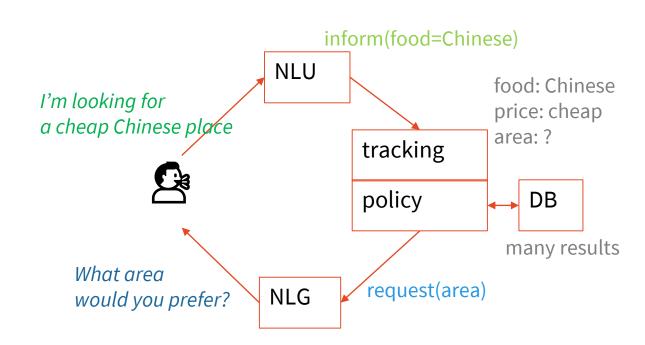
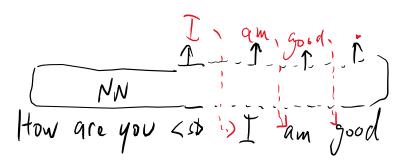

End-to-end Neural Dialogue Systems

Ondřej Dušek

VOCALLS AI Afternoon 19.10.2022



Dialogue systems


Standard architecture (text-based):

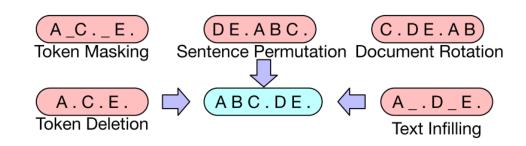
- Natural language understanding
 - user utterance → user dialogue act (DA)
- Dialogue state tracking
 - update user preferences based on DA
- Dialogue policy
 - choose next action based on state
 - system DA
 - consult DB if needed
- Natural language generation
 - express system DA as a sentence

End-to-end neural systems

- Standard approach: Pipeline
 - each module built separately
 - NLU typically trained (or combined with rules)
 - Tracking could be either
 - Policy, DB, NLG: rules, templates
 - problem: error accumulation, costly to implement
- End-to-end models: remove the pipeline
 - NLU/Tracking/Policy/NLG is one neural network
 - generate response word-by-word
 - DB must be external → 2-step operation
 - trained on (many) example dialogues

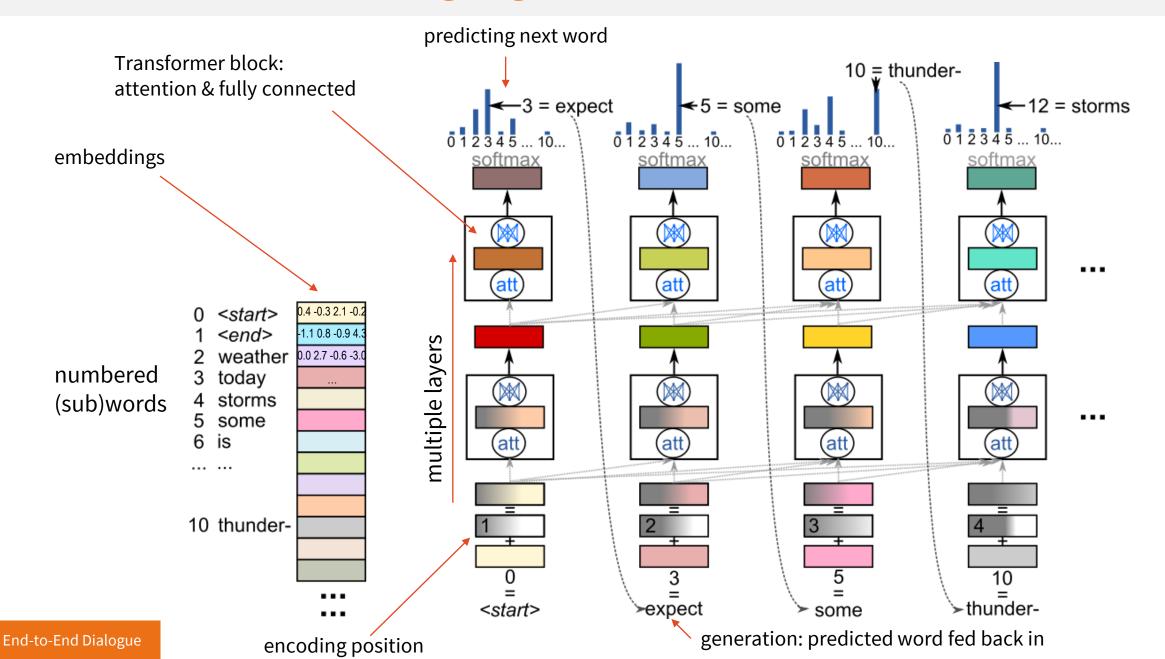
Neural language models

• Transformer neural architecture


- (sub)word representation: **embedding** = vector of numbers
- blocks: attention (combining context) + fully-connected (abstracting)
- predicting next (sub)word = classification: choosing 1 out of ca. 50k (probabilistic)
- trained from data: initialize randomly & iteratively improve

Pretrained models

- Transformers trained on vast amounts of data
- Self-supervised training: just naturally occurring text & simple tasks
 - predicting next word
 - predicting masked word
 - fixing corrupt sentences


. . .

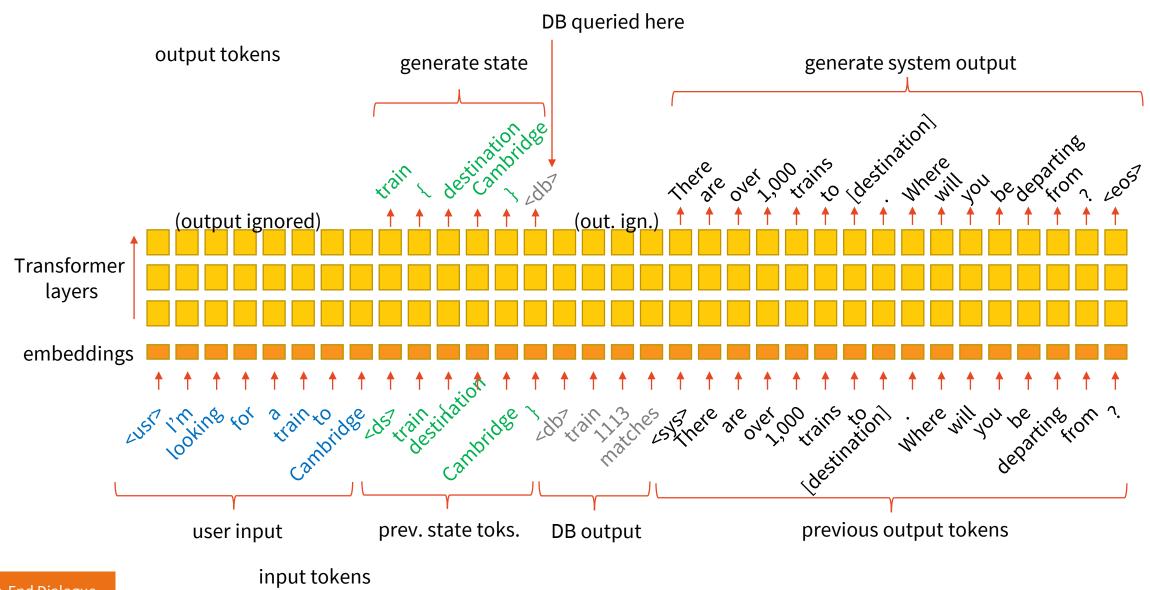
Lot of them released online, plug-and-play

Transformer neural language model

Multi-domain dialogue (MultiWOZ)

- MultiWOZ: benchmark for task-oriented dialogue in multiple domains
 - hotels, restaurants, attractions, trains, taxi, police, hospital
 - domains are connected (e.g. taxi from hotel to attraction)
 - 10k dialogues, extensive annotation (but noisy!)

```
I am looking for a train from Cambridge to London Kinks Cross.
      user:
                   {train {departure = cambridge, destination = london kings cross}}
      state:
      DB:
                   {train (70) {...}}
                                                           [departure]
                                                                             [destination]
                   There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel?
      system:
                   I would like to leave on Saturday after 18:45.
      user:
                   {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
      state:
                   \{train(3) | \{arrive by = 19:51, 21:51, 23:51; id = TR0427, TR0925, TR4898; leave at = 19:00, 21:00, 23:00; \dots \} \}
      DB:
                                     [leave at]
                                                            [arrive_by]
                   TR0427 leaves at 19:00 and arrives by 19:51. Would you like to book this train?
      system:
                   Yes, I would like to book it for eight people.
      user:
3.
                                                                        [reference]
                   I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?
      system:
                   I am also looking for an expensive restaurant in the centre.
      user:
      belief:
                   {restaurant {area = centre, price range = expensive} train {...}}
                   {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
      DB:
                             [count] [price_range]
                   There are 33 expensive restaurants in the centre. Is there a particular type of food you would like?
      system:
```


End-to-end Neural Dialogue with GPT-2

- GPT-2: one of most popular pretrained language models
 - Transformer https://huggingface.co/gpt2
 - pretrained on next-word prediction
 - 8M docs, 40GB data from the web
- **Dialogue**: GPT-2 finetuned (=further trained) on dialogue data (MultiWOZ)
- Single neural network, fits Transformer operation

https://github.com/ufal/augpt

- Multi-step, all word-by-word:
 - 1. feed in dialogue context (← ignore generation outputs for this bit)
 - 2. generate dialogue state (as text)
 - 3. query DB
 - 4. feed in DB results as text (← ignore outputs)
 - 5. generate response

End-to-end Neural Dialogue with GPT-2

Problems & solutions

- Needs a lot of data & annotation (1000s of dialogues)
 - costly, may be noisy
 - > transfer learning, data augmentation
- Hallucinates sometimes
 - may generate factually incorrect outputs, hard to control
 - > data cleaning, consistency training (corrupt data & train to detect this)
- Repetitive/dull outputs
 - settles for the most frequent output
 - → sampling (randomness)
- Still a long way to go
 - ~70% correct/successful dialogues
 - still needs a lot of data

Thanks

Contact me:

odusek@ufal.mff.cuni.cz
http://ufal.cz/ondrej-dusek

Credits:

Vojtěch Hudeček

Jonáš Kulhánek

Tomáš Nekvinda

Our work: https://github.com/ufal/augpt

These slides: https://bit.ly/e2e-ds-vocalls