9. Neural Policies & Natural Language Generation

Ondřej Dušek & Vojtěch Hudeček & Jan Čuřín

http://ufal.cz/npfl123
14. 4. 2020
Deep Reinforcement Learning

• Exactly the same as “plain” RL
 • agent & environment, actions & rewards
 • Markov Decision Process

• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy

• NN = function approximation approach
 • such as REINFORCE / policy gradients
 • NN → complex non-linear functions

• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states

(Sutton & Barto, 2018)
Value Function Approximation

• Searching for approximate \(V(s) \) or \(Q(s, a) \)
 • exact values are too big to enumerate in a table
 • **parametric approximation** \(V(s; \theta) \) or \(Q(s, a; \theta) \)

• Regression: **Mean squared value error**
 • weighted over states’ importance
 • useful for gradient descent
 • \(\rightarrow \sim \text{any supervised learning approach possible} \)
 • not all work well though

• MC = stochastic gradient descent

• TD is **semi-gradient** (not true gradient descent)
 • \(\leftarrow \) using current weights in target estimate
 • we still want TD over MC for speed
 • guaranteed convergence for linear approximations
 • unstable for NNs!

\[
\overline{VE}(\theta) := \sum_{s \in S} \mu(s)(V_\pi(s) - V(s, \theta))^2
\]

states’ importance weight (probability distribution)

target value
(which we don’t have!)
\(\Rightarrow \) using \(R_t \) in MC
\(\Rightarrow \) using \(r_{t+1} + \gamma V(s', \theta) \)

our estimate
Deep Q-Networks (Mnih et al., 2013, 2015)

• Q-learning with function approximation
 • Q function represented by a neural net

• Causes of poor convergence in basic Q-learning with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown \rightarrow numeric instability

• Fixes in DQN:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

common NN tricks

cool!
DQN tricks ~ making it more like supervised learning

• **Experience replay** – break correlated samples
 • run through some episodes (dialogues, games…)
 • store all tuples \((s, a, r', s')\) in a buffer
 • for training, don’t update based on most recent moves – use buffer
 • sample minibatches randomly from the buffer
 • overwrite buffer as you go, clear buffer once in a while
 • only possible for off-policy

loss := \(\mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_a Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right] \)

• **Target Q function freezing**
 • fix the version of Q function used in update targets
 • have a copy of your Q network that doesn’t get updated every time
 • once in a while, copy your current estimate over

“generate your own ‘supervised’ training data”

“have a fixed target, like in supervised learning”
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ-greedy policy based on $Q(\theta)$
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$

often

• once every k steps:
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[(r' + \gamma \max_{a'} Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]$

rarely

• once every λ steps:
 - $\overline{\theta} \leftarrow \theta$

storing experience

"replay" a.k.a. training
DQN for Atari

• 4-layers:
 • 2x CNN
 • 2x fully connected with ReLU activations

• Another trick:
 • output values for all actions at once
 • ~ vector $Q(s)$ instead of $Q(s, a)$
 • a is not fed as a parameter
 • faster computation

• Learns many games at human level
 • with the same network structure
 • no game-specific features

input: Atari 2600 screen, downsized to 84x84 (grayscale)
4 last frames

(values for all actions (joysticks moves))

https://youtu.be/V1eYniJ0Rnk?t=18

(from David Silver’s slides)
DQN for Dialogue Systems

- A simple DQN can drive a dialogue system’s action selection
 - DQN is function approximation – works fine for POMDPs
 - No summary space tricks needed here

DQN – feed-forward, 1 hidden ReLU layer

Rule-based simulator with agenda running on DA level

Error model controller (simulating ASR/NLU noise)

Movie ticket booking: better than rule-based

Replay memory initialized using a simple handcrafted policy

Policy Networks

• Learning policy directly – **policy network**
 • can work better than Q-learning
 • NN: input = state, output = prob. dist. over actions
 • actor-critic: network predicts both π and V/Q

• Training can’t use/doesn’t need the DQN tricks
 • just REINFORCE with baseline / actor-critic
 • reward – baseline = **advantage**
 • these are on-policy → no experience replay
 • minibatches used anyway
 • extension: parallel training (A3C algorithm)
 • sample in multiple threads, gather gradients
 • better speed, more diverse experience

policy gradient theorem guarantees convergence

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
Natural Language Generation

• conversion of system action semantics \rightarrow text (in our case)

• NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model
e - dialogue history

• general NLG objective:
 - given input & communication goal
 - create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
 - variation
 - simplicity
 - adaptability
NLG Use Cases

• dialogue systems
 • very different for task/non-task-oriented/QA systems

• standalone
 • data-to-text
 • short text generation for web & apps
 • weather, sports reports
 • personalized letters

• machine translation
 • now mostly integrated end-to-end
 • formerly not the case

• summarization
Inputs

- **Content/text/document planning**
 - content selection according to communication goal
 - basic structuring & ordering

Content plan

- **Sentence planning/microplanning**
 - aggregation (facts → sentences)
 - lexical choice
 - referring expressions

