Dialogue Systems
NPFL123 Dialogové systémy

12. Chatbots
(non-task-oriented dialogue)

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123
5. 5. 2020
Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue / chitchat

• **non-task oriented**
 • main goal: keep the user entertained
 • standard evaluation: conversation length, user engagement

• (more or less) different architecture
 • may have the same structure as task oriented (NLU → DM → NLG)
 • often simpler, integrated
 • it’s hard to have explicit NLU for open domain
 • no task to guide a meaning formalism
 • some of them don’t need a DB connection (but some use it)

• beware: **anything** is called chatbots nowadays
 • this lecture: only **chatterbots / non-task-oriented systems**
Chatbot tests

• **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

• **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted, 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – creates hype but no real progress

• **Amazon Alexa Prize** (2017+)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)
• 1st chatbot: Eliza (1966)
 • rule-based, simulates a therapist
• Parry (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test
• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems
• 1990’s/2000’s – retrieval-based systems
• 2015+ – huge surge of generative models
Notable/hyped chatbots

- **Pandorabots/AIML** – framework for rule-based chatbots
 - A.L.I.C.E. bot – basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) – multiple times Loebner Prize winner

- **Jabberwacky/Cleverbot** (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times

- **Xiaolce** (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with “her”
Chatbot basic architectures

• **Rule-based**
 • human-scripted, react to keywords/phrases in user input
 • very time-consuming to make, but still popular
 • chitchat by conversational assistants is typically rule-based

• **Data-driven**
 • retrieval – remember a corpus & get replies from there
 • “nearest neighbour” approaches
 • corpus can contain past conversations with users (Jaberwacky/XiaoIce)
 • chatbots differ in the sophistication of reply selection
 • generative – (typically) seq2seq-based models
 • trained typically on static corpora
 • (theoretically) able to handle unseen inputs, produce original replies
 • basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

• very basic pattern-matching rules
 • minimal context
 (typically just the last utterance)
 • keyword-match rules & precedence
 • e.g. alike → what is the connection
 • fallbacks
 • I see. <next question>
 • Please go on
 • refer & respond to some previous utterance

• signalling understanding
 • repeating & reformulating user’s phrasing

• it’s all about the framing
 • it’s easier to appear human as a therapist (or paranoid schizophrenic)

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

https://en.wikipedia.org/wiki/ELIZA
AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 😑

- main concepts:
 - **category** – basic unit of knowledge
 - groups patterns & templates
 - **pattern** – user input pattern (with wildcards)
 - **set** – lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** – response specification
 - allows multiple options
 - **srai** – symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - **variable** – can be set/retrieved in templates
 - e.g. remember user name
Retrieval-based chatbots

• remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

• needs 2 steps
 1) rough retrieval
 • needs to be fast to search the whole corpus
 • e.g. TF-IDF
 2) more accurate reranking for candidates
 • most research focuses on this step

• problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

• solution (Xiaolce, Cleverbot):
 • use postprocessing, combine with rules

(Wang et al., 2013) https://aclweb.org/anthology/D13-1096
Ranking responses

- Machine learning – **learning to rank**
 - **pointwise**: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - **pairwise**: just learn to rank good > bad
 - incur loss for inversions
 - architecture – anything possible
 - typical neural: **dual encoder**
 - 2 RNNs, for context & response + fully connected

- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
Inspiration from MT

• Early generative approach – convert to **phrase-based MT**
 1) **align phrases** in inputs & responses
 • build **phrase table**
 2) **build responses by covering input**
 • cover each phrase in input with likely response phrase
 • order & select phrases according to a language model (n-gram LM)

• it’s harder than MT
 • possible responses are much more variable than possible translations
 • using more sensitive phrase building (occurrence correlation)
 • discouraging input repetition (← would be vanilla MT behaviour)

• works, but…
 • fluency is not ideal
 • limited context

U: *i want to go to a bonfire right about now.*
S: *that does sound fun bonfire I wanna go!*

