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Outline

• NLG & Accuracy
• mainly for data-to-text (~ conditioned on input)

• motivation: what’s new in neural vs. previous systems

• Making neural NLG systems (more) accurate
1) overgenerate & rerank

2) cleaning data

3) additional classifier tasks

4) explicit planning step

5) neural editing only

• Detecting inaccuracy in NLG outputs
1) sentence-level classification

2) word-level error tagging

• stuff I was involved in, with links elsewhere
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Accuracy in NLG

• data-to-text NLG = verbalizing structured outputs
• RDF triples, dialogue acts etc.  →  text

• accuracy = input-output correspondence

• accuracy error types
• hallucination = output not grounded in input

• omission = input not verbalized

• measurement: semantic/slot error rate

• different for other NLG tasks
• summarization, NLG with content selection: omissions allowed

• open-domain dialogue, creative text generation: just internal consistency
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Blue Spice | eat_type | pub 
Blue Spice | area | riverside

Blue Spice is a pub in the riverside area.NLG You can bring your kids to Blue Spice in the riverside area.
Blue Spice | eat_type | pub
Blue Spice | area | riverside



Neural NLG

• Neural encoder-decoder/seq2seq approaches
• encode linearized inputs

• decode word-by-word 
(autoregressively)

• Multiple architectures (but the same principle)
• RNNs (LSTM, GRU) + attention

• Transformer (=positional embeddings, feed forward & attention)

• Pretrained Transformers (+ pretrained on lots of data for a self-supervised task)
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Neural NLG vs. older methods

• End-to-end – 1 model does everything
• previously: pipelines (or “end-to-end” templates, which aren’t trainable)

• No need for fine-grained alignments in data
• previously: most trainable methods required that

• Very fluent outputs (especially with pretrained models)

• previously: formulaic, sometimes incorrect outputs

• Needs more training data (~10k range)

• previously: 100-1k range

• Opaque & has no guarantees on accuracy
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Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

(Kasner & Dušek, 2020) 
https://www.aclweb.org/anthology/2020.webnlg-1.20/

https://www.aclweb.org/anthology/2020.webnlg-1.20/


E2E NLG Challenge (2017/18)

• Known domain: restaurant data

• More data than prior approaches
• 6k MRs, 50k texts

• (prior: mostly 0-10k)

• Diverse & natural, but noisy
• crowdsourced, partially based on images

• 17 challenge entries (12 neural)

• Problems:
• accuracy – lots of omissions & hallucinations

• only 100% accurate system: hand-written templates

• diversity – repetitive vs. inaccurate
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Loch Fyne is a kid-friendly restaurant serving 
cheap Japanese food.

name [Loch Fyne], eatType[restaurant],
food[Japanese], price[cheap],kid-friendly[yes]

Serving low cost Japanese style cuisine, 
Loch Fyne caters for everyone, including 
families with small children.

(Dušek et al., 2020) 
http://arxiv.org/abs/1901.07931

http://arxiv.org/abs/1901.07931


NLG1: Reranking

• 2-step:
1) Generate multiple outputs

• beam search

2) Rerank (penalize inaccuracies)
• classify MRs

• penalty for each difference w. r. t. input

• TGen
• LSTM-based seq2seq with attention

• LSTM-based MR classifier for ranking

• increases accuracy significantly
• but still can’t guarantee it completely

• also, it’s slow
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(Dušek & Jurčíček, 2016) 
https://aclweb.org/anthology/P16-2008

system / E2E BLEU SER

Seq2seq 63.4 15.94%

TGen 66.4 4.27%

https://aclweb.org/anthology/P16-2008


NLG2: Data cleaning

• NLG errors are often caused by data errors
• ungrounded facts (← hallucination)

• missing facts (← omission)

• noise (e.g. source instead of target)
• just 5% untranslated stuff kills an NMT system

• Easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose

• crowdsourcing – workers forget/don’t care

• E2E data: 11-17% slot error rate
• approx. 40% references have ≥1 error

• Rotowire: 40% ungrounded

(Khayrallah & Koehn, 2018) 
https://www.aclweb.org/anthology/W18-2709

(Wang, 2019) 
https://www.aclweb.org/anthology/W19-8639/

(Dušek et al., 2019) 
https://www.aclweb.org/anthology/W19-8652/

https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W19-8639/
https://www.aclweb.org/anthology/W19-8652/


