

### Dialogue Systems

NPFL123 Dialogové systémy

# 9. Neural Policies & Natural Language Generation

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123

14. 4. 2020

### **Deep Reinforcement Learning**

UFAL TOOK STUDIES

- Exactly the same as "plain" RL
  - agent & environment, actions & rewards
  - Markov Decision Process
- "deep" = part of the agent is handled by a NN
  - value function (typically Q)
  - policy
- NN = function approximation approach
  - such as REINFORCE / policy gradients
  - NN → complex non-linear functions
- assuming huge state space
  - much fewer weights than possible states
  - update based on one state changes many states



(Sutton & Barto, 2018)

### Value Function Approximation



- Searching for approximate V(s) or Q(s,a)
  - exact values are too big to enumerate in a table
  - parametric approximation  $V(s; \theta)$  or  $Q(s, a; \theta)$
- Regression: Mean squared value error
  - weighted over states' importance
  - useful for gradient descent
  - $\rightarrow$  ~ any supervised learning approach possible
    - not all work well though
- MC = stochastic gradient descent
- TD is semi-gradient (not true gradient descent)
  - ← using current weights in target estimate
  - we still want TD over MC for speed
  - guaranteed convergence for linear approximations
  - unstable for NNs!



target value

(which we don't have!)  $\rightarrow$  using  $R_t$  in MC

 $\rightarrow$  using  $r_{t+1} + \gamma V(s', \boldsymbol{\theta})$ 

### Deep Q-Networks (Mnih et al., 2013, 2015)



- Q-learning with function approximation
  - Q function represented by a neural net
- Causes of poor convergence in basic Q-learning with NNs:
  - a) SGD is unstable
  - b) correlated samples (data is sequential)
  - TD updates aim at a moving target (using Q in computing updates to Q)
  - d) scale of rewards & Q values unknown  $\rightarrow$  numeric instability
- Fixes in DQN:
  - minibatches (updates by averaged *n* samples, not just one)
  - b) experience replay
  - freezing target Q function

d) clipping rewards

common NN tricks

### **DQN tricks** ~ making it more like supervised learning



• Experience replay – break correlated samples

generate your own 'supervised' training data"

- run through some episodes (dialogues, games...)
- store all tuples (s, a, r', s') in a buffer —
- for training, don't update based on most recent moves use buffer
  - sample minibatches randomly from the buffer
- overwrite buffer as you go, clear buffer on ce in a while
- only possible for off-policy

loss := 
$$\mathbb{E}_{(s,a,r',s')\in \text{buf}}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^{2}\right]$$

#### Target Q function freezing

- fix the version of Q function used in update targets
  - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over



### DQN algorithm



- initialize  $\theta$  randomly
- initialize replay memory D (e.g. play for a while using current  $Q(\boldsymbol{\theta})$ )
- repeat over all episodes:
  - for episode, set initial state s
    - select action a from  $\epsilon$ -greedy policy based on  $Q(\theta)$  take a observe reward r' and new state s'
    - take a, observe reward r' and new state s'
    - store (s, a, r', s') in D
    - $s \leftarrow s'$

often  $\longrightarrow$  • once every k steps:

- update  $\boldsymbol{\theta}$  using loss  $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r'+\gamma\max_{a'}Q\left(s',a';\overline{\boldsymbol{\theta}}\right)-Q(s,a;\boldsymbol{\theta})\right)^2\right]$  "replay" a. k. a. training nce every  $\lambda$  steps:

rarely  $\longrightarrow$  • once every  $\lambda$  steps:

• 
$$\overline{\theta} \leftarrow \theta$$

storing experience

### **DQN for Atari**

input: Atari 2600 screen, downsized to 84x84 (grayscale) 4 last frames



(Mnih et al., 2015)

- 4-layers:
  - 2x CNN
  - 2x fully connected with ReLU activations
- Another trick:
  - output values for all actions at once
    - $\sim$  vector Q(s) instead of Q(s, a)
    - *a* is not fed as a parameter
  - faster computation
- Learns many games at human level
  - with the same network structure
  - no game-specific features

