Neural Conversational AI

Ondřej Dušek
MLSS^N Summer School
30 June 2022
About

Ondřej

• Charles University, Prague
• ‘16-18 at Heriot-Watt Uni Edinburgh
• working mostly on language generation
• often in/with dialogue systems

This lecture

• relatively vague/high-level (focus on main ideas)
• focusing on what I work with (pretrained language models)
• trying to avoid digressions
• expecting you know NNs, but haven’t necessarily worked in NLP
• probably much more applied than other talks here
 • most of you probably know more about ML theory than I do
• slightly improvised (depending on timing, I might skip stuff)
1. Intro: “Conversational AI” = “Dialogue Systems”

2. Transformer & pretrained language models

3. Neural models for dialogue system components
 • language understanding
 • state tracking
 • dialogue policy

4. End-to-end neural models

5. Evaluation metrics
1. Introduction
What’s Conversational AI = Dialogue System?

• Definition: A *(spoken)* dialogue system is a **computer system designed to interact** with users in *(spoken)* **natural language**
 • Wide – covers lots of different cases
 • “smart speakers” / phone OS assistants
 • phone hotline systems (even tone-dial ones)
 • in-car systems
 • assistive technologies: therapy, elderly care, companions
 • entertainment: video game NPCs, chatbots

• DSs are cool:
 • ultimate natural interface: say what you want
 • lots of active research – far from solved
 • already used commercially

Real-life dialogue systems: virtual assistants

- Google, Amazon, Apple & others, Mycroft, Rhasspy: open-source
- Really good microphones
 - and not much else – listen for wake word, processing happens online
- Huge knowledge bases
 - combined with web search
- Lots of domains programmed in, but all by hand
 - integration with a lot of services
 (calendar, music, shopping, weather, news…)
 - you can add your own (with limitations)
- Can keep some context
- Conversational capabilities limited

https://homealarmreport.com/smart-home/amazon-echo-vs-google-home/
Dialogue System Types

Task-oriented
• focused on completing a certain task/tasks
 • booking restaurants/flights, finding bus schedules, smart home…
• most actual DS in the wild
 • also our main focus in this course
• (typically) **single/multi domain**
 • talk about 1/more topics

Non-task-oriented
• chitchat – social conversation, entertainment
 • persona, gaming the Turing test
• typically **open-domain** – talk about anything

Comm. Modes: voice / text / multimodal (face, graphics…)
• traditional DS pipeline:
 • ASR: voice \rightarrow text
 • NLU: text \rightarrow meaning
 • DM: meaning \rightarrow reaction
 • NLG: reaction \rightarrow text
 • TTS: text \rightarrow voice
• backend
 • needed for anything better than basic chit-chat
• text-based systems (here): NLU\rightarrowDM\rightarrowNLG

Dialogue Systems Architecture
Task-oriented Dialogue Example

MultiWOZ: benchmark for task-oriented dialogue in multiple domains
- hotels, restaurants, attractions, trains, taxi, police, hospital
- domains are connected (e.g. taxi from hotel to attraction)
- 10k dialogues, extensive annotation (but noisy!)

1. user: I am looking for a train from Cambridge to London Kings Cross.
 state: {train {departure = cambridge, destination = london kings cross}}
 DB: {train (70) [...]}
 system: There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel?

2. user: I would like to leave on Saturday after 18:45.
 state: {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
 DB: {train (3) {arrive by = 19:51,21:51,23:51; id = TR0427,TR0925,TR4898; leave at = 19:00,21:00,23:00; … }}
 system: TR0427 leaves at 19:00 and arrives by 19:51. Would you like to book this train?

3. user: Yes, I would like to book it for eight people.
 system: I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?

4. user: I am also looking for an expensive restaurant in the centre.
 belief: {restaurant {area = centre, price range = expensive} train {…}}
 DB: {restaurant (33) {area = centre (33); name=Curry Garden, …; …}, …}
 system: There are 33 expensive restaurants in the centre. Is there a particular type of food you would like?
2. Transformer & Pretrained Models
Representing Language: Embeddings

• distributed representation
 • each word = a vector of floats
 • basically an easy conversion of 1-hot → numeric
 • a dictionary of trainable features

• part of network parameters – trained
 a) pretraining (optional)
 b) training for the target task

• the network learns which words are used similarly – for the given task
 • they end up having close embedding values
 • different embeddings for different tasks

