These slides: https://bit.ly/hi24-od

Getting Structure in Dialogue with Large Language Models

Ondřej Dušek

Hora Informaticae 23.1.2024

Thanks: Vojtěch Hudeček, Zdeněk Kasner, Ondřej Plátek, Patrícia Schmidtová, Mateusz Lango, Jonáš Kulhánek, Tomáš Nekvinda, Ioannis Konstas

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Neural Language Generation

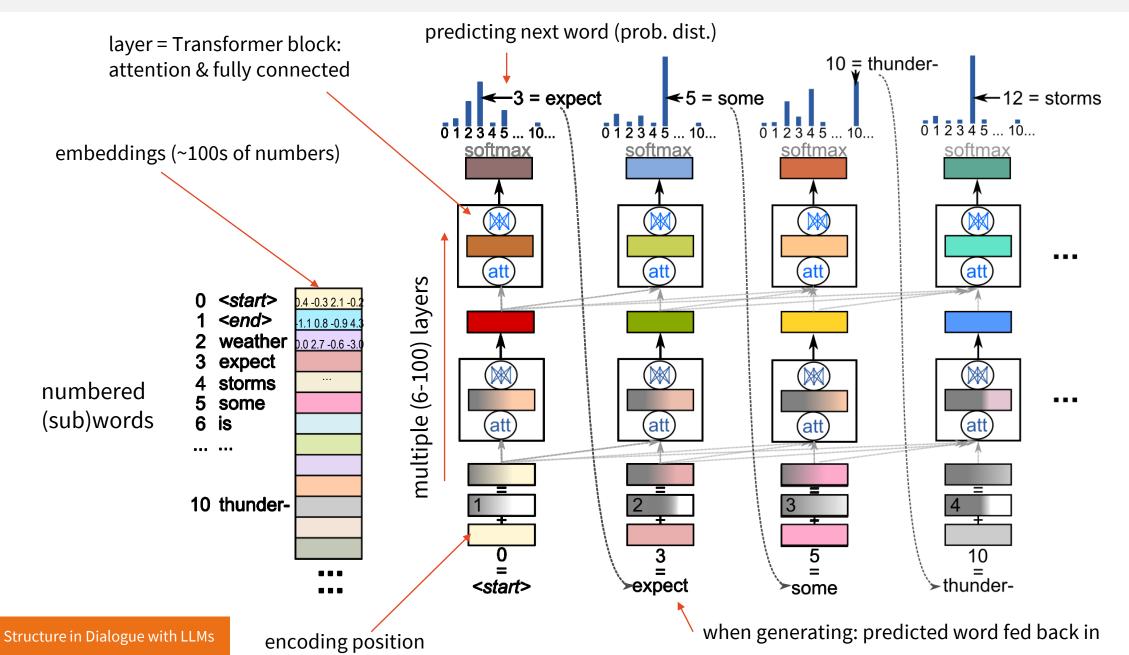
End-to-end

- feed some input data (linearized), context or prompt
- neural network handles everything
- directly generates output text word-by-word, left-to-right
- **Transformer** neural architecture (see→)
- Very **fluent** & convincing outputs

