Large Neural Language Models for Data-to-text Generation

Ondřej Dušek

collaboration with Zdeněk Kasner

AICZECHIA Seminar 22.3.2022

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Data-to-text Generation

- **data-to-text NLG** = verbalizing structured outputs
 - RDF triples, dialogue acts etc. \rightarrow text

Blue Spice | eat_type | pub Blue Spice | area | riverside

TeamWinLossPtsMavericks314186Raptors442994

NLG

• main usage:

- reports based on data (weather, sports...)
- dialogue systems (Siri/Google/Alexa...)

 The Toronto Raptors, which were leading at halftime by 10 points (54-44), defeated the Dallas Mavericks by 8 points (94-86).

 Patrick Patterson provided 14 points on 5/6 shooting, 5 rebounds, 3 defensive rebounds, 2 offensive rebounds and 1 assist.

Blue Spice is a pub in the riverside area.

Neural NLG vs. older methods

- Older methods:
 - **templates** fill in blanks
 - most commercial systems still!
 - safe, tried & tested
 - needs handcrafting
 - rules/grammars
 - pipelines of statistical models
- Neural models:
 - 1 step, end-to-end
 - Train fully from input-output pairs (no additional rules etc.)
 - Much more **fluent** outputs
 - Needs more training data (~10k range, 10x more than before)
 - Opaque & has no guarantees on accuracy

Blue Spice is a pub in the riverside area.

Accuracy in NLG

- accuracy = input-output correspondence
- basic accuracy error types
 - **hallucination** = output not grounded in input
 - **omission** = input not verbalized

- measure: slot/semantic error rate (SER)
 - % incorrect "slots" (=pieces of info)

Neural NLG: Transformer Models (encoder-decoder, seq2seq)

(Vaswani et al., 2017) <u>http://arxiv.org/abs/1706.03762</u>

Neural NLG: (Pre-)Training

- Trained to produce sentence in data
 - low-level: exact word at each position

- Pretrained language models:
 - 1. Pretrain a model on a huge dataset (self-supervised, language-based tasks)
 - text-to-text: autoencoding & denoising
 - 2. Fine-tune for your own task on your smaller data (**supervised**)
 - models available online
 - get pretrained model, finetune yourself

(Lewis et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.703

NLG with a Pretrained LM: Base

- Most basic setup:
 - using mBART pretrained model
 - representing data as text
 subject | predicate | object ►
 subject | predicate | object
 - finetuning to generate English & Russian
- Fluent outputs, but...
 - fails to generalize
 - hallucinates occasionally

mBART

finetuned on English WebNLG

Arrabbiata sauce | country | Italy

Italy | capital | Rome

out: The population metro of Ciudad Ayala is 1777539. not seen in training data
 in: Nurhan Atasoy | birth date | 1934-01-01 > Nurhan Atasoy | residence | Istanbul > residence, not birthplace! Nurhan Atasoy | nationality | Turkish people
 out: Nurhan Atasoy was born on January 1, 1934 in Istanbul and is a Turkish national.

Arrabbiata sauce is found in Italy

where the capital city is Rome.

Templates + Neural Fuse & Rephrase

(Kasner & Dušek, 2022) ACL conference, arXiv coming soon

- Guaranteed accurate
- Not so many needed (usually)
- No need for high fluency
- Neural LM to **fuse & rephrase:**
 - 1) order (related together)
 - 2) aggregate (into sentences)
 - 3) compress (produce short sentences)
 - Do what neural models are good at fluency
 - Less space for semantic errors
- Works **zero-shot** with no in-domain data (just the templates)

Templates + Neural Fuse & Rephrase

- all based on pretrained LMs
- Large Wikipedia data
 - Wikipedia sentences as targets
 - creating artificial source data, which looks like single-triple templates
 - 1) split sentences
 - 2) replace pronouns
 - 3) randomize order
- ~1M sentences, various topics
 - much more than in-domain available

artificial S

Data-to-text NLG

Templates + Neural Fuse & Rephrase

- Good accuracy
 - perfect for simpler data (E2E restaurants)
 - worse for complex data (WebNLG DBPedia knowledge)
- Slightly lower fluency (~older neural systems)
- Can be further improved (reranking/filtering)

input: Allen Forrest | background | solo singer ► Allen Forrest | genre | pop music ► Allen Forrest | birthplace | Dothan, Alabama templates: Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.

output: Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.

input: Wildwood | eatType | restaurant ► Wildwood | food | French ► Wildwood | area | riverside ► Wildwood | near | Raja Indian Cuisine templates: Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is near Raja Indian Cuisine.

output: Wildwood is a restaurant serving French Food. It is in the riverside near Raja Indian Cuisine.

input: Alfa Romeo 164 | relatedMeanOfTransportation | Fiat Croma \blacktriangleright Alfa Romeo 164 | assembly | Italy \blacktriangleright Italy | capital | Rome templates: Alfa Romeo 164 is related to Fiat Croma. Alfa Romeo 164 was assembled in Italy. Italy's capital is Rome.

output: Alfa Romeo 164 was assembled in Italy's capital, Rome. It is related to Fiat Croma.