NLG2: Data cleaning

• E2E data: SER evaluation script
• based on regular expressions

• can be used for data cleaning

• Keep text, adjust MR
• works up to a point (SER 4.2%, 19% error refs)

• keep test set, remove overlaps from train

• Retraining Seq2Seq&TGen on cleaned E2E
• less training examples

• still 94-97% SER reduction

• confirmed by manual analysis

• Extensions:
• cleaning by a trained classifier (two-step)

• generating more data (& checking)
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(Nie et al., 2019) https://www.aclweb.org/anthology/P19-1256

(Dušek et al., 2019) 
https://www.aclweb.org/anthology/W19-8652/

(Kedzie & McKeown, 2019) https://www.aclweb.org/anthology/W19-8672/

system data BLEU SER

Seq2seq original 63.4 15.94%

cleaned 65.8 0.97%

TGen original 66.4 4.27%

cleaned 66.2 0.12%

-94%

-97%

https://www.aclweb.org/anthology/P19-1256
https://www.aclweb.org/anthology/W19-8652/
https://www.aclweb.org/anthology/W19-8672/


NLG3: Additional Classification Tasks

• Generate & classify at the same time
• additional classification layer 

• on top of decoder – last layer logits, last step

• Aim: robustness – detect problems
• ½ training data are artificially corrupted

• corrupted state (does not fit context) 
• whole (SOLOIST)

• per domain (AuGPT)

• corrupted system response

• improves dialogue success 
• MultiWOZ (corpus-based & simulation)
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system inform success BLEU

baseline 81.9 64.5 16.3

SOLOIST 81.4 65.8 17.0

AuGPT 83.5 67.3 17.2

i want a cheap italian restaurant { price range = cheap , food = Italian } ok which area ?
i want a cheap italian restaurant { area = north , food = Indian } ok which area ?

i want a cheap Italian restaurant { price range = cheap , food = Italian } what price range ?

consistent?

✅

❎
❎

(Peng et al., 2020) https://arxiv.org/abs/2005.05298
(Kulhánek et al., 2021) https://arxiv.org/abs/2102.05126

https://arxiv.org/abs/2005.05298
https://arxiv.org/abs/2102.05126


NLG4: Planning

• Add an explicit planning step (ordering & aggregation)

• Split texts into facts by SRL
• ~1 event “who did what to whom” (mostly 1 clause)

• ~1 or more input triples

• Hierarchical HMM planner + Transformer
1) order triples

2) aggregate into facts

3) generate each fact
• condition on triples 

for current fact only

• trained: backward algorithm
• end-to-end with generation

• no explicit annotation needed
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dateOfRetiremen
t

Commander

member_of

backup_pilot

Operator

William Anders dateOfRetirement 1969-09-01

Apollo 8 Commander Frank Borman

William Anders member_of Apollo 8

backup_pilot Buzz Aldrin

Operator NASA

Apollo 8

Apollo 8

(Xu et al., 2021) 
https://arxiv.org/abs/2106.05580

He was a crew member of nasa 's Apollo 8. Frank B. was a commander with Buzz A. as the backup pilot.

𝑦(𝑡−1) 𝑦𝑡

𝑧(𝑡−1) 𝑧𝑡

Commander

member_of backup_pilot

Operator

𝑜(𝑡−1)
1 𝑜(𝑡−1)

2 𝑜𝑡
2𝑜𝑡

1

𝑝(𝑧𝑡|𝑧(𝑡−1), 𝑥)

triple level
fact level

https://arxiv.org/abs/2106.05580


NLG4: Planning

• Stays fluent + is more accurate
• less “compressed” outputs than Transformer

• Allows explicit control
• order & aggregation of triples is visible

• interpretable, allows direct evaluation

• you can set it manually
• or set a parameter to control aggregation

• Needs some hacks to make it tractable
• max. 3 triples per fact, partial hard alignment