U: *riding to the arc on my bike. Hopefully I won’t melt into the pavement.*
S: *good luck on your bike ride arc*

U: *I really hate watching movies in the living room.*
S: *me too, what movies are you doing in room?*

(Ritter et al., 2011) http://www.aclweb.org/anthology/D11-1054
Using RNN LMs (still MT-inspired)

- **Non-LSTM solution:**
 - a) Vanilla RNN LM, force-decode input, decode response
 - problem: conditioned too loosely
 - b) LM with extra conditioning
 - encode input into a fixed vector (using bag-of-words + feed-forward)
 - inject it into each LM decode step
 - more fluent than phrase-based, problems with long replies
 - long replies get less fluent & wander off-topic

- **Vanilla Seq2seq model**
 - encode input, decode response
 - sounds great, but… (→)

(Sordoni et al., 2015)
https://www.aclweb.org/anthology/N15-1020

NPFL123 L12 2020
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much

- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

(U: Where do you live now?)
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?

(U: How old are you?)
S: 16 and you?
U: What's your age?
S: 18.

(Wei et al., 2019)
https://arxiv.org/abs/1712.02250
(Jiang & De Rijke, 2018)
https://www.aclweb.org/anthology/W18-5712
(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094
Improving upon Seq2seq

• **Reranking**
 - avoid dull replies that work anywhere
 - instead of maximizing $P(R|C)$, maximize mutual information
 - actually can be rewritten as a trade-off between $P(R|C)$ and $P(C|R)$
 - can’t train it easily, so train normally & rerank beams afterwards

• **Persona extension**
 - improve consistency
 - train speaker embeddings
 - this is a little data-picky
 - use speaker + word embeddings in the decoder
 - can also be used in the encoder

$\text{MI} = \log \frac{P(C,R)}{P(C)P(R)}$

$C = \text{context}$

$R = \text{reply}$
Improving upon Seq2seq

- **Hierarchical seq2seq** for longer context
 - HRED (Hierarchical Recurrent Encoder-Decoder)
 - use a 2nd, turn-level LSTM encoder, word-level LSTM hidden state as input

- RNN chatbots are still an open problem (and popular, too!)
 - many others proposed various extensions to seq2seq
 - they made improvements, but so far, no one reached really good results

(Lowe et al., 2017)
http://dad.uni-bielefeld.de/index.php/dad/article/view/3698

NPFL123 L12 2020
Hybrid / Ensemble Chatbots
a.k.a. most Alexa Prize Entries

• State-of-the-art today: **combining all methods**
 • rule-based for sensitive/frequent/important questions
 • retrieval for jokes, trivia etc.
 • task-oriented-like systems for specific topics (handcrafted/specially trained)
 • news, weather etc.
 • seq2seq only as a backoff or not at all

• NLU is typically shared, with advanced NLP pipelines
 • NER is very important – can get relevant news & trivia

• Decision among bots
 a) based on NLU topic detection
 b) ranking multiple answers
 • profanity detection – censoring outputs
Alana *(2017 & 2018 3rd)*
(Heriot-Watt University)

- **Bots:**
 - Rule-based chit-chat
 - Ontologies – knowledge graph walk
 - movies, music, sports, books
 - Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
 - Specific services
 - Bots compete for reply
 - priority list
 - bots can “lock”

http://arxiv.org/abs/1712.07558
Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?

User: Vanilla Sky –> I’m looking forward to watching Vanilla Sky [Ellipsis resolution]

Alana: Oh I heard something interesting about Vanilla Sky. [...] Movie trivia Speaking of movies. What actors do you like? I like Leonardo DiCaprio [...]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [...] Music trivia What’s a band that you would like to see? [...]