• embedding size: ~100s-1000
• vocab size: ~50-100k
Subwords

- vocabulary is unlimited, embedding matrix isn’t
 - + the bigger the embedding matrix, the slower your models
- Special **out-of-vocabulary token** `<unk>`
 - loses information, we don’t want it on the output
- **Subwords**: groups of characters that
 - make shorter sequences than using individual characters
 - cover everything
 - 20-50k subwords for 1 language, ~250k subwords multilingual
- **Byte-pair Encoding** (=one way to get subwords)
 - start from individual characters
 - iteratively merge most frequent bigram, until you get desired # of subwords

(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/
(Kudo, 2018)
https://aclanthology.org/P18-1007
Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token **autoregressively**
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells=layers over vectors of \sim embedding size
- used for many NLP tasks

$h_0 = 0$
$h_t = \text{cell}(x_t, h_{t-1})$
$s_0 = h_T$
$p(y_t|y_1, \ldots y_{t-1}, x) = \text{softmax}(s_t)$
$s_t = \text{cell}(y_{t-1}, s_{t-1})$

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Attention

• Encoder-decoder is too crude for complex sequences
 • the whole input is crammed into a fixed-size vector (last hidden state)

• **Attention** = “memory” of all encoder hidden states
 • weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 • fed into decoder inputs + decoder softmax layer

• **Self-attention** – over previous decoder steps
 • increases consistency when generating long sequences

https://skymind.ai/wiki/attention-mechanism-memory-network
token representation: **embeddings**
- vectors of ~100-1000 numbers

source “word” embeddings

vocabulary is numbered

source “word” embeddings

encoder outputs
- “hidden states”
- vectors of numbers

attention = weighted combination
- weights different for each step

probability distribution over the whole vocabulary

target word embeddings

cells: identical (compound) neural layers
input: prev. output + token embedding

Transformer

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

• getting rid of recurrences
 • faster to train, allows bigger nets
 • replace everything with **attention** + **feed-forward** networks
 • ⇒ needs more layers
 • ⇒ needs to encode positions

• positional encoding
 • adding position-dependent patterns to the input

• attention – simple dot-product
 • scaled by $\frac{1}{\sqrt{\text{#dims}}}$ (so values don’t get too big)
 • **more heads** (attentions in parallel)
 – focus on multiple inputs

\[
\sin\left(\frac{pos \times 10000}{2 \cdot \text{#dims}}\right) \quad \cos\left(\frac{pos \times 10000}{2 \cdot \text{#dims}}\right)
\]

one of these for each word

Transformer

- feed-forward (fully connected) network
- ReLU activations
- tricks for better training

attention over all of input

Positional encoding (indicate position in sentence)

no recurrent connections

encoder

decoder

http://arxiv.org/abs/1706.03762

(Vaswani et al., 2017)
Pretrained Language Models

• Transformer Architecture
 • Encoder-only (= good for classification/token tagging)
 • Decoder-only (= good for generation)
 • Encoder-Decoder (= RNN seq2seq equivalent)

• Self-supervised pretraining
 • standard supervised training, but without annotation
 • naturally occurring labels
 • automatic labels ~ fix artificially corrupted data
 • typically simple language tasks (→)
 • used with huge amounts of data – many GBs of text (e.g. CommonCrawl)
 • models not useful for much, but can be finetuned for the target task
 • just train further, use data for target task
Pretrained Language Models

• Pretraining Tasks
 • Masked word prediction
 • Next-word prediction
 • Fixing corrupt sentences
 • Sentence order prediction

• Models
 • BERT encoder only, variants: multilingual, RoBERTa (optimized)
 • GPT(-2/-3/-j/-neo): decoder only, next-word prediction
 • (m)BART, (m)T5: encoder-decoder
 • ByT5: enc-dec, byte-level (instead of subwords)

• a lot of pretrained models released plug-and-play
 • you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
(Liu et al., 2019) http://arxiv.org/abs/1907.11692
(Lewis et al., 2020) http://arxiv.org/abs/1910.13461

https://github.com/huggingface/transformers

(Devlin et al., 2019) https://openai.com/blog/better-language-models/
(Xue et al., 2022) https://doi.org/10.1162/tacl_a_00461
3. Component Models
Natural/Spoken Language understanding (NLU/SLU)