Fully connected values for all actions (joystick moves)  $\hat{q}(s,a_1,\mathbf{w}) \cdots \hat{q}(s,a_m,\mathbf{w})$ â(s,a,**w**) (from David Silver's slides)

https://youtu.be/V1eYniJ0Rnk?t=18

### **DQN for Dialogue Systems**

(Li et al., 2017) https://arxiv.org/abs/1703.01008 https://github.com/MiuLab/TC-Bot





- a simple DQN can drive a dialogue system's action selection
  - DQN is function approximation works fine for POMDPs
  - no summary space tricks needed here







movie ticket booking: better than rule-based

### **Policy Networks**

policy gradient theorem guarantees convergence





- Learning policy directly policy network
  - can work better than Q-learning
  - NN: input = state, output = prob. dist. over actions
  - actor-critic: network predicts both  $\pi$  and V/Q
- Training can't use/doesn't need the DQN tricks
  - just REINFORCE with baseline / actor-critic
    - reward baseline = advantage
  - these are on-policy → no experience replay
    - minibatches used anyway
  - extension: parallel training (A3C algorithm)
    - sample in multiple threads, gather gradients
    - better speed, more diverse experience



https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

### **Natural Language Generation**

- ÚFAL LINES DE LA CONTRACTION D
- conversion of system action semantics → text (in our case)
- NLG output is well-defined, but input is not:
  - DAs
  - any other semantic formalism
  - database tables
  - raw data streams
  - user model ———— e.g. "user wants short answers"
  - dialogue history ———— e.g. for referring expressions, avoiding repetition
- general NLG objective:
  - given input & communication goal
  - create accurate + natural, well-formed, human-like text
- additional NLG desired properties:
  - simplicity
  - adaptability

variation

can be any kind of knowledge representation

### **NLG Use Cases**



#### dialogue systems

very different for task/non-task-oriented/QA systems

#### standalone

- data-to-text
- short text generation for web & apps
  - weather, sports reports
  - personalized letters

#### machine translation

- now mostly integrated end-to-end
- formerly not the case

#### summarization

NPFL123 L9 2020 11

### NLG Subtasks (textbook pipeline)



#### Inputs

deciding

what to say

deciding

how to say it

• **↓** Content/text/document planning

- content selection according to communication goal
- basic structuring & ordering

#### Content plan

- **♦** Sentence planning/microplanning
  - aggregation (facts → sentences)
  - lexical choice
  - referring expressions

Sentence plan

e.g. restaurant vs. it

- ◆ Surface realization
  - linearization according to grammar
  - word order, morphology

Text

typically handled by dialogue manager in dialogue systems

organizing content into sentences & merging simple sentences

this is needed for NLG in dialogue systems

NPFL123 L9 2020

12

### **NLG Implementations**



#### Few systems implement the whole pipeline

- All stages: mostly domain-specific data-to-text, standalone
  - e.g. weather reports
- Dialogue systems: just sentence planning + realization
- Systems focused on content + sentence planning with trivial realization
  - frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
- Surface realization only
  - requires very detailed input
  - some systems: just ordering words

#### Pipeline vs. end-to-end approaches

- planning + realization in one go popular for neural approaches
- pipeline: simpler components, might be reusable (especially realizers)
- end-to-end: no error accumulation, no intermediate data structures

NPFL123 L9 2020 13

### **NLG Basic Approaches**



#### canned text

- most trivial completely hand-written prompts, no variation
- doesn't scale (good for DTMF phone systems)

#### templates

- "fill in blanks" approach
- simple, but much more expressive covers most common domains nicely
- can scale if done right, still laborious
- most production dialogue systems

#### grammars & rules

- grammars: mostly older research systems, realization
- rules: mostly content & sentence planning

#### machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- RNNs made it work much better

NPFL123 L9 2020 14

### **Template-based NLG**

JEAL TO THE SECOND SECO

- Most common in dialogue systems
  - especially commercial systems
- Simple, straightforward, reliable
  - custom-tailored for the domain
  - complete control of the generated content
- Lacks generality and variation
  - difficult to maintain, expensive to scale up
- Can be enhanced with rules
  - e.g. articles, inflection of the filled-in phrases
  - template coverage/selection rules, e.g.:
    - select most concrete template
    - cover input with as few templates as possible
    - random variation





