

Dialogue Systems NPFL123 Dialogové systémy

12. Chatbots (non-task-oriented dialogue)

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123

5. 5. 2020

- dialogue systems for open-domain dialogue / chitchat
- non-task oriented
 - main goal: keep the user entertained
 - standard evaluation: conversation length, user engagement
- (more or less) different architecture
 - may have the same structure as task oriented (NLU → DM → NLG)
 - often simpler, integrated
 - it's hard to have explicit NLU for open domain
 - no task to guide a meaning formalism
 - some of them don't need a DB connection (but some use it)
- beware: <u>anything</u> is called chatbots nowadays
 - this lecture: only chatterbots / non-task-oriented systems

Chatbot tests

- **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed
- **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted, 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt creates hype but no real progress
- Amazon Alexa Prize (2017+)
 - no pretending it's human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted ("on popular topics")
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of "would talk again"

Chatbot history

- natural communication important part of general AI
 - concerned people even before modern computers (cf. Turing)
- 1st chatbot: **Eliza** (1966)
 - rule-based, simulates a therapist
- Parry (1972)
 - similar, simulates a person with paranoid schizophrenia
 - was able to fool psychotherapists in a Turing test
- Not much progress until end of 1990's just better rules
 - research focused on task-oriented systems
- 1990's/2000's retrieval-based systems
- 2015+ huge surge of generative models

Notable/hyped chatbots

- Pandorabots/AIML framework for rule-based chatbots
 - A.L.I.C.E. bot basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) multiple times Loebner Prize winner

https://home.pandorabots.com/home.html

Jabberwacky/Cleverbot (1997+)

- attempts to learn from users
- remembers & reuses past conversations (>100M)
- also won Loebner Prize multiple times

• Xiaolce (2014+)

- Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
- on social networks (mainly Weibo)
- also learns from users & reuses user inputs
- partly rule-based, focus on emotions
- a lot of people bonding with "her"

https://www.cleverbot.com/

https://www.zo.ai/ https://www.facebook.com/zo/

Chatbot basic architectures

Rule-based

- human-scripted, react to keywords/phrases in user input
- very time-consuming to make, but still popular
 - chitchat by conversational assistants is typically rule-based

Data-driven

- retrieval remember a corpus & get replies from there
 - "nearest neighbour" approaches
 - corpus can contain past conversations with users (Jaberwacky/Xiaolce)
 - chatbots differ in the sophistication of reply selection
- **generative** (typically) seq2seq-based models
 - trained typically on static corpora
 - (theoretically) able to handle unseen inputs, produce original replies
 - basic seq2seq architecture is weak (dull responses) → many extensions

NPFL123 L12 2020

Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. *alike* → *what is the connection*
 - fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user's phrasing
- it's all about the framing
 - it's easier to appear human as a therapist (or paranoid schizophrenic)

```
Welcome to
                                          ZZZZZZZ
  Eliza is a mock Rogerian psychotherapist.
  The original program was described by Joseph Weizenbaum in 1966.
  This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
       Men are all alike.
ELIZA: What is the connection, do you suppose ?
       They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
       Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here
       He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
      It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
```

https://en.wikipedia.org/wiki/ELIZA

NPFL123 L12 2020

AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 🕥
- main concepts:
 - category basic unit of knowledge
 - groups patterns & templates
 - pattern user input pattern (with wildcards)
 - set lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** response specification
 - allows multiple options
 - **srai** symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - variable can be set/retrieved in templates
 - e.g. remember user name


```
normalization is typically
                       applied during preprocessing
                                                         0/more words
                    <category><pattern>WHY DO NOT YOU ^</pattern>
                   <template><random>
                   It's not something I've considered before.
                                                                       multiple
                   Would you?
                                                                       options
                                                                       chosen at
                   Is it fun, or dangerous?
                                                                       random
                   I don't have an explanation for you.
                   </random></template>
                   </category>
                                                           0/more words
                                                            (higher priority match)
                   <template><srai>DIET</srai></template>
                                                                 1/more words
                   </category>
 reduced via srai
                   <category><pattern>YOU EAT *</pattern>
to the same pattern
                   <template><srai>DIET</srai></template>
                    </category>
                    <category><pattern>DIET</pattern>
                   <template>My diet consists mostly of <bot name="diet"/>.</template>
                    </category>
```

