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Language Generation

* NLG = some input (data/context...) » text

* Traditional approach: templates - fill in blanks

» safe, but laborious & not so fluent [name] is a [eat_type] in the [area] area.

name = Blue Spice
eat_type = pub 2
area = riverside
VS. Blue Spice is a pub in the riverside area.

* End-to-end
 feed data/context, get text word-by-word, left-to-right
* neural net (Transformer » ) handles everything

* Very fluent & convincing outputs

* |IOpaque & has no guarantees on accuracy
 used essentially as a black box, internals unknown
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Transformer neural language model

predicting next word (prob. dist.)
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Training a Neural NLG System

* Reproduce sentences from data
* replicate exact word at each position

* Fully trained from data

* initialize model with random parameters
* input example: didn’t hit the right word > update parameters

Blue Spice | price | expensive — NLG

— Blue Spice is expensive

reference:
Blue Spice is expensive

cheap

pricey
in the expensive price range

* Very low level, no concept of sentence / text / aim
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Pretraining & Finetuning

1. Pretrain a model on huge data

(simple language-based tasks) (Ac. E.) (DE.ABC.)  (C.DE.AB)
.. Token Masking  Sentence Permutation Document Rotation
* predicting next word

» reconstructing garbled texts QANGIED =) (aBC.0E.) ¢ (i‘e;t' Eﬁ_mﬁg)
2. Fine-tune on your smaller data (Lewis et al, 2020)

https://www.aclweb.org/anthology/2020.acl-main.703

* same as training, but starting from
a better model

* Models free for download (https://huggingface.co/)
 BERT/ROBERTa, GPT-2, BART, T5...
* 100k-1B parameters - runs easily on regular GPUs
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Large language models (LLMs): Pretrain & Prompt

(Zhao et al., 2023)
http://arxiv.org/abs/2303.18223
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» prompting: feed in context / examples / question, get reply

» finetuning can help, but it’s expensive & has less effect than in smaller LMs
« prompt engineering may be required

e still the same problems- hard to control
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Instruction Tuning / RL from Human Feedback

(Wei et al., 2022) https://arxiv.org/abs/2109.01652

Finetune on many tasks (“instruction-tuning”)
Input (Commonsense Reasoningl.""'lnp_lut {Translation) N

* LLMs finetuned for prompting
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' s Premise: At my age you will probab
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* RL improvements on top (~InstructGPT/ChatGPT/...):
* rating model based on human ratings gives rewards for outputs
* main improvement: reward is global, not token-by-token
 can be safer (low reward for bad behavior)

(Ouyang et al., 2022) http://arxiv.org/abs/2203.02155
https://openai.com/blog/chatgpt
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LLMs Caveats

* RLHF training scheme ~ be convincing but not necessarily true
* Not reliable for QA: only uses information it memorized, “hallucinates”

‘e Who is Ondfrej Dusek?
' 16, depending how you count

Ondrej Dugek is a researcher and acad
at the Faculty of Mathematics and Physics, Charles no other tasks than

ic in the field of natural language processing (NLP).

He is currently an Assistant Profess

University, Prague, Czech Republfic. generation & dialogue

Dusek's research focuses gn developing computational models and algorithms for nat‘Lyaﬂ/

language generation, dialogue systems, and machine learning approaches for NLP tasks. He

has published several research papers in top-tier NLP conferences and journals, and he has
MAAN/
also served as a reviewer and program committee member for these conferences. no PhD graduate yet

In addition to his research, Dusek is also actively involved in teaching and meM

students in the field of NLP. He has supervised several Master's and PhD theses, and he/ I Only teach dialogue SyStemS
MAAAAAAAN/

teaches courses on topics such as computational linguistics, NLP, and machine learning.

 Can use information provided in the prompt though (> )
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Task-oriented Dialogue

* Assistant: fulfill user requests (book a hotel/restaurant/taxi etc.)

(Budzianowski et al., 2018)

* MultiwOZ: benchmark for multiple connected domains nttps:/Jaclanthology.org/D18- 1547/
10k dialogues, extensive annotation (but noisy!)

