Large Neural Language Models for Data-to-text Generation

Ondřej Dušek

collaboration with Zdeněk Kasner

AICZECHIA Seminar
22.3.2022
Data-to-text Generation

Data-to-text NLG = verbalizing structured outputs

- RDF triples, dialogue acts etc. → text

Blue Spice | eat_type | pub
Blue Spice | area | riverside

main usage:

- reports based on data (weather, sports…)
- dialogue systems (Siri/Google/Alexa…)

<table>
<thead>
<tr>
<th>Team</th>
<th>Win</th>
<th>Loss</th>
<th>Pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mavericks</td>
<td>31</td>
<td>41</td>
<td>86</td>
</tr>
<tr>
<td>Ravens</td>
<td>44</td>
<td>29</td>
<td>94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player</th>
<th>AS</th>
<th>RB</th>
<th>PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick Patterson</td>
<td>1</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Delon Wright</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

The Toronto Raptors, which were leading at halftime by 10 points (54-44), defeated the Dallas Mavericks by 9 points (94-86).

- Patrick Patterson provided 14 points on 5/6 shooting, 5 rebounds, 3 defensive rebounds, 2 offensive rebounds and 1 assist.

(Kasner et al., 2021) https://aclanthology.org/2021.inlg-1.25
Neural NLG vs. older methods

• Older methods:
 • **templates** – fill in blanks
 • most commercial systems still!
 • safe, tried & tested
 • needs handcrafting
 • rules/grammars
 • pipelines of statistical models

• Neural models:
 • 1 step, **end-to-end**
 • **Train** fully from input-output pairs (no additional rules etc.)
 • Much more **fluent** outputs
 • Needs more training data (~10k range, 10x more than before)
 • Opaque & has **no guarantees on accuracy**

Data-to-text NLG

\[
\text{name} = \text{Blue Spice} \\
\text{eat_type} = \text{pub} \\
\text{area} = \text{riverside}
\]

\([\text{name}] \text{ is a } [\text{eat_type}] \text{ in the } [\text{area}] \text{ area.}\)

\[
\text{Blue Spice} \text{ is a pub in the riverside area.}
\]
Accuracy in NLG

• **accuracy** = input-output correspondence

• basic accuracy error types
 • **hallucination** = output not grounded in input
 • **omission** = input not verbalized

• measure: slot/semantic error rate (**SER**)
 • % incorrect “slots” (=pieces of info)

Data-to-text NLG
Neural NLG: Transformer Models (encoder-decoder, seq2seq)

1) **encoder**: encode linearized data

- **attention** over all of input (=weighted combination)
- Feed-forward network, ReLU activations
- Source embeddings (=vectors of numbers)
- Positional encoding (indicate position in sentence)
- Vocabulary is numbered

2) **decoder**: decode text word-by-word

- 10 = which
- 5 = area
- Probability distribution over the whole vocabulary
- Target (word) embeddings
- Starting symbol
- Feed output to next step
- Attention over all of input & output generated so far (**self-attention**)

(Vaswani et al., 2017) http://arxiv.org/abs/1706.03762
Neural NLG: (Pre-)Training

• Trained to produce sentence in data
 • low-level: exact word at each position

 Blue Spice | price | expensive → Blue Spice is expensive
 reference:
 Blue Spice is expensive

• Pretrained language models:
 1. **Pretrain** a model on a huge dataset (**self-supervised**, language-based tasks)
 • text-to-text: autoencoding & denoising
 2. **Fine-tune** for your own task on your smaller data (**supervised**)
 • models available online
 – get pretrained model, finetune yourself
NLG with a Pretrained LM: Base

• Most basic setup:
 • using mBART pretrained model
 • representing data as text
 subject | predicate | object
 subject | predicate | object
 • finetuning to generate English & Russian