• Still not a complete control
• Transformer may hallucinate
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(Xu et al., 2021) 
https://arxiv.org/abs/2106.05580

system / E2E BLEU SER

TGen 66.4 4.27

Transformer 68.2 5.16

AggGen 64.1 2.16

see also: (Wiseman et al., 2018) http://aclweb.org/anthology/D18-1356
(Moryossef et al., 2019) https://www.aclweb.org/anthology/N19-1236/

order & agg. K-𝝉𝐦𝐚𝐱 K-𝝉𝐚𝐯𝐠

Human 0.84 0.25

AggGen 0.64 0.21

https://arxiv.org/abs/2106.05580
http://aclweb.org/anthology/D18-1356
https://www.aclweb.org/anthology/N19-1236/


NLG5: Iterative Editing

• Concatenate templates & fuse them into sentences by a neural model
• Template-based generation is accurate

• Neural model only fuses sentences together
• Less power = less opportunity to screw up

• Inaccuracies filtered out & fallback to templates – ensures 0 entity errors

• Ranking by fluency (neural model)
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select & rank templates for 1st triple add 2nd triple + fuse filter & rank

(Kasner & Dušek, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.9

https://www.aclweb.org/anthology/2020.inlg-1.9


NLG5: Iterative Editing

• Templates: 1 triple only (extracted from training data + handcrafted + backoff)

• Neural model: LaserTagger – BERT encoder & Transformer decoder

• vocabulary limited (100 tokens): KEEP, DELETE, ADD word, ADD more words

• Fluency: vanilla GPT-2 geom. mean token cond. probability

• Semantic filter: entity match (regex/exact)

• Accurate but fluency suffers
• fallback steps (no fusion): 28% E2E & 54% WebNLG

• no reordering possible
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Arrabiata sauce | country | Italy
The <subject> is found in <object>. The Arrabiata sauce is found in Italy.

default

The <predicate> of <subject> is <object>. The country of Arrabiata sauce is Italy.
backoff

system

WebNLG Clean E2E

BLEU METEOR BLEU METEOR

templates 27.7 37.9 20.7 33.4

fusion 35.3 38.6 25.2 33.8

T5 (~SotA) 57.1 44.0 42.1 38.5

(Kale & Rastogi, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.emnlp-main.527

(Kasner & Dušek, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.9

https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.emnlp-main.527
https://www.aclweb.org/anthology/2020.inlg-1.9


Evaluating NLG Accuracy

• n-gram metrics (BLEU, METEOR) 
• derived from MT, no good for accuracy

• dubious even as measures for overall quality

• Neural metrics (BERTScore, BLEURT) mix accuracy & fluency
• slightly better than n-gram, but still not ideal

• SER evaluation uses regex or exact match
• tedious to make / inaccurate

• does not translate to other datasets

• Proper evaluation means full NLU
• pretrained models are quite good at NLU-like tasks → use them? 
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(Liu et al., 2016) https://aclanthology.org/D16-1230/
(Novikova et al., 2017) http://aclweb.org/anthology/D17-1238

(Reiter, 2018) 
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/

(Zhang et al., 2020) http://arxiv.org/abs/1904.09675
(Sellam et al., 2020) https://aclanthology.org/2020.acl-main.704/

https://aclanthology.org/D16-1230/
http://aclweb.org/anthology/D17-1238
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
http://arxiv.org/abs/1904.09675
https://aclanthology.org/2020.acl-main.704/


Eval1: Natural Language Inference Classification

• NLI task – relation of premise (= starting point) & hypothesis (= relating text)

• Entailment = all hypothesis facts are included in premise

• Neutral = not all hypothesis facts included, but no directly opposing facts

• Contradiction = premise is opposed by hypothesis

• We’ll use a vanilla model trained for NLI 

• Check entailment in both directions
• data entails text = no hallucination + text entails data = no omission

• Use templates to represent data (as in iterative editing)

• needed, unlike summarization / open-domain dialogue

P: Blue Spice is a pub in the riverside area.

H1: Blue Spice is located in the riverside. E

H2: You can bring your kids to Blue Spice . N

H3: Blue Spice is a coffee shop. C

(Dušek & Kasner, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.19

(Maynez et al., 2020) 
https://www.aclweb.org/anthology/2020.acl-main.173
(Welleck et al., 2019)
https://www.aclweb.org/anthology/P19-1363

https://www.aclweb.org/anthology/2020.inlg-1.19
https://www.aclweb.org/anthology/2020.acl-main.173
https://www.aclweb.org/anthology/P19-1363


Eval1: NLI Classification

1) Check for omissions
• premise = whole generated text

• hypothesis = each single fact, loop
→ also checks which fact is omitted

2) Check for hallucination
• premise = concatenated facts

• hypothesis = whole generated text
• can’t easily split into simpler checks

• output:
• 4-way – OK, omission, hallucination, o+h

• 2-way – OK, not_OK

• OK confidence (min. E confidence)

• list of omitted facts
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Blue Spice | eat_type | pub 
Blue Spice | area | riverside

You can bring your kids to Blue Spice in the riverside area.