2 categories

using a variable

Retrieval-based chatbots

UFAL PROPERTY OF THE PARTY OF T

- remember a large corpus
 - 1) check for similar inputs in the corpus
 - 2) retrieve & rerank corresponding outputs
- needs 2 steps
 - 1) rough retrieval
 - needs to be fast to search the whole corpus
 - e.g. TF-IDF
 - 2) more accurate **reranking** for candidates
 - most research focuses on this step
- problems:
 - can't produce unseen sentences
 - reply consistency isn't great
- solution (XiaoIce, Cleverbot):
 - use postprocessing, combine with rules

Ranking responses

- Machine learning learning to rank
 - pointwise: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - pairwise: just learn to rank good > bad
 - incur loss for inversions
 - architecture anything possible
 - typical neural: dual encoder
 - 2 RNNs, for context & response + fully connected
- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from "bad" dialogues where long = good & short = bad)

(Shalyminov et al., 2018) https://www.aclweb.org/anthology/W18-5701

Inspiration from MT (Ritter et al., 2011) http://www.aclweb.org/anthology/D11-1054

- Early generative approach convert to phrase-based MT
 - 1) align phrases in inputs & responses
 - build phrase table
 - 2) build responses by covering input
 - cover each phrase in input with likely response phrase
 - order & select phrases according to a language model (n-gram LM)
- it's harder than MT
 - possible responses are much more variable than possible translations
 - using more sensitive phrase building (occurrence correlation)
 - discouraging input repetition (← would be vanilla MT behaviour)
- works, but...
 - fluency is not ideal
 - limited context

U: i want to go to a bonfire right about now.

S: that does sound fun bonfire i wan na go!

U: riding to the arc on my bike. Hopefully I won't melt into the pavement.

S: good luck on your bike ride arc

U: I really hate watching movies in the living room.

S: me too, what movies are you doing in room?

what				
time				
u				
get				
out				
?				
	 get	JJo	at	2

Source	Target		
rt [retweet]	thanks for the		
potter	harry		
ice	cream		
how are you	you ?		
good	morning		
chuck	norris		
watching	movie		
i miss	miss you too		
are you	i 'm		
my birthday	happy birthday		
wish me luck	good luck		
how was	it was		
miss you	i miss		
swine	flu		
i love you	love you too		
how are	are you?		
did you	i did		
jackson	michael		
how are you	i 'm good		
michael	mj		

Using RNN LMS (still MT-inspired)

bag-of-words for

context (c) + input (m)

 W_{out} RNN

cell

(Sordoni et al., 2015)

Non-LSTM solution:

https://www.aclweb.org/anthology/N15-1020

- a) Vanilla RNN LM, force-decode input, decode response
 - problem: conditioned too loosely
- b) LM with extra conditioning
 - encode input into a fixed vector (using bag-of-words + feed-forward)

S: to serve the greater good.

- inject it into each LM decode step
- more fluent than phrase-based, problems with long replies
 - long replies get less fluent & wander off-topic
- Vanilla Seq2seq model
 - encode input, decode response
 - sounds great, but... (→)

C[S]: nothin much, and how's the book?!

U: its good but i'm only like halfway through cuz i don't feel like reading. i'm so bored ...

extra conditioning

feed forward

network

S: that's good! i have the book but i'm bored too.

C[S]: thanks. yeah i am good thanks! good, but angry!

U: sorry you're angry, been there, i hope it dies down.

S: i hope so too, i'm not angry!!

(Vinyals & Le, 2015)

https://arxiv.org/abs/1506.05869 U: who is skywalker? S: he is a hero.

U: what is the purpose of life?

U: what is moral?

S: what empowered humanity, what intellectual the essence is.

U: who is bill clinton? S: he 's a billionaire.

mity, what intellectual the essence is.