/ (Tacebook

inflection rules

```
'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
    "Alright, from {from_stop} to {to_stop},",

'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "Alright, to {to_stop} in {arrival_time_rel},",

'iconfirm(arrival_time="{arrival_time}")':
    "You want to be there at {arrival_time},",

'iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "You want to get there in {arrival_time_rel},",
```

### **Trainable Sentence Planning:** Overgenerate & Rerank



(Walker et al., 2001) https://www.aclweb.org/anthology/N01-1003

- Assuming you have a flexible handcrafted planner
  - underspecified grammar
  - rules with multiple options...
- Generate multiple outputs
- Select the best one
  - train just the selection learning to rank
  - any supervised approach possible
    - a) "top" = 1, "not top" = 0
    - loss incurred by relative scores loss = max(0, "not top" - "top")

System Text Plan implicit-confirm(orig-city:NEWARK) implicit-confirm(dest-city:DALLAS) implicit-confirm(month:9) implicit-confirm(day-number:1)

this takes time!

input DA

request(depart-time)

SpoT trainable planner (RankBoost ranking)



## Trainable Sentence Planning: Parameter Optimization



- Assuming you have a flexible handcrafted planner
  - + one that has configurable parameters, for e.g.:
    - sentence aggregation
    - fillers
    - lexical choices
- Train the best parameters for your task
  - generate under different settings
  - annotate the outputs with linguistic features
  - learn classifiers: linguistic features → generator settings
    - any supervised learning
    - can predict the settings jointly/independently

PERSONAGE-PE: generation with Big Five personality traits

I see, oh Chimichurri Grill is a latin american place with sort of poor atmosphere. Although it doesn't have rather nasty food, its price is 41 dollars. I suspect it's kind of alright.

Did you say Ce-Cent'anni? I see, I mean, I would consider it because it has friendly staff and tasty food, you know buddy. extra=4.75 ems=5.00 agree=6.25 consc=6.25 open=5.25

extra=2.50

agree=3.50

consc=4.75 open=4.25

ems = 4.50

extraversion
emotional stability
agreeableness
conscientiousness
openness to experience

(Mairesse & Walker, 2008; 2011) https://www.aclweb.org/anthology/P08-1020 https://www.aclweb.org/anthology/J11-3002



- Various grammar formalisms
  - production / unification rules in the grammar
- typically general-domain, reusable
- KPML multilingual
  - systemic functional grammar
- FUF/SURGE English
  - functional unification grammar

FUF/SURGE input and output



#### KPML sentence plan

for A dog is in the park.

(Bateman, 1997)

http://www.academia.edu/download/3459017/bateman97-jnle.pdf

Input Specification  $(I_1)$ :



(Elhadad & Robin, 1996) https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

## Grammar-based Realizers: OpenCCG

- OpenCCG English
  - combinatory categorial grammar
  - reuse/reverse of CCG parser
    - (reverse) lexical lookup
    - combination according to grammar
       dynamic programming
  - statistical enhancements

#### OpenCCG input for flight information

NPFL123 L9 2020

```
be [tense=pres info=rh id=n1]

<Arg> flight [num=sg det=the info=th id=f2]

<HasProp> cheapest [kon=+ id=n2]

<Prop> has-rel [id=n3]

<Of> f2

<Airline> Ryanair [kon=+ id=n4]
```

(Moore et al., 2004) http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf



```
 @_x(\mathbf{man} \wedge \langle \mathsf{GENREL} \rangle (e \wedge \mathbf{see} \wedge \langle \mathsf{TENSE} \rangle \mathbf{past} \\ \wedge \langle \mathsf{ACT} \rangle (b \wedge \mathbf{Bob}) \wedge \langle \mathsf{PAT} \rangle x))
```