NLG

H2: Blue Spice is located in the riverside. C: 0.00 N: 0.01  E: 0.99

OK

omission

H1: Blue Spice is a pub. C: 0.01 N: 0.97 E: 0.02

P: You can bring your kids to Blue Spice in the riverside area.

P: Blue Spice is a pub. Blue Spice is located in the riverside.

H: You can bring your kids to Blue Spice in the riverside area.

C: 0.00 N: 0.99 E: 0.01

hallucination

omission+hallucination

OK: 0.01 omitted: Blue Spice | eat_type | pub

(Dušek & Kasner, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.19

https://www.aclweb.org/anthology/2020.inlg-1.19


Eval1: NLI Classification

• NLI model: RoBERTa-large-MNLI, used as-is (no finetuning)

• WebNLG & E2E data
• comparison vs. human ratings (WebNLG) & SER script (E2E)

• both datasets: default & backoff-only versions of templates

• manual analysis: ca. ½ “errors” are in fact correct
• annotation noise / SER script errors

• mined templates noise for WebNLG

• edge cases (high restaurant)

• irrelevant stuff that SER script doesn’t catch (with full service)
18

system

WebNLG
2-way

E2E

4-way 2-way

Default templates 77.5% 91.1% 93.3%

Backoff template 76.8% 84.6% 87.4%

(Dušek & Kasner, 2020)
https://www.aclweb.org/anthology/2020.inlg-1.19

https://www.aclweb.org/anthology/2020.inlg-1.19


Eval2: Token-level Error Detection

• Not just OK/not checks, also identify individual errors
• good for longer texts – Rotowire basketball summaries

• 3-stage:
1) convert input table into texts (templates / rules)

2) select relevant context using SBERT embedding similarity

3) tag errors given context using RoBERTa with token-level classification head
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(Kasner et al., 2021)
INLG Accuracy Evaluation shared task

for each
sentence

whole summary



Eval2: Token-level Error Detection

• Training data:
• 60 annotated NLG output summaries

• Synthetic errors introduced into Rotowire training set (3.8k summaries)
• only random replacement of names & numbers

• Best setup:
• rule-based generator (more compact contexts)

• using synthetic data, with 25% errors

• contexts of 40 sentences (~what fits into RoBERTa)

• Evaluation: 30 annotated summaries

• best out of 3 systems

• still lagging behind human evaluation

• the task is much more difficult than just OK/not OK
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team Recall Prec

Laval (human eval) 84.1% 87.9%

Charles + UPF 69.1% 75.6%

NIJL 52.3% 49.4%

Eurocom 8.0% 31.1%

(Kasner et al., 2021)
INLG Accuracy Evaluation shared task



Summary

• Neural models produce very fluent outputs
• especially true of pretrained Transformer LMs

• due to data & model reasons, not guaranteed to be accurate

• There are ways to make them more accurate
• reranking / data cleaning / multi-tasking / editing templates

• always constraining the neural component

• there are always downsides
• lower speed, worse fluency, more annotation needed

• Finding errors in NLG is as hard as NLU
• pretrained LMs are good at some NLU tasks, such as NLI → can be applied

• works quite on well sentence-level, token level is hard

• Other interesting areas: data augmentation, few-shot, open domain
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Thanks

Contact me:

odusek@ufal.mff.cuni.cz
https://tuetschek.github.io
@tuetschek

Collaboration with:

Charles University Vojtěch Hudeček, Filip Jurčíček, Zdeněk Kasner, 
Jonáš Kulhánek, Tomáš Nekvinda

Heriot-Watt University David Howcroft, Jekaterina Novikova, Ioannis Konstas, 
Verena Rieser, Xinnuo Xu

Pompeu Fabra University Simon Mille
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