- **Words → meaning**: Extracting the meaning from user utterance
- **dialogue acts** (or other structured semantic representation):
 - act type/intent (*inform, request, confirm*)
 - slot/attribute (*price, time...*)
 - value (*11:34, cheap, city center...*)
 - typically intent classification + slot-value tagging
 - (other, more complex representations – e.g. trees, predicate logic)

- Specific steps:
 - **named entity resolution** (NER)
 - identifying task-relevant names (*London, Saturday*)
 - **coreference resolution**
 - (“it” → “the restaurant”)
NLU Challenges

• non-grammaticality
 find something cheap for kids should be allowed

• disfluencies
 • hesitations – pauses, fillers, repetitions
 uhm I want something in the west the west part of town
 • fragments
 • self-repairs (~6%!)
 uhm I’m looking for a cheap
 uhm find something uhm something cheap no I mean moderate

• ASR errors
 I’m looking for a for a chip Chinese rest or rant

• synonymy
 Chinese city centre
 I’ve been wondering if you could find me a restaurant that has Chinese food close to the city centre please

• out-of-domain utterances
 oh yeah I’ve heard about that place my son was there last month
NLU basics

- You can get far with keywords/regexes (for a limited domain)
- **Intent classification**
 - RNN: last hidden state
 - Transformers, PLMs: typically over 1st input element (start-of-sentence token)
- **Slot value detection**
 - classification (binary: “is slot value X present?”)
 - **slot tagging** – classify every token
 - BIO/IOB scheme: beginning (+slot) – inside (+slot) – outside
- **Delexicalization**: replacing slot values by placeholders
 - essentially named entity recognition
 - essentially tagging, but typically done by dictionaries

I'm looking for a Japanese restaurant in Notting Hill.
I'm looking for a <food> restaurant in <area>.

I need a flight from Boston to New York tomorrow.

I need to leave after 12:00.

I need to leave after <time>.

(= not necessarily 1:1 with slots)
BERT-based NLU

- combined intent-slot
- slot tagging on top of pretrained BERT
 - standard **IOB approach**
 - feed last BERT layers to **softmax over tags**
 - classify only at 1st subword in case of split words (don’t want tag changes mid-word)
- special start token tagged with intent
 - again, softmax on top of last BERT layer
- finetune both tasks at once
 - essentially same task, just having different labels on the 1st token 😊

(Chen et al., 2019)
http://arxiv.org/abs/1902.10909
Dialogue Pretrained Models

- Pretraining on dialogue tasks can do better (& smaller) than BERT
 - ConveRT: Transformer-based **dual encoder**
 - 2 Transformer encoders: context + response
 - feed forward + cosine similarity on top
 - training objective: **response selection**
 - response that actually happened = 1
 - random response from another dialogue = 0
 - trained on a large dialogue dataset (Reddit)
- can be used as a base to train models for:
 - **slot tagging** (top self-attention layer → CNN → CRF)
 - **intent classification** (top feed-forward → more feed-forward → softmax)
 - Transformer layers are fixed, not fine-tuned
 - works well for little training data (**few-shot**)
• pre-finetuning BERT on vast task-oriented dialogue data
 • basically combination of 2 previous approaches

• **BERT + user/sys tokens +** train for:
 • masked language modelling
 • response selection (dual encoder style)
 • over [CLS] tokens from whole batch
 • other examples in batch = negative

• result: “better dialogue BERT”
 • can be finetuned for various dialogue tasks
 • intent classification
 • slot tagging
 • good performance even few-shot
 • just 1 or 10 examples per class

(Wu et al., 2020)
https://www.aclanthology.org/2020.emnlp-main.66
Dialogue Manager (DM)

• Given NLU input & dialogue so far, responsible for **deciding on next action**
 • keeps track of what has been said in the dialogue
 • keeps track of user profile
 • interacts with backend (database, internet services)

• Dialogue so far = **dialogue history**, modelled by **dialogue state**
 • managed by **dialogue state tracker**

• System actions decided by **dialogue policy**
Dialogue state / State tracking

• Stores (a summary of) dialogue history
 • User requests + information they provided so far
 • Information requested & provided by the system
 • User preferences