Seq2seq Chatbot Problems

(a) Machine translation p(t|s)

(Wei et al., 2019)

https://arxiv.org/abs/1712.02250 https://ieeexplore.ieee.org/document/8682634

Predicted distribution of output tokens

• short, low-entropy, repetitive

generic/dull responses

- see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

limited context

- encoding long contexts is slow & ineffective
- contexts are too sparse to learn much

inconsistency

- ask the same question twice, get two different answers
- no notion of own personality

U: How old are you? S: 16 and you? U: What's your age? S: 18.

(Jiang & De Rijke, 2018) https://www.aclweb.org/anthology/W18-5712

U: Where do you live now?

S: I live in Los Angeles.

U: In which city do you live now?

S: I live in Madrid.

U: In which country do you live now?

S: England, you?

Improving upon Seq2seq

(Li et al., 2016) • Reranking https://www.aclweb.org/anthology/N16-1014

- avoid dull replies that work anywhere
- instead of maximizing P(R|C), maximize mutual information
 - actually can be rewritten as a trade-off between P(R|C) and P(C|R)
- can't train it easily, so train normally & rerank beams afterwards

Input: what is your name?				
-0.91 I don't know.				
-0.92 I don't know!	-1.55 My name is Robert.			
-0.92 I don't know, sir.	-1.58 My name is John.			
-0.97 Oh, my god!	-1.59 My name's John.			

$$MI = \log \frac{P(C, R)}{P(C)P(R)}$$

C = context

$$R = \text{reply}$$

Persona extension

(Li et al., 2016)

https://www.aclweb.org/anthology/P16-1094

- improve consistency
- train speaker embeddings
 - this is a little data-picky
- use speaker + word embeddings in the decoder
 - can also be used in the encoder

Improving upon Seq2seq

JEAL TO THE SECOND SECO

- Hierarchical seq2seq for longer context
- http://dad.uni-bielefeld.de/index.php/dad/article/view/3698

(Lowe et al., 2017)

- HRED (Hierarchical Recurrent Encoder-Decoder)
- use a 2nd, turn-level LSTM encoder, word-level LSTM hidden state as input

- RNN chatbots are still an open problem (and popular, too!)
 - many others proposed various extensions to seq2seq
 - they made improvements, but so far, no one reached really good results

NPFL123 L12 2020 15

Hybrid / Ensemble Chatbots

ÚFAL

a.k.a. most Alexa Prize Entries

- State-of-the-art today: combining all methods
 - rule-based for sensitive/frequent/important questions
 - retrieval for jokes, trivia etc.
 - task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all
- NLU is typically shared, with advanced NLP pipelines
 - NER is very important can get relevant news & trivia
- Decision among bots
 - a) based on NLU topic detection
 - b) ranking multiple answers
 - profanity detection censoring outputs

NPFL123 L12 2020

Alana (2017 & 2018 3rd) (Heriot-Watt University)

Amazon

Post-

processing

Echo

- Bots:
 - Rule-based chit-chat
 - Ontologies knowledge graph walk

User

- movies, music, sports, books
- Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
- Specific services
- Bots compete for reply
 - priority list
 - bots can "lock"

NP extraction **NER/entity linking** intents sentiment topic detection ellipsis coreference

Main hub

0.0

Selection

Strategy

Coherence bot

Ontologies bot

Reddit bot

Evi QA bot

Alana Example dialogue

coherence: stay on topic & ask further questions

Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking

forward to watching?

User: Vanilla Sky -> I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

Ontologies bot Alana: Oh I heard something interesting about Vanilla Sky. [... Movie trivia] Speaking of movies. What actors do you like? I like Leonardo DiCaprio [...]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What's a band that you would like to see? [...]

any news about him -> any news about Kendrick Lamar [Coreference resolution]

18 NPFL123 L12 2020

Alana Example dialogue

user model: name + preferred topics

Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?

User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading [...]

User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?

I mean the novelist User:

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia]

User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.