• Fluent outputs, but...
 • fails to generalize
 • hallucinates occasionally

Data-to-text NLG

(Kasner & Dušek, 2020)
https://www.aclweb.org/anthology/2020.webnlg-1.20/

in: Ciudad_Ayala | populationMetro | 1777539
out: The population metro of Ciudad Ayala is 1777539. not seen in training data

in: Nurhan Atasoy | birth date | 1934-01-01
Nurhan Atasoy | residence | Istanbul
Nurhan Atasoy | nationality | Turkish people
out: Nurhan Atasoy was born on January 1, 1934 in Istanbul and is a Turkish national. residence, not birthplace!
Templates + Neural Fuse & Rephrase

- Templates to represent individual triples
 - Guaranteed accurate
 - Not so many needed (usually)
 - No need for high fluency

- Neural LM to **fuse & rephrase:**
 1) **order** (related together)
 2) **aggregate** (into sentences)
 3) **compress** (produce short sentences)

 - Do what neural models are good at – fluency
 - Less space for semantic errors

- Works **zero-shot** – with no in-domain data (just the templates)

(Kasner & Dušek, 2022)
ACL conference, arXiv coming soon
Templates + Neural Fuse & Rephrase

- 3 neural models, one step each
 - all based on pretrained LMs
- Large Wikipedia data
 - Wikipedia sentences as targets
 - creating artificial source data, which looks like single-triple templates
 1) split sentences
 2) replace pronouns
 3) randomize order
- ~1M sentences, various topics
 - much more than in-domain available

human-written target

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.
It was founded in 1882.

original paragraph

The Westmeath Examiner is a weekly newspaper.
It is located in Westmeath, Ireland.
It was founded in 1882.

coreference replacement

The Westmeath Examiner is located in Westmeath, Ireland.
The Westmeath Examiner was founded in 1882.

processed paragraph

artificial source

(Kasner & Dušek, 2022)
ACL conference, arXiv coming soon
Templates + Neural Fuse & Rephrase

- Good accuracy
 - perfect for simpler data (E2E restaurants)
 - worse for complex data (WebNLG DBPedia knowledge)
- Slightly lower fluency (~older neural systems)
- Can be further improved (reranking/filtering)

<table>
<thead>
<tr>
<th>E2E</th>
<th>BLEU</th>
<th>Omission/#facts</th>
<th>Hallucination/#examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older neural</td>
<td>40.73</td>
<td>0.016</td>
<td>0.083</td>
</tr>
<tr>
<td>Templates</td>
<td>24.19</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ours</td>
<td>36.04</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WebNLG</th>
<th>BLEU</th>
<th>Omission/#facts</th>
<th>Hallucination/#examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule-based</td>
<td>38.65</td>
<td>0.075</td>
<td>0.101</td>
</tr>
<tr>
<td>Older neural</td>
<td>45.13</td>
<td>0.237</td>
<td>0.202</td>
</tr>
<tr>
<td>Templates</td>
<td>37.18</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Ours</td>
<td>42.92</td>
<td>0.051</td>
<td>0.148</td>
</tr>
</tbody>
</table>

Data-to-text NLG

input: Allen Forrest | background | solo singer ▶ Allen Forrest | genre | pop music ▶ Allen Forrest | birthplace | Dothan, Alabama
templates: Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.
output: Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.

input: Wildwood | eatType | restaurant ▶ Wildwood | food | French ▶ Wildwood | area | riverside ▶ Wildwood | near | Raja Indian Cuisine
templates: Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is near Raja Indian Cuisine.
output: Wildwood is a restaurant serving French Food. It is in the riverside near Raja Indian Cuisine.

input: Alfa Romeo 164 | relatedMeanOfTransportation | Fiat Croma ▶ Alfa Romeo 164 | assembly | Italy ▶ Italy | capital | Rome
templates: Alfa Romeo 164 is related to Fiat Croma. Alfa Romeo 164 was assembled in Italy. Italy’s capital is Rome.
output: Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
Evaluating Data-to-text NLG

- **n-gram metrics** (BLEU, METEOR)
 - derived from MT, no good for accuracy
 - dubious even as measures for overall quality

- **Neural metrics** (BERTScore, BLEURT) mix accuracy & fluency
 - slightly better than n-gram, but still not ideal