• Implementation
 • **handcrafted** – e.g. replace value for slot with last-mentioned
 • good enough in some circumstances
 • **probabilistic (belief state)**
 – keep an estimate of per-slot preferences based on NLU
 • more robust, more complex
 • accumulates probability over time & n-best lists
 • → handles NLU/ASR errors
 – e.g. 3x same low-confidence input = prob. high enough to react

| price: | cheap
| food: | Chinese
| area: | riverside
| price: | 0.8 cheap
| | 0.1 moderate
| | 0.1 <null>
| food: | 0.7 Chinese
| | 0.3 Vietnamese
| area: | 0.5 riverside
| | 0.3 <null>
| | 0.2 city center
a) **Always trust the NLU**

 for null value:
 \[p = \text{prev} \cdot p(\text{null}) \sim \text{user didn’t mention this slot} \]

 non-null value \(v \):
 \[p = \text{prev} \cdot p(\text{null}) + p(v) \]
 \sim \text{didn’t mention = carry from previous}
 \sim \text{did mention = add new NLU probability}

 • basically rule-based (but good if NLU is good)

b) **“NLU” over whole dialogue**

 • typically classification (“is slot value \(v \) present?”)
 • option: limit to some candidates (from NLU/delexicalization), rank them
 • may not need NLU, may be better, but slower

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070
BERT & Span Selection

a.k.a. Span Tagging
(≈ question answering/reading comprehension)

• BERT over previous system & current user utterance
• from 1st token’s representation, get a decision: none/dontcare/span
 • per-slot (BERT is shared, but the final decision is slot-specific)
• span = need to find a concrete value as a span somewhere in the text
 • predict start & end token of the span using 2 softmaxes over tokens
• rule-based update:
 • if none is predicted, keep previous value
 • essentially similar to NLU & update rule
Break
Action Selection / Policy

- Deciding what to do next
 - action based on the current belief state
 - following a policy (strategy) towards an end goal (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic (backend access)
 - actions represented by system dialogue acts

- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive
e.g. ask for all information you require

confirm(food=Chinese)
inform(name=Golden Dragon, food=Chinese, price=cheap)

(from Milica Gašić’s slides)
Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state

- Frame-based/flowcharts (e.g. VoiceXML)
 - slot-filling + providing information – basic agenda
 - rule-based in essence

- Rule-based
 - any kind of rules (e.g. Python code)

- Statistical
 - typically trained with reinforcement learning
Why Reinforcement Learning

- **Action selection ~ classification →** use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features

- Yes, but…
 - You’d need sufficiently large **human-human data** – hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there’s **no single correct next action** – multiple options may be equally good
 - but datasets will only have one next action
 - **some paths will be unexplored** in data, but you may encounter them
 - DSs won’t behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - **DSs should behave differently** – make the best of what they have
 - supervised classification **doesn’t plan ahead**
 - RL optimizes for the whole dialogue, not just the immediate action
Reinforcement learning: Definition

- MDP formalism: agent in an environment, **state-action-reward**
 - Agent
 - Environment
 - State transition is stochastic → maximize expected return

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

\[
R_t = \sum_{t=0}^{T} \gamma^t r_{t+1}
\]

\(\gamma \in [0,1] = \text{discount factor}\)

(Immediate vs. future reward trade-off)

- state transition is stochastic → maximize **expected return**

\[E[R_t | \pi, s_0]\]

expected \(R_t\) if we start from state \(s_0\) and follow policy \(\pi\)
Policy Gradients

• Train a **network to represent the policy** $\pi(a|s, \theta)$ – θ are parameters

• To optimize, we need a **performance metric**: $J(\theta) = \mathbb{E}[R_t|\pi, s_0]$
 • expected return in starting state when following π_θ
 • we want to directly optimize this using gradient ascent

• **Policy Gradient Theorem**:
 • expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s, \theta)$

$$
\nabla J(\theta) \propto \sum_s \mu(s) \sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) = E_\pi \left[\sum_a Q^\pi(s, a) \nabla \pi(a|s, \theta) \right]
$$

$\mu(s)$ is state probability under π – this is the same as expected value E_π

$Q^\pi(s, a)$ = “Q-function”
 – value of taking action a in state s, then following policy π

(Sutton & Barto, 2018; p. 324ff)
REINFORCE: Monte Carlo Policy Gradients

• direct search for policy parameters by stochastic gradient ascent
 • looking to maximize performance $J(\theta) = \mathbb{E}[R_t | \pi, s_0]$
• choose learning rate α, initialize θ arbitrarily
• loop forever:
 • generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 • for each $t = 0, 1, ..., T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t | s_t, \theta)$

variant – **advantage** instead of returns:
 discounting a **baseline** $b(s)$ (predicted by any model)
 $A_t = R_t - b(s_t)$ instead of R_t
gives better performance