 $0: @_x man, 1: @_x \langle GENREL \rangle e, 2: @_e see \ 3: @_e \langle TENSE \rangle past, 4: @_e \langle ACT \rangle b \ 5: @_e \langle PAT \rangle x, 6: @_b Bob$  OpenCCG input

$$\begin{array}{l} \mathsf{S}\mathsf{\Theta}\Theta \;\vdash\; (\mathsf{s}_{e,nonfin} \backslash \mathsf{np}_b) / \mathsf{np}_x : \\ @_e \mathsf{see} \; \land @_e \langle \mathsf{ACT} \rangle b \land @_e \langle \mathsf{PAT} \rangle x \\ \{1\} \; \{e,x\} \end{array}$$

 $\begin{array}{ll} \{l\} & \{e,x\} \\ \textit{that} & \vdash (\mathsf{n}_x \backslash \mathsf{n}_x) / (\mathsf{s}_{e,\mathit{fin}} \backslash \mathsf{np}_x) : @_x \langle \mathsf{GENREL} \rangle e \end{array} \quad \text{lexical lookup}$ 

$$\begin{array}{ll} \{1\} \ \{e,x\} \\ \textit{that} \ \vdash \ (\mathsf{n}_x \backslash \mathsf{n}_x) / (\mathsf{s}_{e,\mathit{fin}} / \mathsf{np}_x) : @_x \langle \mathsf{GENREL} \rangle e \end{array}$$

(White & Baldridge, 2003) https://www.aclweb.org/anthology/W03-2316

OpenCCG

 $Bob \vdash s_t/(s_t \backslash np_b) : @_b Bob$ 

to see  $\vdash (s_{e,inf} \backslash np_b)/np_x :$  $@_e see \land @_e \langle ACT \rangle b \land @_e \langle PAT \rangle x$ 

Bob saw  $\vdash$  s<sub>e,fin</sub>/np<sub>x</sub>: @<sub>e</sub>see  $\land$  @<sub>e</sub>\TENSE\past  $\land$  @<sub>e</sub>\ACT\b\  $\land$  @<sub>e</sub>\PAT\x\  $\land$  @<sub>b</sub>Bob

Bob to see  $\vdash \mathsf{s}_{e,inf}/\mathsf{np}_x$ :  $@_e\mathsf{see} \land @_e\langle\mathsf{ACT}\rangle b \land @_e\langle\mathsf{PAT}\rangle x \land @_b\mathsf{Bob}$ 

man that Bob saw  $\vdash$   $n_x$ :  $@_x man \land @_x \langle GENREL \rangle e$   $\land @_e see \land @_e \langle TENSE \rangle past$   $\land @_e \langle ACT \rangle b \land @_e \langle PAT \rangle x \land @_b Bob$ 

OpenCCG parsing (combinatory rules)



### Procedural realizer: SimpleNLG

- A simple Java API
  - "do-it-yourself" style only cares about the grammar
  - input needs to be specified precisely
  - building up ~syntactic structure
  - final linearization
- built for English
  - large coverage lexicon included
  - ports to multiple languages available