- **SER** evaluation uses regex or exact match
 - tedious to make / inaccurate
 - does not translate to other datasets

- Proper evaluation means full NLU
 - pretrained LMs are good at NLU-like tasks → use them?
Checking for Errors in NLG Output: Natural Language Inference

- **NLI**: relation of premise (= starting point) & hypothesis (= relating text)
 - Entailment = all hypothesis facts are included in premise
 - Neutral = not all hypothesis facts included, but no directly opposing facts
 - Contradiction = premise is opposed by hypothesis

\[P: \text{Blue Spice is a pub in the riverside area.} \]

\[H_1: \text{Blue Spice is located in the riverside.} \quad \rightarrow \quad E \]
\[H_2: \text{You can bring your kids to Blue Spice.} \quad \rightarrow \quad N \]
\[H_3: \text{Blue Spice is a coffee shop.} \quad \rightarrow \quad C \]

- We’ll use a vanilla model trained for NLI
- Check entailment in both directions
 - data entails text = no hallucination + text entails data = no omission
- Use templates to represent data (same as previously)

(Dušek & Kasner, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.19
1) Check for omissions
- premise = whole generated text
- hypothesis = each single fact, loop
 → also checks which fact is omitted

2) Check for hallucination
- premise = concatenated facts
- hypothesis = whole generated text
 - can’t easily split into simpler checks

- output:
 - 4-way – OK, omission, hallucination, o+h
 - 2-way – OK, not_OK
 - OK confidence (min. E confidence)
 - list of omitted facts

P: You can bring your kids to Blue Spice in the riverside area.

H₁: Blue Spice is a pub. C: 0.01 N: 0.97 E: 0.02
 → omission

H₂: Blue Spice is located in the riverside. C: 0.00 N: 0.01 E: 0.99
 → OK

P: Blue Spice is a pub. Blue Spice is located in the riverside.

H: You can bring your kids to Blue Spice in the riverside area.
 C: 0.00 N: 0.99 E: 0.01
 → hallucination

omission+hallucination
OK: 0.01 omitted: Blue Spice | eat_type | pub

Blue Spice | eat_type | pub
Blue Spice | area | riverside

You can bring your kids to Blue Spice in the riverside area.
Error Checking with NLI

• WebNLG & E2E data
 • comparison vs. human ratings (WebNLG) & SER regex script (E2E)
 • both datasets: default & backoff-only versions of templates

<table>
<thead>
<tr>
<th>system</th>
<th>WebNLG data</th>
<th>E2E data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4-way</td>
</tr>
<tr>
<td>Accuracy / agreement</td>
<td>77.5%</td>
<td>91.1%</td>
</tr>
</tbody>
</table>

• manual analysis: ca. ½ “errors” are in fact correct
 • annotation noise / SER script errors
 • noisy templates
 • edge cases \((high\ restaurant)\)
 • stuff SER script doesn’t catch \((with\ full\ service)\)
Summary

• Neural models produce very fluent outputs
 • especially true of pretrained Transformer LMs
 • due to data & model reasons, not guaranteed to be accurate
• There are ways to make them more accurate
 • combining with templates & only editing for fluency
 • constraining the neural component
• Finding errors in NLG is as hard as NLU
 • pretrained LMs are good at some NLU tasks, such as NLI \rightarrow can be applied
• Many other accuracy-increasing approaches
 • reranking / data cleaning / multi-task training / constrained decoding
 • more to come: semantic formalisms & inference
Thanks

Contact us:

Ondřej Dušek
odusek@ufal.mff.cuni.cz
https://tuetschek.github.io
@tuetschek

Zdeněk Kasner
kasner@ufal.mff.cuni.cz
http://ufal.cz/zdenek-kasner
@ZdenekKasner

References:

• Base pretrained LMs: https://aclanthology.org/2020.webnlg-1.20/
• Fuse & rephrase: coming soon (on arXiv/my website)
• Error checking via NLI: https://aclanthology.org/2020.inlg-1.19/