Cambridge to London Kings Cross. What day would you like to travel?

user: I would like to leave on Saturday after 18:45.
state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; … }}

[id]                                  [leave_at]                                        [arrive_by]

system: TR0427 leaves at   19:00   and arrives by    19:51    . Would you like to book this train?

user: Yes, I would like to book it for eight people.
[reference]

system: I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?

user: I am also looking for an expensive restaurant in the centre.
belief: {restaurant {area = centre, price range = expensive} train {...}}
DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}

[count] [price_range]                                                          [area]

system: There are   33     expensive restaurants in the centre. Is there a particular type of food you would like?

1.

2.

3.

4.
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(Budzianowski et al., 2018)
https://aclanthology.org/D18-1547/

https://aclanthology.org/D18-1547/


End-to-end Neural Dialogue

• Traditional: separate components (NLU→DM→NLG)
• trained separately, possibly optimization by RL

• End-to-end models
• single neural LM for NLU&DM&NLG

• word-by-word response generation

AuGPT: finetuned GPT-2 LM (~100M params)

• Multi-step, all word-by-word:
1. feed in dialogue context

2. generate dialogue state (as text)

3. query DB, feed in DB results as text

4. generate response
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NLU

tracking

policy

NLG

🗣 DB

I’m looking for 
a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)
What area 
would you prefer?

many results

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126
https://github.com/ufal/augpt

http://arxiv.org/abs/2102.05126
https://github.com/ufal/augpt


End-to-end Neural Dialogue with GPT-2
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Transformer 
layers

input tokens

output tokens

(output ignored) (out. ign.)

embeddings

user input prev. state toks. DB output previous output tokens

generate state

DB queried here

generate system output
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(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

http://arxiv.org/abs/2102.05126


Performance

• Dialogue success (=user gets what they wanted)
• 1-step (corpus-based): 67%

• crowdsourced human eval: 82% perceived, 62% w/DB

• expert eval – if you try hard: 87%

• Hallucinates sometimes
• may generate factually incorrect outputs, hard to control

• → data cleaning, consistency checks

• Needs a lot of data & annotation (MultiWOZ = 10k)
• costly, may be noisy

• → transfer learning, data augmentation

• … or LLM prompting?
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Dialogue with LLMs

• How good are LLMs if we require structure?
• slots / DB are given

• no finetuning? → prompting only

• ChatGPT, Tk-Instruct, Alpaca… (7-20B params)

• Zero/few-shot (FAISS context store, 10 ex./domain)

• little to no data needed: wide potential

• Still the same idea: context → state → DB → response
• additional step needed: domain detection
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(Hudeček & Dušek, 2023)
https://aclanthology.org/2023.sigdial-1.21

context 
encoder

context store 
(examples)

prompt 
creation

I’m looking for a 
five-star hotel in 

the north

LLM domain 
detection

hotels

DB
4 results

LLM state 
tracker

stars: 5
area:north

LLM response 
generation

We’ve got 4 hotels 
available

Definition: Capture values from a 
conversation about hotels. Capture 
pairs “entity:value” separated by colon 
and no spaces in between. Separate 
the “entity:value” pairs by hyphens.
Values that should be captured are: 
- “pricerange”: the price of the hotel
- “area”: the location of the hotel
…
--- Example 1 ---
… 
---
Assistant: “Hello, how can I help you?”
…
Customer: “I am looking for a five-star 
hotel in the north”

instruction

domain
description

examples

dial. history

user input

https://aclanthology.org/2023.sigdial-1.21


Results

• Domain detection ~ 70%+
• Alpaca & TkInstruct OK, ChatGPT almost perfect

• Belief state – not great
• much worse than SotA

• examples help (ChatGPT, TkInstruct: ~50-60% F1, Alpaca 8%), 10 ex./domain enough

• Responses:
OKish

• More potential with better prompt engineering
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Dialogue Success ChatGPT TkInstruct

1-step (corpus) predicted state 44% 19%

gold state 68% 46%

expert eval (end-to-end, with recoveries) 76% 64%



Chat Evaluation with LLMs

• Evaluating NLG is hard, metrics are inaccurate, humans are expensive

• Can we use LMs to evaluate instead?

• Free chat (non-task-oriented)

• Checking appropriateness, relevance, diversity of responses on 1-5 scale
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Chat Turns Appr Rel Div

A do you have any pets? 5 - 4

B I am retired so I love to travel so pets would slow me down 4 4 4

A I understand that my idea of traveling is a hot hot bubble bath 3 2 4

B Yes I have dogs and cats I like to take them with me on trips 2 2 4

(Plátek et al., 2023)
https://aclanthology.org/2023.dstc-1.14

https://aclanthology.org/2023.dstc-1.14


Evaluating Chat

Approach

• Same as previous: LLM prompting 
• few-shot examples in DB

• LLM asked to provide a score given response in context

• Alternative: LLMs as embeddings & regression on top
• finetuned on few-shot data

• Checking correlation with humans

Results

• LLM prompting better than prev. SotA (with ChatGPT, Llama2 close, others fail)

• Prompt formulation matters, examples useful
• but maybe static examples are enough
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Appr Rel Div ø

49% 36% 45% 42%



Conclusions

• LLMs are powerful & can work well…
• if you provide data on the input

• if you optimize your prompts

• if your data aren’t too complex – check your outputs!

• So far, ChatGPT/GPT4 are somewhat better than open LLMs
• new LLMs coming up all the time (Llama2, Falcon, Mistral, Zephyr…)

• OpenAI closed models have likely seen a lot of data (~not really zero-shot)

Current/future work
• better & more thorough evaluation

• looking into the data leakage 

• more transparency ~ prompting, interpretable latents

• constraining – alignments, decoding-time “critic”

21Structure in Dialogue with LLMs

(Lango & Dušek, 2023)
https://arxiv.org/abs/2310.16964

(Kasner & Dušek, 2024)
https://arxiv.org/abs/2401.10186

(Ballocu et al., 2024)
https://openreview.net/forum?id=vsCL6D1EX8

https://arxiv.org/abs/2310.16964
https://arxiv.org/abs/2401.10186
https://openreview.net/forum?id=vsCL6D1EX8
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Model
oracle 

BS

Zero-shot Few-shot

Slot-F1 Success Slot-F1 Success

Alpaca ❎ 0.07 0.04 0.08 0.06

Tk-Instruct ❎ 0.19 0.04 0.57 0.19

ChatGPT ❎ 0.47 0.31 0.62 0.44

Alpaca ✅ – 0.08 – 0.41

Tk-Instruct ✅ – 0.18 – 0.46

ChatGPT ✅ – 0.47 – 0.68