User: any news about him –> any news about Kendrick Lamar [Coreference resolution]
Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?
User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading [...]
User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?
User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [...] Trivia
User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
• full NLU pipeline (similar to Alana)
• 2017 – handcrafted state machines
 • traversing sub-dialogue graphs
 • dividing for easier maintenance
 • well scripted
 • easy to break, but users play along
 • hand-added variation
• 2018 – adding machine learning
 • Hybrid Code Networks
 • RNN-based dialogue management
 • for each sub-dialogue/topic
 • topic switch detector
 • RNN-based architecture similar to HCN

http://alquistai.com/
https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb
https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
- tracking user sentiment
 - change topic if user doesn’t like the current one
- attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
- explaining itself – conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

<table>
<thead>
<tr>
<th>Turn</th>
<th>User</th>
<th>Sounding Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Let’s chat.</td>
<td>Hi! This is an Alexa Prize socialbot. How’s your day?</td>
</tr>
<tr>
<td>2</td>
<td>I’m free.</td>
<td>Glad to hear it! We could talk about robots, Batman, or Superman. Say “next”, to chat about other things.</td>
</tr>
<tr>
<td>3</td>
<td>Superman.</td>
<td>It looks like you wanna chat about Superman. I was high up in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?</td>
</tr>
<tr>
<td>4</td>
<td>I guess so.</td>
<td>Did you know that Henry Cavill almost missed the call for the role of Superman because he was playing “World of Warcraft”?</td>
</tr>
<tr>
<td>5</td>
<td>Really, I didn’t know that.</td>
<td>Weird, right? Speaking of Superman, Did you see Superman? It was released in 1997. It’s a comedy.</td>
</tr>
<tr>
<td>6</td>
<td>Yes, it was hilarious.</td>
<td>I’m glad you feel this is hilarious. Which part do you like best about this movie?</td>
</tr>
<tr>
<td>7</td>
<td>The part when he met Lewis. Utah.</td>
<td>Interesting. Wescottin and Raffit co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good! do you like the movie’s director?</td>
</tr>
</tbody>
</table>

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction – KB fuzzy matching (allow for “typos”)
 - sentence segmentation (RNN-based)
- NLU – keyphrase extraction
 - focus on noun phrases
- Dialog manager – stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel…

Chatbot Ethics

• Ca. 4% of our 2017 data is sexually explicit

• Different harassment types:
 • comments on gender/sexuality
 • sexualized comments
 • sexualized insults
 • sexual requests & demands

• Chatbots/voice assistants’ responses
 • various systems:
 • commercial (Alexa, Google…)
 • rule-based (Pandorabots, adult chatbots)
 • data-driven (seq2seq)
 • systems often present as women, have a woman’s voice
 • responses often nonsense / play-along
 • conflict of interest for bot builders: be ethical vs. cater to abusive users

(Cercas Curry & Rieser, 2018)
http://aclweb.org/anthology/W18-0802
Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem

• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)

• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work

• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)

• brutal variance in the evaluation – very subjective
Summary

• chatbots – **non-task oriented** systems
 • purely for user enjoyment
 • targets: **conversation length & user engagement**
 • impersonating a human – Turing test

• approaches
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq etc. trained on corpora of dialogues
 • too many possible responses don’t go well with MLE → safe, short, dull
 • **hybrid** – combining all of the above
 • typically mainly rule-based + retrieval, machine learning in NLU only

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Thanks

Contact me:

odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
Slack

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

• Mainly individual papers referenced directly on slides
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test Xiaoice Zo_(bot)
Exam

• Written test, ca. 10 questions
 • 60 % = pass (C), 73+% = B, 88+% = A
 • expected 1 hr, but you’ll be given at least 2hrs (no pressure on time)
 • alternative: oral over videocall

• Covering the 12 lectures

• Question format
 • you’ll need to write stuff on your own (not a-b-c-d, more like 2-3 sentences)
 • explanation of terms/concepts
 • no exact formulas needed (if needed, they might be provided)
 • but you should know the principles of how stuff works
 • relationships between concepts (“what’s the difference between X & Y”)
 • designing a dialogue system for a domain
 • focus on important stuff (mostly what’s mentioned in the summaries)