1, user | am looking for a train from Cambridge to London Kinks Cross.
state: {train {departure = cambridge, destination = london kings cross}}
DB: {train (70){...}}
[count] [departure] [destination]
system: Thereare 70 trainsdeparting from Cambridge to London Kings Cross. What day would you like to travel?
2. user | would like to leave on Saturday after 18:45.
state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; ... }}
[id] [leave_at] [arrive_by]
system: TRO427 leaves at 19:00 andarrivesby 19:51 .Would you like to book this train?
3. user: Yes, | would like to book it for eight people.
[reference]
system: | have booked it for you. Your reference number is 00000057. Is there anything else | can help you with?
4. user: | am also looking for an expensive restaurant in the centre.
belief: {restaurant {area = centre, price range = expensive} train {...}}
DB: {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
[count] [price_range] [area]
system: Thereare 33 expensive restaurantsin the centre. Is there a particular type of food you would like?

Structure in Dialogue with LLMs 9


https://aclanthology.org/D18-1547/

End-to-end Neural Dialogue

* Traditional: separate components (NLU>DM-NLG)
* trained separately, possibly optimization by RL

, . NLU food: Chinese
* End-to-end models A W{; t>§km pice cheap
« single neural LM for NLU&DM&NLG € o 5 e
» word-by-word response generation " \ / oy rel
: w Zldarez refery NLG ¥ requestiarea)
AUuGPT: finetuned GPT-2 LM (~100M params) oulayouprete

* Multi-step, all word-by-word:
1. feedindialogue context
2. generate dialogue state (as text)
3. query DB, feed in DB results as text
4, generate response

(Kulhanek et al., 2021)
http://arxiv.org/abs/2102.05126

https://github.com/ufal/augpt
Structure in Dialogue with LLMs 10
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End-to-end Neural Dialogue with GPT-2 s org by 2102 0512

DB queried here
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* Dialogue success (=user gets what they wanted)
e crowdsourcing: 62%
* experts trying hard: 87%

* Hallucinates sometimes
* may generate factually incorrect outputs, hard to control
data cleaning, consistency checks

* Needs a lot of data & annotation (MultiWOZ = 10k)

* costly, may be noisy
LLM prompting?



Definition: Capture values from a

° ° (Hudecek & Dusek, 2023) :
D I a logu e W I th L L M S https://aclanthology.org/2023.sigdial-1.21 conversation about hotels. Capture

pairs “entity:value” separated by colon
and no spaces in between. Separate

instruction o S
« How good are LLMs if we require structure? Untuos that Should be captored are
. domain - “pricerange”: the price of the hotel
° SlOtS/ DB are given description - “area”: the location of the hotel
* no finetuning ~ prompting only examples
* ChatGPT, Tk-Instruct, Alpaca... (7-20B params)
dial. history

* Afew examples in prompt (context store)
- wide application potential userinput e e e e

e Still the same idea: context - state > DB > response
 additional step needed: domain detection

context store
(examples)

encoder
A

[ context

DB
\ﬁ 4 results

LLM domain | f prompt LLM state LLM response We’ve got 4 hotels
detection _ creation tracker generation available
stars: 5
hotels area:north

I’m looking for a
five-star hotel in
the north
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Results

* Domain detection - very good, ChatGPT almost perfect

* Belief tracking - pretty bad

 much worse than SotA
* ChatGPT best: ~50% F1, others 7-33%

* Responses: OKish
* experts trying hard: 76% ChatGPT, 64% TkiInstruct

* More potential with prompt engineering

Structure in Dialogue with LLMs
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Conclusions

* LLMs are powerful & can work well...
* if you provide data on the input
* if you optimize your prompts

 So far, ChatGPT/GPT4 are better than open LLMs

* new LLMs coming up every week (Llama2, Falcon, Mistral, ...)
* OpenAl closed models may have seen some of the data (~is it zero-shot?)

Future work
* look into data leakage effect
* more transparency ~ prompting, interpretable latents

 constraining - alignments, decoding-time “critic” (1ango & puzek, 2023)
https://arxiv.org/abs/2310.16964

Structure in Dialogue with LLMs
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