19 NPFL123 L12 2020

Alquist (Czech Technical University, 2017&2018 2nd)

WALQUIST UFAL WOODS SOLVE

- full NLU pipeline (similar to Alana)
- 2017 handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

Topic Switch Detector

http://alquistai.com/

http://alexaprize.s3.amazonaws.com/2017/technical-article/alquist.pdf

http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alquist.pdf

https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f

Sounding Board (Uni Washington, 2017 winner)

21

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn't like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

http://arxiv.org/abs/1804.10202

https://s3.amazonaws.com/alexaprize/2017/technical-article/soundingboard.pdf https://sounding-board.github.io/

Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction KB fuzzy matching (allow for "typos")
 - sentence segmentation (RNN-based)
- NLU keyphrase extraction
 - focus on noun phrases
- Dialog manager stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel...

Chatbot Ethics

(Cercas Curry & Rieser, 2018) http://aclweb.org/anthology/W18-0802

- Ca. 4% of our 2017 data is sexually explicit
- Different harassment types:
 - comments on gender/sexuality
 - sexualized comments
 - sexualized insults
 - sexual requests & demands
- Chatbots/voice assistants' responses
 - various systems:
 - commercial (Alexa, Google...)
 - rule-based (Pandorabots, adult chatbots)
 - data-driven (seq2seq)
 - systems often present as women, have a woman's voice
 - responses often nonsense / play-along
 - conflict of interest for bot builders: be ethical vs. cater to abusive users

Alexa Prize bottom line

- understanding is the bottleneck
 - ASR problems chat-specific ASR improved things, but it's by far not perfect
 - vague concept of dialogue state, despite full NLP pipelines
 - result: typically very crude intents + list of named entities
 - recognizing multiple/fine-grained intents is a problem
- it's still more about social engineering than "AI"
 - a lot of strategies for not-understanding (switching topics, questions...)
- machine learning helps, but pure ML is not enough
 - lack of annotated data → often relatively simple methods
 - ML helps mainly in NLU, end-to-end seq2seq doesn't work
- interesting content is crucial
 - the more handcrafted topics, the better
 - fluent NLG not so much (but prosody helps!)
- brutal variance in the evaluation very subjective

Summary

ÚFAL MARIONS STULING

- chatbots non-task oriented systems
 - purely for user enjoyment
 - targets: conversation length & user engagement
 - impersonating a human Turing test
- approaches
 - rule-based keyword spotting, scripting
 - retrieval copy & paste from large databases
 - **generative** seq2seq etc. trained on corpora of dialogues
 - too many possible responses don't go well with MLE → safe, short, dull
 - **hybrid** combining all of the above
 - typically mainly rule-based + retrieval, machine learning in NLU only
- open-domain NLU is still an unsolved problem
 - despite that, many people enjoy conversations with chatbots
 - interesting content is crucial

Thanks

Contact me:

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz Slack

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Mainly individual papers referenced directly on slides
- Ram et al. (2018): Conversational AI: The Science Behind the Alexa Prize https://arxiv.org/abs/1801.03604
- Khatri et al. (2018): Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize https://arxiv.org/abs/1812.10757
- Shum et al. (2018): From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots https://link.springer.com/article/10.1631/FITEE.1700826
- Vlahos (2018): Inside the Alexa Prize https://www.wired.com/story/inside-amazon-alexa-prize/
- Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner Prize Mitsuku PARRY Turing test Xiaoice Zo (bot)

Exam

- Written test, ca. 10 questions
 - 60 % = pass (C), 73+% = B, 88+% = A
 - expected 1 hr, but you'll be given at least 2hrs (no pressure on time)
 - alternative: oral over videocall
- Covering the 12 lectures
- Question format
 - you'll need to write stuff on your own (not a-b-c-d, more like 2-3 sentences)
 - explanation of terms/concepts
 - no exact formulas needed (if needed, they might be provided)
 - but you should know the principles of how stuff works
 - relationships between concepts ("what's the difference between X & Y")
 - designing a dialogue system for a domain
 - focus on important stuff (mostly what's mentioned in the summaries)