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t}r_{i+1}$
this will guarantee the right state distribution/frequency $\mu(s)$
this is stochastic $\nabla J(\theta)$:
 • from policy gradient theorem
 • using single action sample a_t
 • expressing Q^π as R_t (under E_π)
 • using $\nabla \ln x = \frac{v_x}{x}$

(Sutton & Barto, 2018; p. 327f)
Rewards in RL

• Typical setup – **handcrafted rewards:**
 - every turn: -1 (encourage fast dialogues)
 - successful dialogue: + 20
 - unsuccessful: - 10 (~center around 0)

• Problems:
 - domain knowledge needed to detect dialogue success
 - **need simulated and/or paid users** (known goal)
 - simulated = essentially another dialogue system
 - paid users = costly + often fail to follow pre-set goals
 - needs a lot of dialogues to train (1000s) → simulated users, supervised pretraining

• Solutions:
 - trained rewards
 - provided by a network, can be turn-level
 - corpus-based RL (supervised/RL hybrid)
 - follow dataset, just assign rewards like RL (→)
• Representing system dialogue act in natural language (text)
 • reverse NLU

• How to express things might depend on context
 • Goals: fluency, naturalness, avoid repetition (…)

• Traditional approach: **templates**
 • Fill in (=**lexicalize**) values into predefined templates (sentence skeletons)
 • Works well for limited domains

```
inform(name=Golden Dragon, food=Chinese, price=cheap) +

<name> is a <price>-ly priced restaurant serving <food> food

= Golden Dragon is a cheaply priced restaurant serving Chinese food.
```

• Statistical approach: **seq2seq**/pretrained language models
 • input: system dialogue act, output: sentence (operation similar to →)
4. End-to-end models
End-to-End Systems

• experimental, research state-of-the-art
 • but not ready for practical deployment

• the whole system (NLU/DM/NLG) is a single neural network
 • joint training (“end-to-end”)
 • more elegant
 • potentially easily retrainable

• typically still needs annotation
 • same as individual modules
 • can be less predictable

• connecting the database is a problem
 • typically this step is done separately

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042/
End-to-end vs. separate components

- Traditional architecture – separate components:
 - more flexible (replace one, keep the rest)
 - error accumulation
 - improved components don’t mean improved system
 - possibly joint optimization by RL
 - more explainable

- End-to-end:
 - joint supervised optimization, RL still works
 - still needs DA-level annotation
 - typically needs a lot of data
 - less control of outputs: hallucination, dull/repetitive

Neural Conv AI

Inform(food=Chinese)

Food: Chinese
Price: cheap
Area: ?

What area would you prefer?

Many results

How are you? I am good

I’m looking for a cheap Chinese place
Sequicity: Two-stage Copy Net

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133

- fully **RNN/seq2seq**-based, not much structure
 - still explicit dialogue state
 - DB is external (as in most systems)
- operation:
 1) **encode**
 - previous dialogue state
 - prev. system response
 - current user input
 2) **decode new dialogue state** first
 - attend over whole encoder
 3) **decode system output** (delexicalized)
 - attend over state only
 + use DB output (one-hot vector added to each generator input)
 - DB: 0/1/more results – vector of length 3
 - **delexicalized** decoding: use placeholders (replaced based on full DB result)
End-to-end Dialogue with GPT-2

- Multiple recent DSs are based on GPT-2 (SOLOIST, UBAR, SimpleTOD, NeuralPipeline)
 - decoder-only PLM

- Similar to Sequicity, everything recast as sequence generation
 - dialogue context, belief state, database outputs represented as sequences
 - GPT-2 **prompting**: force-decode some input (ignore softmaxes, feed your tokens)
 - allows attention over it, conditions following text
 - essentially works like an encoder

- Multi-step operation:
 1) prompt with context & decode belief state
 2) query DB (external)
 3) prompt with DB output & decode response

SOLOIST
(Peng et al., 2021)

1. **Task 1**: Belief State Prediction
 - User: I would like to find an ... of town
 - Belief State: Restaurant (...), [EOB]

2. **Task 2**: Grounded Response Generation
 - DB: ...<EOKB>
 - [The restaurant name] is a great ... [EOS]

3. **Task 3**: Contrastive Objective

Neural Conv AI
(Hosseini-Asl et al., 2020)
Yang et al., 2021

- [Link](https://www.aclweb.org/anthology/2020.acl-main.54)
- [Link](http://arxiv.org/abs/2012.03539)
• Same idea as ↑, multiple improvements

• Operation:
 1) context → belief state
 • prompt w. context & user utterance
 • greedy decoding of state
 • text-like belief state representation
 2) belief state → DB
 • text-like DB results
 3) DB → response
 • top-p sampling (diversity)
 • delexicalized (slot placeholders)

• Training:
 • belief/response prediction + consistency (Y/N)
Consistency task

• **Additional training task** – generating & classifying at the same time
 • additional classification layer on top of last decoder step logits
 • incurs additional loss, added to generation loss

• **Aim: robustness** – detecting problems
 • ½ data **artificially corrupted** – state or target response don’t fit context
 • prev. work: corrupted state sampled randomly
 • **AuGPT**: corrupted state sampled from the **same domain** – harder!

<table>
<thead>
<tr>
<th>context</th>
<th>state</th>
<th>response</th>
<th>consistent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>i want a cheap italian restaurant</td>
<td>{ price range = cheap , food = Italian }</td>
<td>ok which area ?</td>
<td>✅</td>
</tr>
<tr>
<td>i want a cheap Italian restaurant</td>
<td>{ price range = cheap , food = Italian }</td>
<td>thanks, goodbye !</td>
<td>❌ bad response</td>
</tr>
<tr>
<td>i want a cheap italian restaurant</td>
<td>{ destination = Cambridge , leave at = 19:00 }</td>
<td>ok which area ?</td>
<td>❌ bad state</td>
</tr>
<tr>
<td>i want a cheap italian restaurant</td>
<td>{ area = north , food = Chinese }</td>
<td>ok which area ?</td>
<td>❌ bad state (same domain)</td>
</tr>
</tbody>
</table>

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126
Further improvements

(Kulhánek et al., 2021)
http://arxiv.org/abs/2102.05126

• **Data augmentation** via backtranslation (en → xx → en)
 • MT between English and 40 languages from the ELITR project (https://elitr.eu/)
 • we chose 10 best languages
 • user inputs chosen at random from original & 10 backtranslated texts

• **Data cleaning**
 • checking consistency of user goal with database
 • ~30% MultiWOZ data discarded

• **Unlikelihood loss** for output diversity
 • repeated tokens are penalized

• **Sampling** for output diversity
MinTL: Diff dialogue states

- 2-step decoding, same as ↑
 - based on T5 or BART here
 - explicit 2 decoders
 (for state, for response)

- “Levenshtein states”
 - don’t decode full state each time
 - just decode a diff
 (“Levenshtein distance from previous”)
 - better consistency over dialogue

Obtain diffs from state annotation

Encode previous state & context

DB queried based on updated state

Response decoder starting token = # of DB results

Neural Conv AI

(Lin et al., 2020)
Training end-to-end systems: RL?

• Supervised
 • sometimes components still trained separately
 • e.g. hard knowledge base lookup
 • sometimes all in one
 • can’t learn from users
 • problems with train-test mismatch

• RL
 • can learn from users, can learn all-in-one
 • doesn’t work great if done on word-level
 • RL doesn’t care about fluency/naturalness
 • either avoid word-level, or mix with supervised

Facebook abandoned an experiment after two artificially intelligent programs appeared to be chatting to each other in a strange language only they understood.
• Making system actions latent, learning them implicitly

• **Discrete latent space** here (M k-way variables)
 • using Gumbel-Softmax trick for backpropagation
 • trained using Full ELBO (KL divergence vs. a prior network)
 or “Lite ELBO” (KL divergence vs. uniform)

• RL over latent actions, not words
 • avoids producing disfluent language
 • **corpus-based RL**
 • generate outputs, but use original contexts from a dialogue from training data
 • success & RL updates based on generated responses

• ignores DB & state tracking
 • takes gold annotation from data (assumes external model for this)
HDNO: Hierarchical RL End-to-end Dialogue

- Similar to (↑), but tries word-level RL
 - corpus-level RL
 - RNN architecture
 - dialogue state not tracked

- hierarchical RL:
 - **top level**: latent actions, like LARL
 - latent actions Gaussian here
 - standard reward based on success
 - **bottom level**: words
 - reward based on fluency
 - language model probability
 - both rewards weighted (word level much lower)
 - levels updated asynchronously

(Wang et al., 2021)
5. Evaluation
Corpus-based evaluation
(Nekvinda & Dušek, 2021)
https://aclanthology.org/2021.gem-1.4

• Task: take real dialogue history from corpus + generate 1 response
 • repeat over whole dialogue, collect responses

• Metrics:
 • Inform rate – last offered entity matches user constraints
 • Success rate – ↑ + system provided all requested information about it
 • Joint goal accuracy – % turns where all user constraints are captured correctly
 • BLEU – n-gram precision (matching sub-phrases of 1-4 words against reference)

• Problems:
 • really artificial setting, but easiest to use (just need test data)
 • Inf/Succ/JGA: matching the provided entities (more ways to do it)
 • BLEU: tokenization, measuring over delexicalized text
Simulator Evaluation

• **User Simulator** – works as a user, tries to follow goals

• **Dialogue-level** – good over 1 turn ≠ good over whole dialogue
 - especially for end-to-end systems, errors may accumulate over time
 - simulator is the only automatic way to assess this

• Main metric: **Success rate**: was the simulated user’s goal reached?
 - i.e. did the system give a correct entity & all information
 - technically same as corpus-based, but now over real dialogues

• Problems:
 - the simulator needs to be built for a given domain
 - it’s essentially another dialogue system (👤 × 🐔)
 - simulator behavior will bias the evaluation
Human Evaluation

Metrics (objective – measuring):

• **Task success** (boolean): did the user get what they wanted?
 • (paid) testers with known goal → check if they found what they were supposed to
 • [warning] sometimes people go off script
 • basic check: did we provide any information at all?

• **Duration**: number of turns (fewer is better)

Metrics (subjective – questionnaires):

• **Success rate**: Did you get all the information you wanted?
 • typically different from objective measures!

• **Future use**: Would you use the system again?

• Component-specific questions

<table>
<thead>
<tr>
<th>System</th>
<th># calls</th>
<th>Subjective Success Rate</th>
<th>Objective Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDC</td>
<td>627</td>
<td>82.30% (±2.99)</td>
<td>62.36% (±3.81)</td>
</tr>
<tr>
<td>NBC</td>
<td>573</td>
<td>84.47% (±2.97)</td>
<td>63.53% (±3.95)</td>
</tr>
<tr>
<td>NAC</td>
<td>588</td>
<td>89.63% (±2.46)</td>
<td>66.84% (±3.79)</td>
</tr>
<tr>
<td>NABC</td>
<td>566</td>
<td>90.28% (±2.44)</td>
<td>65.55% (±3.91)</td>
</tr>
</tbody>
</table>

(Jurčiček et al., 2012)
https://doi.org/10.1016/j.csl.2011.09.004
Final Remarks
Further Research Areas

• Multi/open domains
 • reusability, domain transfer
 • training from little data
 • using less annotation
 • connecting task-oriented systems and chatbots

• Context dependency
 • understand/reply in context (grounding, speaker alignment)

• Incrementality
 • don’t wait for the whole sentence to start processing

• Evaluation
 • neural-net-based metrics
Multimodal/Visual Dialogue

- adding other modalities
- specific components
 - parallel to NLU
 - vision – image classification networks
 - face identification/tracking
 - parallel to NLG
 - mimics/gesture generation
 - gaze
 - image retrieval
 - vision – typically CNN
 - often off-the-shelf stuff
 - specific classifiers/rules

(Agarwal et al., 2018)

http://aclweb.org/anthology/W18-6514

https://youtu.be/5fhjuGu3d0I?t=137
https://vimeo.com/248025147

Neural Conv AI
Thanks

Contact me:
MLSS^N Slack
in person till tomorrow
odusek@ufal.mff.cuni.cz

I’m looking for a postdoc
& will be looking for PhD students
(know someone?)
http://ufal.cz/ng-nlg/postdoc

Get the slides here:
http://ufal.cz/ondrej-dusek/bibliography (under “Talks”)

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on slides and syllabi by:

- Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
- Luděk Bártĕk (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
- Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/
Recommended Reading

Best:

- McTear: Conversational AI. Morgan & Claypool 2021. (https://doi.org/10.2200/S01060ED1V01Y202010HLT048) – a bit more advanced & focused, pretty new
- Sutton & Barto: Reinforcement Learning: An Introduction, 2018 (freely online) – specifically on RL, pretty advanced
- recent papers from the field (linked on individual slides)

Also good (but more outdated):