### SimpleNLG generation procedure

```
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createClause();

p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");

p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```

### **Grammar/Procedural Realizers**

- procedural, but based on grammar formalisms
- RealPro (Meaning-Text-Theory)
  - deep syntax/semantics → surface syntax → morphology
- **Treex** (Functional Generative Description)
  - deep syntax → surface syntax → morphology and linearization
  - simple Perl program
    - copy deep syntax
    - fix morphology agreement
    - add prepositions, conjunctions & articles
    - add auxiliary verbs
    - inflect words
    - add punctuation & capitalization



jump PRED v:fin

window

ACT n:subj DIR2 n:through+X

zone=en step2

zone=en step4

### **Trainable Realizers**



#### Overgenerate & Rerank

this means

may be smaller

- same approach as for sentence planning
- assuming a flexible handcrafted realizer (e.g., OpenCCG)
- the grammar → underspecified input → more outputs possible
  - generate more & use statistical reranker, based on:
    - n-gram language models

      NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
      HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
    - Tree language models FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
    - expected text-to-speech output quality (Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140
    - personality traits & alignment/entrainment CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
  - more variance, but at computational cost

#### Grammar/Procedural-based

StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012

• same as RealPro or TectoMT, but predict each step using a classifier

NPFL123 L9 2020 22

### Non-Neural End-to-End NLG



#### NLG as language models

- hierarchy of language models (HMM/MEMM/CRF style)
- DA → slot → word level

#### NLG as parsing

- a) "language models" by probabilistic CFGs
  - approximate search for best CFG derivation
- b) synchronous PCFGs MRs & text
  - "translation" with hierarchical phrase-based system
  - parsing MR & generating text





(Oh & Rudnicky, 2002) (Angeli et al., 2010) (Liang et al., 2009) (Mairesse et al., 2010)

https://doi.org/10.1016/S0885-2308(02)00012-8 https://www.aclweb.org/anthology/D10-1049 https://www.aclweb.org/anthology/P09-1011 https://www.aclweb.org/anthology/P10-1157 (Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

> prob./parameter rule



(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039

### Neural End-to-End NLG: RNNLG

- Unlike previous, doesn't need alignments
  - no need to know which word/phrase corresponds to which slot

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

- Using RNNs, generating word-by-word
  - neural language models conditioned on DA
  - generating delexicalized texts
- input DA represented as binary vector
- Enhanced LSTM cells (SC-LSTM)
  - special part of the cell (gate) to control slot mentions





### Seq2seq NLG (TGen)

encoder

(Dušek & Jurčíček, 2016) https://aclweb.org/anthology/P16-2008

decoder







### **Problems with neural NLG**

(Dušek et al., 2019) http://arxiv.org/abs/1901.07931

- Checking the semantics
  - neural models tend to forget / make up irrelevant stuff
  - reranking currently best, but not perfect
- Delexicalization needed (at least some slots)
  - otherwise the data would be too sparse
  - alternative: copy mechanisms
- Diversity & complexity of outputs
  - still can't match humans
  - needs specific tricks to improve this
- Still more hassle than writing up templates

open sets, verbatim on the output (e.g., restaurant/area names)



### **Summary**



#### Deep Reinforcement Learning

- same as plain RL agent + states, actions, rewards just Q or  $\pi$  is a NN
- function approximation for Q mean squared value error
- **Deep Q Networks** Q learning where Q is a NN + tricks
  - experience replay, target function freezing
- Policy networks policy gradients where  $\pi$  is a NN

#### Natural Language Generation

- steps: content planning, sentence planning, surface realization
  - not all systems implement everything (content planning is DM's job in DS)
  - pipeline vs. end-to-end
- approaches: templates, grammars, statistical
- templates work great
- state-of-the-art = seq2seq with reranking

NPFL123 L9 2020 27

### **Thanks**



#### **Contact us:**

odusek@ufal.mff.cuni.cz hudecek@ufal.mff.cuni.cz Slack

#### **Get these slides here:**

http://ufal.cz/npfl123

#### **References/Inspiration/Further:**

- Matiisen (2015): Demystifying Deep Reinforcement Learning: <a href="https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/">https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/</a>
- Karpathy (2016): Deep Reinforcement Learning Pong From Pixels: <a href="http://karpathy.github.io/2016/05/31/rl/">http://karpathy.github.io/2016/05/31/rl/</a>
- David Silver's course on RL (UCL): <a href="http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html">http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</a>
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2<sup>nd</sup> ed.): <a href="http://incompleteideas.net/book/the-book.html">http://incompleteideas.net/book/the-book.html</a>
- Milan Straka's course on RL (Charles University): <a href="http://ufal.mff.cuni.cz/courses/npfl122/">http://ufal.mff.cuni.cz/courses/npfl122/</a>
- Deep RL for NLP tutorial
- Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: <a href="https://arxiv.org/abs/1312.5602">https://arxiv.org/abs/1312.5602</a>
- Mnih et al. (2015): Human-level control through deep reinforcement learning: <a href="https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf">https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf</a>
- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation <a href="http://arxiv.org/abs/1703.09902">http://arxiv.org/abs/1703.09902</a>
- My PhD thesis (2017), especially Chapter 2: <a href="http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf">http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf</a>