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Language Generation

• NLG = some input (data/context…) → text

• Traditional approach: templates – fill in blanks
• safe, but laborious & not so fluent

vs.

• End-to-end
• feed data/context, get text word-by-word, left-to-right

• neural net (Transformer → →) handles everything 

• Very fluent & convincing outputs 

• !Opaque & has no guarantees on accuracy
• used essentially as a black box, internals unknown
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name = Blue Spice
eat_type = pub
area = riverside

[name] is a [eat_type] in the [area] area.

+

Blue Spice is a pub in the riverside area.



Transformer neural language model
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Training a Neural NLG System

• Reproduce sentences from data
• replicate exact word at each position

• Fully trained from data
• initialize model with random parameters

• input example: didn’t hit the right word → update parameters

• Very low level, no concept of sentence / text / aim
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cheap
pricey
in the expensive price range 

Blue Spice is Blue Spice | price | expensive NLG

Blue Spice is expensive

reference:

expensive
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Pretraining & Finetuning

1. Pretrain a model on huge data 
(simple language-based tasks)
• predicting next word

• reconstructing garbled texts

2. Fine-tune on your smaller data
• same as training, but starting from

a better model

• Models free for download (https://huggingface.co/)

• BERT/RoBERTa, GPT-2, BART, T5…

• 100k-1B parameters – runs easily on regular GPUs
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(Lewis et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.703
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https://huggingface.co/
https://www.aclweb.org/anthology/2020.acl-main.703
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Large language models (LLMs): Pretrain & Prompt

• 10-100B parameters
• hard(er) to run (OPT, LlaMa, Falcon…) 

• or API only (GPT-3/4, ChatGPT, Bard…)

• architecture mostly the same

• pretrained on more data

• prompting: feed in context / examples / question, get reply
• finetuning can help, but it’s expensive & has less effect than in smaller LMs

• prompt engineering may be required

• still the same problems– hard to control

6Structure in Dialogue with LLMs

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223

http://arxiv.org/abs/2303.18223


Instruction Tuning / RL from Human Feedback

• LLMs finetuned for prompting
• instructions (task description) 

+ solution in prompts

• “in-domain” for what it’s used later

• large datasets available

• RL improvements on top (~InstructGPT/ChatGPT/…):
• rating model based on human ratings gives rewards for outputs

• main improvement: reward is global, not token-by-token

• can be safer (low reward for bad behavior)

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-1 (Rafailov et al., 2023) http://arxiv.org/abs/2305.18290

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

(Ouyang et al., 2022) http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
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LLMs Caveats

• RLHF training scheme ~ be convincing but not necessarily true

• Not reliable for QA: only uses information it memorized, “hallucinates”

• Can use information provided in the prompt though (→ →)

8Structure in Dialogue with LLMs

no PhD graduate yet

I only teach dialogue systems

16, depending how you count

no other tasks than
generation & dialogue



Task-oriented Dialogue

• Assistant: fulfill user requests (book a hotel/restaurant/taxi etc.)

• MultiWOZ: benchmark for multiple connected domains 
• 10k dialogues, extensive annotation (but noisy!) 
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user: I am looking for a train from Cambridge to London Kinks Cross.
state: {train {departure = cambridge, destination = london kings cross}}
DB: {train (70) {…}}

[count]                                                                  [departure]                 [destination]

system: There are   70    trains departing from Cambridge to London Kings Cross. What day would you like to travel?

user: I would like to leave on Saturday after 18:45.
state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; … }}

[id]                                  [leave_at]                                        [arrive_by]

system: TR0427 leaves at   19:00   and arrives by    19:51    . Would you like to book this train?

user: Yes, I would like to book it for eight people.
[reference]

system: I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?

user: I am also looking for an expensive restaurant in the centre.
belief: {restaurant {area = centre, price range = expensive} train {...}}
DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}

[count] [price_range]                                                          [area]

system: There are   33     expensive restaurants in the centre. Is there a particular type of food you would like?

1.

2.

3.

4.
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(Budzianowski et al., 2018)
https://aclanthology.org/D18-1547/

https://aclanthology.org/D18-1547/


End-to-end Neural Dialogue

• Traditional: separate components (NLU→DM→NLG)
• trained separately, possibly optimization by RL

• End-to-end models
• single neural LM for NLU&DM&NLG

• word-by-word response generation

AuGPT: finetuned GPT-2 LM (~100M params)

• Multi-step, all word-by-word:
1. feed in dialogue context

2. generate dialogue state (as text)

3. query DB, feed in DB results as text

4. generate response
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NLU

tracking

policy

NLG

🗣 DB

I’m looking for 
a cheap Chinese place

inform(food=Chinese)

food: Chinese
price: cheap
area: ?

request(area)
What area 
would you prefer?

many results

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126
https://github.com/ufal/augpt

http://arxiv.org/abs/2102.05126
https://github.com/ufal/augpt


End-to-end Neural Dialogue with GPT-2
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Transformer 
layers

input tokens

output tokens

(output ignored) (out. ign.)

embeddings

user input prev. state toks. DB output previous output tokens

generate state

DB queried here

generate system output
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(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

http://arxiv.org/abs/2102.05126


Performance

• Dialogue success (=user gets what they wanted)
• crowdsourcing: 62%

• experts trying hard: 87%

• Hallucinates sometimes
• may generate factually incorrect outputs, hard to control

• → data cleaning, consistency checks

• Needs a lot of data & annotation (MultiWOZ = 10k)
• costly, may be noisy

• → LLM prompting?

12End-to-End Dialogue 



Dialogue with LLMs

• How good are LLMs if we require structure?
• slots / DB are given

• no finetuning ~ prompting only

• ChatGPT, Tk-Instruct, Alpaca… (7-20B params)

• A few examples in prompt (context store)
• wide application potential

• Still the same idea: context → state → DB → response
• additional step needed: domain detection
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(Hudeček & Dušek, 2023)
https://aclanthology.org/2023.sigdial-1.21

context 
encoder

context store 
(examples)

prompt 
creation

I’m looking for a 
five-star hotel in 

the north

LLM domain 
detection

hotels

DB
4 results

LLM state 
tracker

stars: 5
area:north

LLM response 
generation

We’ve got 4 hotels 
available

Definition: Capture values from a 
conversation about hotels. Capture 
pairs “entity:value” separated by colon 
and no spaces in between. Separate 
the “entity:value” pairs by hyphens.
Values that should be captured are: 
- “pricerange”: the price of the hotel
- “area”: the location of the hotel
…
--- Example 1 ---
… 
---
Assistant: “Hello, how can I help you?”
…
Customer: “I am looking for a five-star 
hotel in the north”

instruction

domain
description

examples

dial. history

user input

https://aclanthology.org/2023.sigdial-1.21


Results

• Domain detection – very good, ChatGPT almost perfect

• Belief tracking – pretty bad
• much worse than SotA

• ChatGPT best: ~50% F1, others 7-33%

• Responses: OKish
• experts trying hard: 76% ChatGPT, 64% TkInstruct

• More potential with prompt engineering
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Conclusions

• LLMs are powerful & can work well…
• if you provide data on the input

• if you optimize your prompts

• So far, ChatGPT/GPT4 are better than open LLMs
• new LLMs coming up every week (Llama2, Falcon, Mistral, …)

• OpenAI closed models may have seen some of the data (~is it zero-shot?)

Future work
• look into data leakage effect

• more transparency ~ prompting, interpretable latents

• constraining – alignments, decoding-time “critic”
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(Lango & Dušek, 2023)
https://arxiv.org/abs/2310.16964

https://arxiv.org/abs/2310.16964
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