X

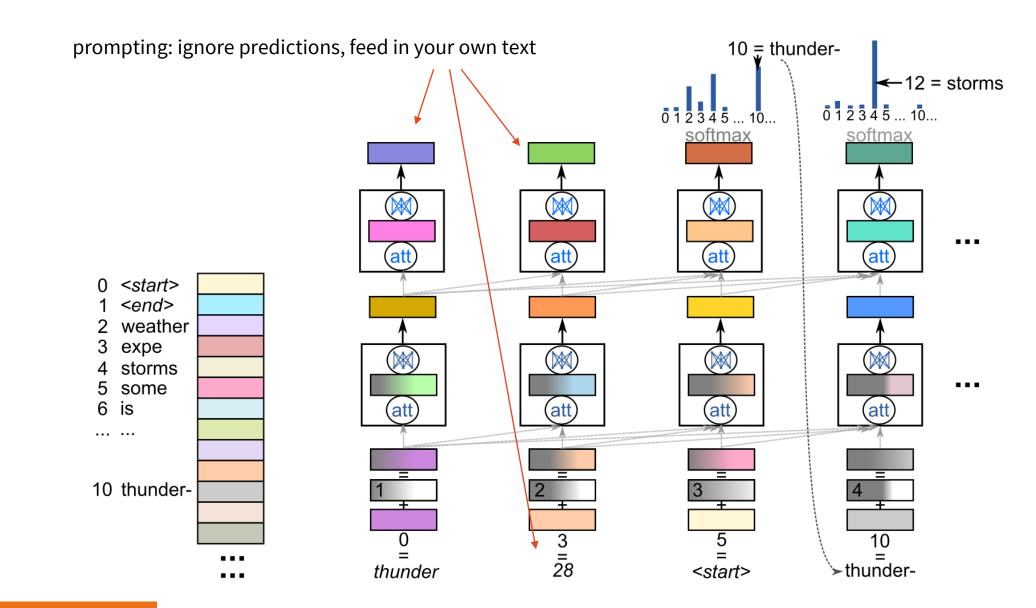
- Opaque & has **no guarantees on accuracy**
 - used essentially as a black box, internals unknown

Transformer neural language model

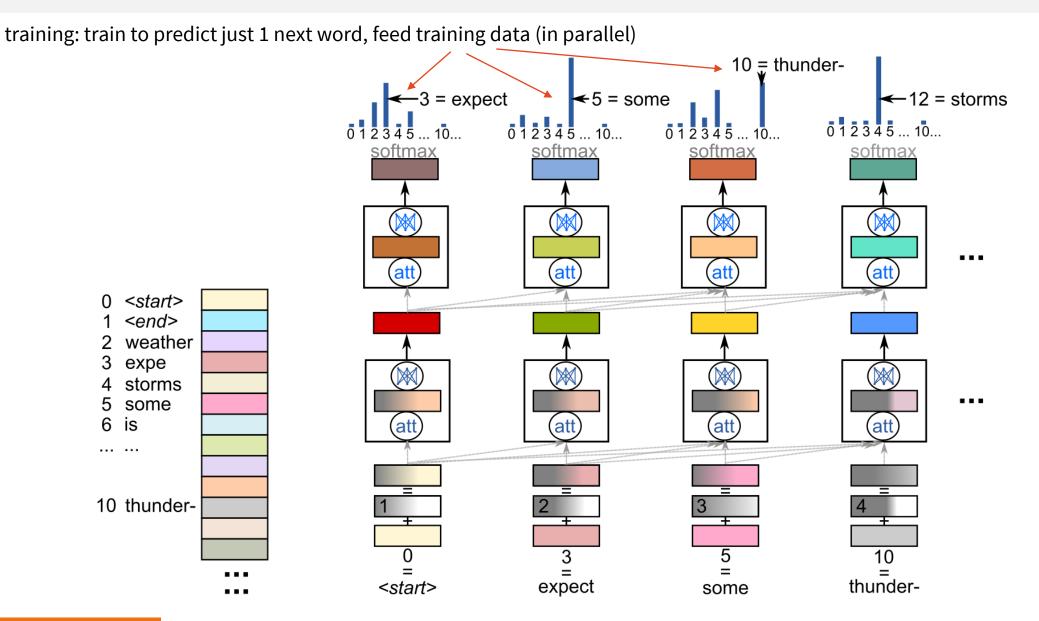


3

Transformer neural language model



Transformer neural language model



Training a Neural NLG System

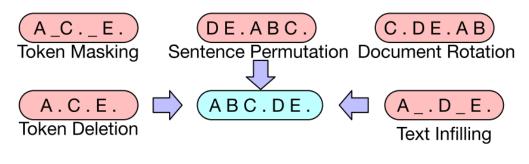
- Reproduce sentences from data
 - replicate exact word at each position
- Fully trained from data
 - initialize model with random parameters
 - input example: didn't hit the right word → update parameters

Blue Spice | price | expensive NLG Blue Spice is expensive reference: Blue Spice is expensive in the expensive price range