Sentence plan

- **Surface realization**
 - linearization according to grammar
 - word order, morphology

Text

Typically handled by dialogue manager in dialogue systems

Organizing content into sentences & merging simple sentences

This is needed for NLG in dialogue systems

E.g. *restaurant* vs. *it*
NLG Implementations

• Few systems implement the whole pipeline
 • All stages: mostly domain-specific data-to-text, standalone
 • e.g. weather reports
 • Dialogue systems: just sentence planning + realization
 • Systems focused on content + sentence planning with trivial realization
 • frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
 • Surface realization only
 • requires very detailed input
 • some systems: just ordering words

• Pipeline vs. end-to-end approaches
 • planning + realization in one go – popular for neural approaches
 • pipeline: simpler components, might be reusable (especially realizers)
 • end-to-end: no error accumulation, no intermediate data structures
NLG Basic Approaches

- **canned text**
 - most trivial – completely hand-written prompts, no variation
 - doesn’t scale (good for DTMF phone systems)

- **templates**
 - “fill in blanks” approach
 - simple, but much more expressive – covers most common domains nicely
 - can scale if done right, still laborious
 - most production dialogue systems

- **grammars & rules**
 - grammars: mostly older research systems, realization
 - rules: mostly content & sentence planning

- **machine learning**
 - modern research systems
 - pre-neural attempts often combined with rules/grammar
 - RNNs made it work *much* better
Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

 inflection rules

(Facebook, 2015)
Trainable Sentence Planning: Overgenerate & Rerank

• Assuming you have a flexible handcrafted planner
 • underspecified grammar
 • rules with multiple options…
• Generate multiple outputs
• Select the best one
 • train just the selection – learning to rank
 • any supervised approach possible
 a) “top” = 1, “not top” = 0
 b) loss incurred by relative scores
 \[\text{loss} = \max(0, \text{“not top”} - \text{“top”}) \]

SpoT trainable planner (RankBoost ranking)

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003
Trainable Sentence Planning: Parameter Optimization

• Assuming you have a flexible handcrafted planner
 • + one that has **configurable parameters**, for e.g.:
 • sentence aggregation
 • fillers
 • lexical choices

• Train the best parameters for your task
 • generate under different settings
 • annotate the outputs with linguistic features
 • learn classifiers: linguistic features → generator settings
 • any supervised learning
 • can predict the settings jointly/independently

I see, oh Chimichurri Grill is a Latin American place with sort of poor atmosphere. Although it doesn’t have rather nasty food, its price is 41 dollars. I suspect it’s kind of alright.

Did you say Ce-Cent’anni? I see, I mean, I would consider it because it has friendly staff and tasty food, you know buddy.

extraversion
emotional stability
agreeableness
conscientiousness
openness to experience

(Mairesse & Walker, 2008; 2011)
https://www.aclweb.org/anthology/P08-1020
https://www.aclweb.org/anthology/J11-3002
Grammar-based realizers

• Various grammar formalisms
 • production / unification rules in the grammar
• typically general-domain, reusable
• KPML – multilingual
 • systemic functional grammar
• FUF/SURGE – English
 • functional unification grammar

KPML sentence plan for *A dog is in the park.*

(10 / spatial-locating
 :speechact (a0 / assertion :polarity positive
 :speaking-time t0)
 :reference-time-id t0
 :event-time (t0 / time)
 :theme d0
 :domain (d0 / object :lex dog
 :identifiability-q notidentifiable)
 :range (p0 / three-d-location :lex park
 :identifiability-q identifiable))

(Bateman, 1997)

FUF/SURGE input and output

(Elhadad & Robin, 1996)
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

NPFL123 L9 2020
Grammar-based Realizers: OpenCCG

- **OpenCCG** – English
 - combinatory categorial grammar
 - reuse/reverse of CCG parser
 - (reverse) lexical lookup
 - combination according to grammar – dynamic programming
 - statistical enhancements

OpenCCG input for flight information

```
be [tense=pres info=th id=n1]
<Arg> flight [num=sg det=the info=th id=f2]
<HasProp> cheapest [kon=+ id=n2]
<Prop> has-rel [id=n3]
<Of> f2
<Airline> Ryanair [kon=+ id=n4]
```

(Moore et al., 2004)

(White & Baldridge, 2003)
https://www.aclweb.org/anthology/W03-2316
Procedural realizer: SimpleNLG