E2E	BLEU	Omission/ #facts	Hallucinatio n/#examples
Older neural	40.73	0.016	0.083
Templates	24.19	0.000	0.000
Ours	36.04	0.001	0.001

WebNLG	BLEU	Omission/ #facts	Hallucinatio n/#examples
Rule-based	38.65	0.075	0.101
Older neural	45.13	0.237	0.202
Templates	37.18	0.000	0.000
Ours	42.92	0.051	0.148

Evaluating Data-to-text NLG

- n-gram metrics (BLEU, METEOR)
 - derived from MT, no good for accuracy
 - dubious even as measures for overall quality
- Neural metrics (BERTScore, BLEURT) mix accuracy & fluency
 - slightly better than n-gram, but still not ideal
- SER evaluation uses regex or exact match
 - tedious to make / inaccurate
 - does not translate to other datasets
- Proper evaluation means full NLU
 - pretrained LMs are good at NLU-like tasks → use them?

Checking for Errors in NLG Output: Natural Language Inference

- NLI: relation of premise (= starting point) & hypothesis (= relating text)
 - Entailment = all hypothesis facts are included in premise
 - Neutral = not all hypothesis facts included, but no directly opposing facts
 - Contradiction = premise is opposed by hypothesis

P: Blue Spice is a pub in the riverside area.

 H_1 : Blue Spice is located in the riverside. \longrightarrow E H_2 : You can bring your kids to Blue Spice . \longrightarrow N H_3 : Blue Spice is a coffee shop. \longrightarrow C

- We'll use a vanilla model trained for NLI
- Check entailment in both directions
 - data entails text = no hallucination + text entails data = no omission
- Use templates to represent data (same as previously)

(Dušek & Kasner, 2020) https://www.aclweb.org/anthology/2020.inlg-1.19

Eval1: NLI Classification

(Dušek & Kasner, 2020) https://www.aclweb.org/anthology/2020.inlg-1.19

1) Check for omissions

- premise = whole generated text
- hypothesis = each single fact, loop
 → also checks which fact is omitted

2) Check for hallucination

- premise = concatenated facts
- hypothesis = whole generated text
 - can't easily split into simpler checks
- output:
 - 4-way OK, omission, hallucination, o+h
 - 2-way *OK*, *not_OK*
 - OK confidence (min. E confidence)
 - list of omitted facts

P: Blue Spice is a pub. Blue Spice is located in the riverside.H: You can bring your kids to Blue Spice in the riverside area.

C: 0.00 N: 0.99 E: 0.01

→ hallucination

omission+hallucination

OK: 0.01 omitted: Blue Spice | eat_type | pub

Error Checking with NLI

- WebNLG & E2E data
 - comparison vs. human ratings (WebNLG) & SER regex script (E2E)
 - both datasets: default & backoff-only versions of templates

	WebNLG	E2E data	
system	data	4-way	2-way
Accuracy / agreement	77.5%	91.1%	93.3%

- manual analysis: ca. 1/2 "errors" are in fact correct
 - annotation noise / SER script errors
 - noisy templates
 - edge cases (*high restaurant*)
 - stuff SER script doesn't catch (*with full service*)

Summary

- Neural models produce very fluent outputs
 - especially true of pretrained Transformer LMs
 - due to data & model reasons, not guaranteed to be accurate
- There are ways to make them more accurate
 - combining with templates & only editing for fluency
 - constraining the neural component
- Finding errors in NLG is as hard as NLU
 - pretrained LMs are good at some NLU tasks, such as NLI \rightarrow can be applied
- Many other accuracy-increasing approaches
 - reranking / data cleaning / multi-task training / constrained decoding
 - more to come: semantic formalisms & inference

Thanks

Contact us:

Ondřej Dušek odusek@ufal.mff.cuni.cz https://tuetschek.github.io @tuetschek

Zdeněk Kasner <u>kasner@ufal.mff.cuni.cz</u> http://ufal.cz/zdenek-kasner @ZdenekKasner

References:

- Base pretrained LMs: <u>https://aclanthology.org/2020.webnlg-1.20/</u>
- Fuse & rephrase: coming soon (on arXiv/my website)
- Error checking via NLI: <u>https://aclanthology.org/2020.inlg-1.19/</u>