• Very low level, no concept of sentence / text / aim

Pretraining & Finetuning

- **1. Pretrain** a model on huge data (simple language-based tasks)
 - predicting next word
 - reconstructing garbled texts
- 2. Fine-tune on your smaller data
 - same as training, but starting from a better model



(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703

7

- Models free for download (<u>https://huggingface.co/</u>)
 - BERT/RoBERTa, GPT-2, BART, T5...
 - 100k-1B parameters runs easily on regular GPUs

Large language models (LLMs): Pretrain & Prompt

(Zhao et al., 2023) http://arxiv.org/abs/2303.18223

Ernie 3.0

Jurassic-1

*

Publicly Available

- Today's large models: 10-100B parameters
 - hard(er) to run (OPT, LlaMa, Falcon...)
 - or API only (GPT-3/4, ChatGPT, Bard...)
- architecture mostly the same
- pretrained on more data
- often no need to finetune
- prompting: feed in context / few examples / ask question, get reply
 - finetuning can help, but it's expensive & has less effect than in smaller LMs

G T5

2020

то 🔛

GPT-3

- prompt engineering may be required
- still the same problems hard to control



G GShard

G FLAN

PanGu-α

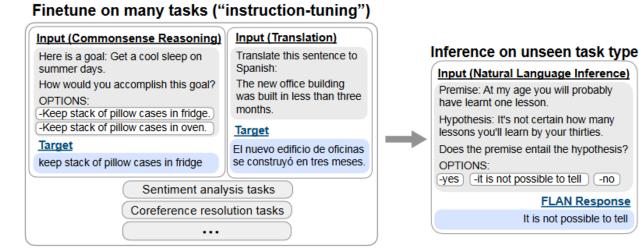
G LaMDA

E PLUG

G mT5

Instruction Tuning / RL from Human Feedback

- LLMs finetuned for prompting
 - instructions (task description)
 + solution in prompts
 - "in-domain" for what it's used later
 - Datasets available with many tasks

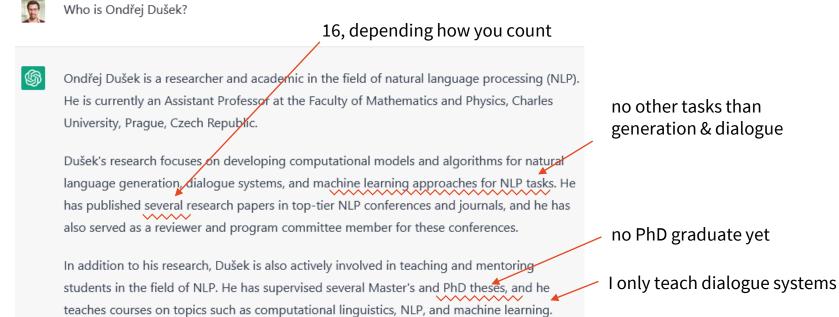


- RL improvements on top (~InstructGPT/ChatGPT/...):
 - 1) generate lots of outputs for instructions
 - 2) have humans rate them
 - 3) learn a rating model (another LM: instruction + solution \rightarrow score)
 - 4) use rating model score as reward in RL
 - main point: **reward is global** (not token-by-token) RL-free alternatives exist
 - somewhat safer (low reward for bad behavior)

(Ouyang et al., 2022) <u>http://arxiv.org/abs/2203.02155</u> <u>https://openai.com/blog/chatgpt</u>

LLMs Caveats

- Training scheme ~ Be **convincing** but **not necessarily true**
- !Not reliable for QA: only uses information it memorized, "hallucinates"



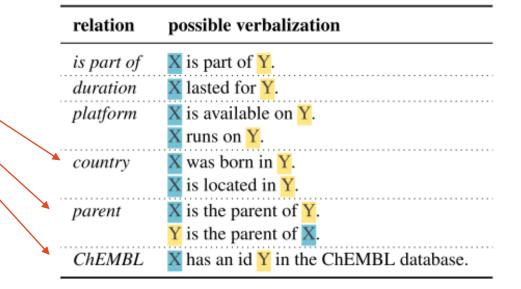
- Can use information provided in the prompt though $(\rightarrow \rightarrow)$

Describing relations with LMs

- Can we use LMs/LLMs to verbalize simple facts?
 - single subject relation object triple (RDF)
 - expressing the relations may be hard

Rel2Text:

- we collected a new dataset to test this
 - current sets were not diverse enough
- 1.5k relations / 4k examples from Wikidata/YAGO/DBPedia
- crowdsourced + manual checks
- It's actually hard for people (our checks removed ~45% data)



Evaluating LMs on Rel2Text

- Testing on unseen relations only
- Finetuning BART ("old-school" PLM)
 - training on Rel2Text works well
 - WebNLG (old, less relations) OK (esp. on correctness)
 - ~hundreds of examples needed to work well

• Prompting ChatGPT

- requires carefully crafted prompts
- chattier outputs (~less control)
- Error analysis
 - Unclear relation labels lead to semantic errors
 - Still some "unprovoked" semantic errors
 - BART + Rel2Text & ChatGPT produce nicer, less literal verbalizations

		rlap with hur	nan
	~0 ⁴⁰	rlap with hu	thes fluency
Rel2Text data	BLEU	% Log. Entail	PPL↓ (GPT2)
Human	-	-	5.88
Copy baseline	29.04	91.21	7.55
BART/WebNLG	41.99	89.39	5.65
BART/Rel2Text	52.54	91.85	5.89
ChatGPT	38.23	88.58	5.68

Task-oriented Dialogue

- Assistant: fulfill user requests (book a hotel/restaurant/taxi etc.)
- MultiWOZ: benchmark for multiple connected domains
 - 10k dialogues, extensive annotation (but noisy!)

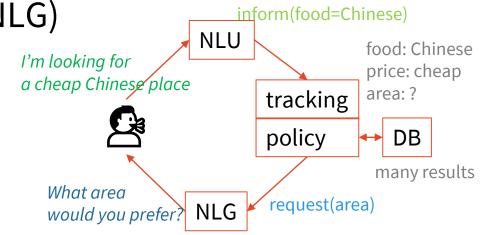
I am looking for a train from Cambridge to London Kinks Cross. user: 1. {train {departure = cambridge, destination = london kings cross}} state: DB: {train (70) {...}} [departure] [destination] [count] There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel? system: I would like to leave on Saturday after 18:45. 2. user: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}} state: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; ... }} DB: [id] [leave_at] [arrive_by] TR0427 leaves at 19:00 and arrives by 19:51 . Would you like to book this train? system: Yes, I would like to book it for eight people. user: 3. [reference] I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with? system: I am also looking for an expensive restaurant in the centre. user: 4. belief: {restaurant {area = centre, price range = expensive} train {...}} DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...} [count] [price_range] [area] There are 33 expensive restaurants in the centre. Is there a particular type of food you would like? system:

End-to-end Neural Dialogue

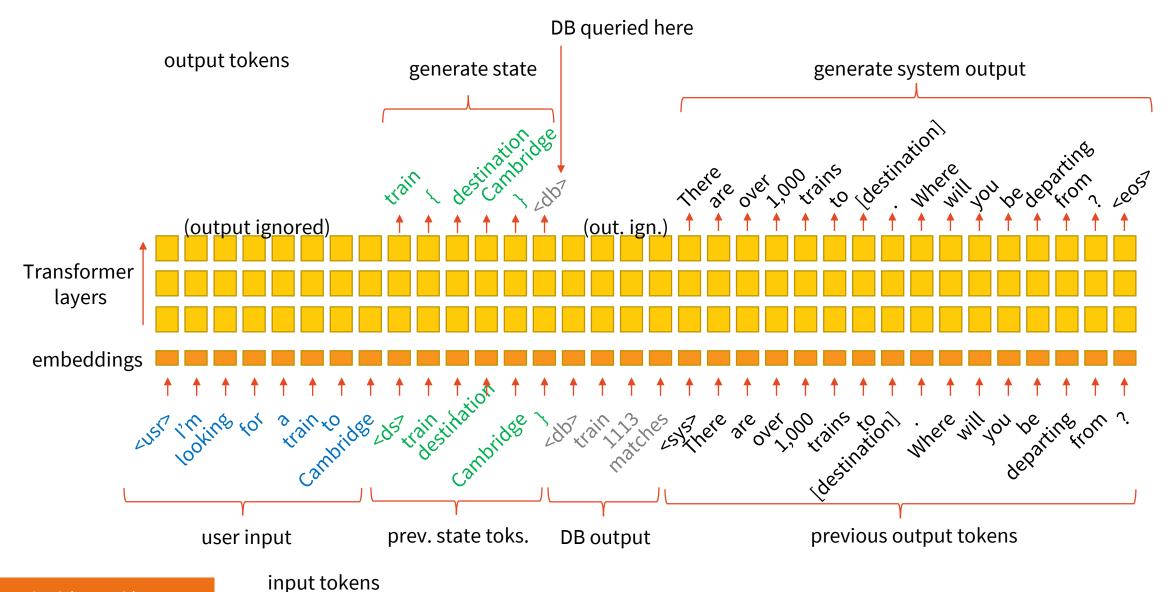
- Traditional: separate components (NLU→DM→NLG)
 - trained separately, possibly optimization by RL
- End-to-end models
 - single neural LM for NLU&DM&NLG
 - word-by-word response generation

AuGPT: finetuned GPT-2 LM (~100M params)

- Multi-step, all word-by-word:
 - 1. feed in dialogue context
 - 2. generate dialogue state (as text)
 - 3. query DB, feed in DB results as text
 - 4. generate response



End-to-end Neural Dialogue with GPT-2



Performance

- Dialogue success (=user gets what they wanted)
 - 1-step (corpus-based): 67%
 - crowdsourced human eval: 82% perceived, 62% w/DB
 - expert eval if you try hard: 87%
- Hallucinates sometimes
 - may generate factually incorrect outputs, hard to control
 - → data cleaning, consistency checks

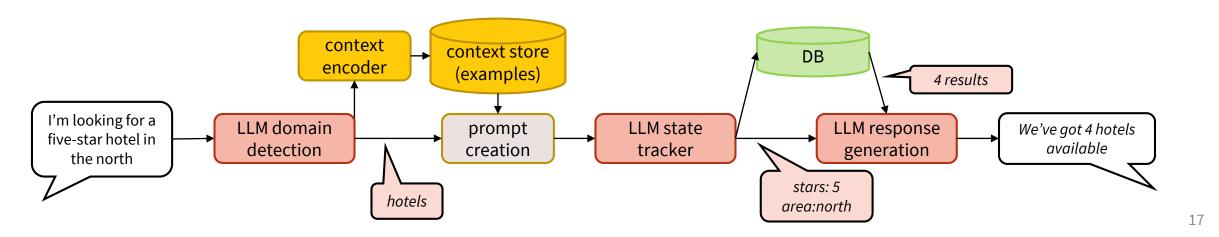
• Needs a lot of data & annotation (MultiWOZ = 10k)

- costly, may be noisy
- + transfer learning, data augmentation
- ... or LLM prompting?

Dialogue with LLMs

(Hudeček & Dušek, 2023) https://aclanthology.org/2023.sigdial-1.21

- How good are LLMs if we require structure?
 - slots / DB are given
 - no finetuning? → prompting only
 - ChatGPT, Tk-Instruct, Alpaca... (7-20B params)
- Zero/few-shot (FAISS context store, 10 ex./domain)
 - little to no data needed: wide potential
- Still the same idea: context → state → DB → response
 - additional step needed: domain detection



```
Definition: Capture values from a
                conversation about hotels. Capture
                pairs "entity:value" separated by colon
                and no spaces in between. Separate
 instruction
                the "entity:value" pairs by hyphens.
                Values that should be captured are:
                - "pricerange": the price of the hotel
     domain
                - "area": the location of the hotel
description
                 --- Example 1 ---
  examples
dial. history Assistant: "Hello, how can I help you?"
                Customer: "I am looking for a five-star
  user input
                 hotel in the north"
```

Results

- Domain detection ~ 70%+
 - Alpaca & TkInstruct OK, ChatGPT almost perfect
- Belief state not great
 - much worse than SotA
 - examples help (ChatGPT, TkInstruct: ~50-60% F1, Alpaca 8%), 10 ex./domain enough

• Responses:	Dialogue Success	ChatGPT	Tkinstruct	
OKish	1-step (corpus)	predicted state	44%	19%
		gold state	68%	46%
	expert eval (end-to-end, with recoveries)		76%	64%

• More potential with better prompt engineering

Chat Evaluation with LLMs

- Evaluating NLG is hard, metrics are inaccurate, humans are expensive
- Can we use LMs to evaluate instead?
- Free chat (non-task-oriented)
- Checking appropriateness, relevance, diversity of responses on 1-5 scale

Chat Turns	Appr	Rel	Div
A do you have any pets?	5	-	4
B I am retired so I love to travel so pets would slow me down	4	4	4
A I understand that my idea of traveling is a hot hot bubble bath	3	2	4
B Yes I have dogs and cats I like to take them with me on trips	2	2	4

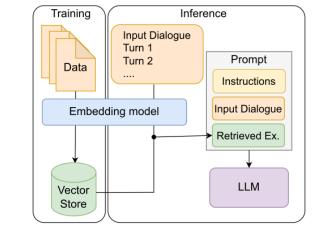
Evaluating Chat

Approach

- Same as previous: LLM prompting
 - few-shot examples in DB
 - LLM asked to provide a score given response in context
- Alternative: LLMs as embeddings & regression on top
 - finetuned on few-shot data
- Checking correlation with humans

Results

- LLM prompting better than prev. SotA (with ChatGPT, Llama2 close, others fail)
- Prompt formulation matters, examples useful
 - but maybe static examples are enough



Appr	Rel	Div	Ø	
49%	36%	45%	42%	

Conclusions

- LLMs are powerful & can work well...
 - if you provide data on the input
 - if you optimize your prompts
 - if your data aren't too complex check your outputs!
- So far, ChatGPT/GPT4 are somewhat better than open LLMs
 - new LLMs coming up all the time (Llama2, Falcon, Mistral, Zephyr...)
 - OpenAI closed models have likely seen a lot of data (~not really zero-shot)

(Kasner & Dušek, 2024)

https://arxiv.org/abs/2401.10186

(Ballocu et al., 2024)

https://openreview.net/forum?id=vsCL6D1EX8

Current/future work

- better & more thorough evaluation
- looking into the data leakage

• more transparency ~ prompting, interpretable latents

• constraining – alignments, decoding-time "critic"

(Lango & Dušek, 2023) <u>https://arxiv.org/abs/2310.16964</u>

Thanks

Contacts:

Ondřej Dušek odusek@ufal.mff.cuni.cz https://tuetschek.github.io @tuetschek

Links

These slides: https://bit.ly/hi24-od

- Relations: <u>https://aclanthology.org/2023.eacl-main.176</u>
- Dialogue: <u>http://arxiv.org/abs/2102.05126</u> <u>https://aclanthology.org/2023.sigdial-1.21</u>

Evaluation: <u>https://aclanthology.org/2023.dstc-1.14</u>

Thanks:

Zdeněk Kasner

Vojtěch Hudeček

Ondřej Plátek

Patrícia Schmidtová

Mateusz Lango

Jonáš Kulhánek

loannis Konstas

Established by the European Com

Supported by: European Research Council (ERC StG No. 101039303 NG-NLG), Charles University projects GAUK 40222, SVV 260698, TA ČR TL05000236 AI asistent pro žáky a učitele.

Using LINDAT/CLARIAH-CZ Research Infrastructure resources (Czech Ministry of Education, Youth and Sports project No. LM2018101).

Model	oracle	Zero-shot		Few-shot	
Mouel	BS	Slot-F1	Success	Slot-F1	Success
Alpaca	X	0.07	0.04	0.08	0.06
Tk-Instruct	×	0.19	0.04	0.57	0.19
ChatGPT	×	0.47	0.31	0.62	0.44
Alpaca	\checkmark	-	0.08	_	0.41
Tk-Instruct	\checkmark	-	0.18	-	0.46
ChatGPT	\checkmark	-	0.47	_	0.68