- A simple Java API
 - “do-it-yourself” style – only cares about the grammar
 - input needs to be specified precisely
 - building up ~syntactic structure
 - final linearization
- built for English
 - large coverage lexicon included
 - ports to multiple languages available

```java
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createFromClause();
p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");
p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613
Grammar/Procedural Realizers

- procedural, but based on grammar formalisms
- **RealPro** (Meaning-Text-Theory)
 - deep syntax/semantics → surface syntax → morphology
- **Treex** (Functional Generative Description)
 - deep syntax → surface syntax → morphology and linearization
 - simple Perl program
 - copy deep syntax
 - fix morphology agreement
 - add prepositions, conjunctions & articles
 - add auxiliary verbs
 - inflect words
 - add punctuation & capitalization

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

(Popel & Žabokrtský 2010; Dušek et al., 2015)
https://www.aclweb.org/anthology/W15-3009
Trainable Realizers

- **Overgenerate & Rerank**
 - same approach as for sentence planning
 - assuming a flexible handcrafted realizer (e.g., OpenCCG)
 - underspecified input → more outputs possible
 - generate more & use statistical reranker, based on:
 - n-gram language models
 - Tree language models
 - expected text-to-speech output quality
 - personality traits & alignment/entrainment
 - more variance, but at computational cost

- **Grammar/Procedural-based**
 - same as RealPro or TectoMT, but predict each step using a classifier

References

- NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
- HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
- FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
- CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
- StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012
Non-Neural End-to-End NLG

• **NLG as language models**
 • hierarchy of language models (HMM/MEMM/CRF style)
 • DA → slot → word level

• **NLG as parsing**
 a) “language models” by probabilistic CFGs
 • approximate search for best CFG derivation
 b) synchronous PCFGs – MRs & text
 • “translation” with hierarchical phrase-based system
 • parsing MR & generating text

[Diagram of parsing rules]

(Oh & Rudnicky, 2002) https://doi.org/10.1016/S0885-2308(02)00012-8
(Engeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
(Mairesse et al., 2010) https://www.aclweb.org/anthology/P10-1157
(Mairesse & Young, 2014) https://www.aclweb.org/anthology/J14-4003

rule prob./parameter
1. $s \rightarrow R(\text{start})$ $[Pr = 1]$
2. $R(r,t) \rightarrow F(s,r,t,\text{start})$ $R(r,t)$ $[P(r,t|s,t)\lambda]$
3. $R(r,t) \rightarrow F(s,r,t,\text{start})$ $[P(r,t|s,t)\lambda]$
4. $F(s,r,t,f) \rightarrow F(s,r,t)$ $F(s,r,t,f)$ $[P(f|t)f]$
5. $F(s,r,t,f) \rightarrow F(s,r,t)$ $[P(f|t)f]$
6. $F(s,r,t,f) \rightarrow W(r,t,f)$ $F(s,r,t,f)$ $[P(w|w_{-1},r,f)]$
7. $F(s,r,t,f) \rightarrow W(r,t,f)$ $[P(w|w_{-1},r,f)]$
8. $W(r,t,f) \rightarrow \alpha$ $[P(\alpha|r,f,t,f,v)]$
9. $W(r,t,f) \rightarrow g(f,v)$ $[P(g|\alpha,\text{mode};x,r,c,f,s_2 = \text{init})]$

(Konstas & Lapata, 2012) https://www.aclweb.org/anthology/P12-1039
Neural End-to-End NLG: RNNLG

• Unlike previous, doesn’t need alignments
 • no need to know which word/phrase corresponds to which slot

name [Loch Fyne], eatType [restaurant], food [Japanese], price [cheap], familyFriendly [yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

• Using RNNs, generating word-by-word
 • neural language models conditioned on DA
 • generating delexicalized texts

• input DA represented as binary vector

• Enhanced LSTM cells (SC-LSTM)
 • special part of the cell (gate) to control slot mentions

Seq2seq NLG (TGen)

• Seq2seq with attention
 • encoder – triples <DA type, slot, value>
 • decodes words (possibly delexicalized)

• Beam search & reranking
 • DA classification of outputs
 • checking against input DA

(Dušek & Jurčiček, 2016)
https://aclweb.org/anthology/P16-2008
Problems with neural NLG

• Checking the semantics
 • neural models tend to forget / make up irrelevant stuff
 • reranking currently best, but not perfect

• Delexicalization needed (at least some slots)
 • otherwise the data would be too sparse
 • alternative: copy mechanisms

• Diversity & complexity of outputs
 • still can’t match humans
 • needs specific tricks to improve this

• Still more hassle than writing up templates 😞

(Dušek et al., 2019)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output (e.g., restaurant/area names)
Summary

• **Deep Reinforcement Learning**
 • same as plain RL – agent + states, actions, rewards – just Q or π is a NN
 • function approximation for Q – mean squared value error
 • **Deep Q Networks** – Q learning where Q is a NN + tricks
 • experience replay, target function freezing
 • **Policy networks** – policy gradients where π is a NN

• **Natural Language Generation**
 • steps: content planning, sentence planning, surface realization
 • not all systems implement everything (content planning is DM’s job in DS)
 • pipeline vs. end-to-end
 • approaches: templates, grammars, statistical
 • templates work great
 • state-of-the-art = seq2seq with reranking
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
Slack

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• Matiisen (2015): Demystifying Deep Reinforcement Learning:
 https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels:
 http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL):
 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.):
• Milan Straka’s course on RL (Charles University):
 http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial
• Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning:
 https://arxiv.org/abs/1312.5602
• Mnih et al. (2015): Human-level control through deep reinforcement learning:
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
 http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: