Dialogue Management

• Two main components:
 • **State tracking** (last lecture)
 • **Action selection** (today)

• action selection – deciding what to do next
 • based on the current belief state – under uncertainty
 • following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 • controlling the coherence & flow of the dialogue
 • actions: linguistic & non-linguistic

• DM/policy should:
 • manage uncertainty from belief state
 • recognize & follow dialogue structure
 • plan actions ahead towards the goal

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require
DM/Action Selection Approaches

• **Finite-state machines**
 • simplest possible
 • dialogue state is machine state

• **Frame-based** (VoiceXML)
 • slot-filling + providing information – basic agenda

• **Rule-based**
 • any kind of rules (e.g. Python code)

• **Statistical**
 • typically using reinforcement learning

• Note that state tracking differs with different action selection
FSM Dialogue Management

- Dialogues = graphs going through possible conversations
 - nodes = system actions
 - edges = possible user response semantics
- advantages:
 - easy to design
 - predictable
- disadvantages:
 - very rigid – not real conversations (ignores anything that’s not a reply to last question)
 - doesn’t scale to complex domains
- Good for basic DTMF (tone-selection) phone systems

Thanks for calling Bank X. For account balance, press 1, for money transfers, press 2…
Frame-based Approach

- Making the interaction more flexible
- State = frame with slots
 - required slots need to be filled
 - this can be done in **any order**
 - more information in one utterance possible
- If all slots are filled, query the database
- Multiple frames (e.g. flights, hotels...)
 - needs frame tracking
- Standard implementation: **VoiceXML**
- Still not completely natural, won’t scale to more complex problems

<table>
<thead>
<tr>
<th>Slot</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN</td>
<td>What city are you leaving from?</td>
</tr>
<tr>
<td>DEST</td>
<td>Where are you going?</td>
</tr>
<tr>
<td>DEPT DATE</td>
<td>What day would you like to leave?</td>
</tr>
<tr>
<td>DEPT TIME</td>
<td>What time would you like to leave?</td>
</tr>
<tr>
<td>AIRLINE</td>
<td>What is your preferred airline?</td>
</tr>
</tbody>
</table>

(from Hao Fang’s slides)

```
<form>
  <field name="transporttype">
    <prompt>Please choose airline, hotel, or rental car. </prompt>
    <grammar type="application/x-nuance-g31">
      [airline hotel "rental car"]
    </grammar>
  </field>
  <block>
    <prompt>You have chosen <value expr="transporttype">. </prompt>
  </block>
</form>
```

(from Pierre Lison’s slides)
Rule-based (Information State Update)

- Richer state representation – information state
 - complete context – common ground, beliefs, agenda…

- Rules for state update
 - based on dialogue moves (~DAs)
 - rule = applicability conditions + effects
 - effects:
 - updates to information state (~tracking)
 - system actions – updating the “next move” entry
 - all matching rules applied in a sequence

- Much more expressive than FSM/Frames

- Cumbersome to handcraft

BEL = belief
QUD = questions under discussion
LM = last dialogue move

(Larsson & Traum, 2000)
https://dl.acm.org/citation.cfm?id=973943

private to the system

common ground

(Larsson & Traum, 2003)
https://doi.org/10.1007/978-94-010-0019-2_15
Rule-based

- We can use a probabilistic belief state
 - DA types, slots, values
- With **if-then-else** rules in programming code
 - using thresholds over belief state for reasoning
- Output: system DA
- Very flexible, easy to code
 - allows relatively natural dialogues
- Gets messy
- Dialogue policy is still pre-set
 - which might not be the best thing to do

```python
elif fact["we_did_not_understand"]:  
    # NLG("Sorry, I did not understand")
    res_da = DialogueAct("notunderstood")
    res_da.extend(self.get_limited_context)
    dialogue_state["ludsit"].reset()
elif fact["user_wants_help"]:  
    # NLG("Pomoc.")
    res_da = DialogueAct("help")
    dialogue_state["ludsit"].reset()
elif fact["user_thanked"]:  
    # NLG("Díky,")
    res_da = DialogueAct("inform(format=thanks)")
    dialogue_state["ludsit"].reset()
elif fact["user_wants_restart"]:  
    # NLG("Dobře, zanášeme znovu. Jak zase?")
    dialogue_state.restart()
    res_da = DialogueAct("restart")
    dialogue_state["ludsit"].reset()
elif fact["user_wants_us_to_repeat"]:  
    # NLG - use the last dialogue act
    res_da = DialogueAct("irepeat")
    dialogue_state["ludsit"].reset()
```

(Jurčíček et al., 2014)
https://github.com/UFAL-DSG/alex/blob/master/alex/applications/PublicTransportInfoCS/hdc_policy.py
DM with supervised learning

- Action selection ~ classification → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features

- Yes, but…
 - You need sufficiently large human-human data – hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there’s no single correct next action – multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won’t behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs should behave differently – make the best of what they have
DM as a Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
- agent in an environment:
 - has internal state $s_t \in S$
 - takes actions $a_t \in A$
 - actions chosen according to policy $\pi: S \to A$
 - gets rewards $r_t \in \mathbb{R}$ & state changes from the environment
- Markov property – state defines everything
 - no other temporal dependency
- let’s assume we know the state for now
 - let’s go with MDPs,
 see how they map to POMDPs later

NPFL123 L8 2020

(Sutton & Barto, 2018)
Deterministic vs. stochastic policy

- **Deterministic** = simple mapping $\pi: S \rightarrow A$
 - always takes the same action $\pi(s)$ in state s
 - enumerable in a table
 - equivalent to a rule-based system
 - but can be learned instead of hand-coded!

- **Stochastic** = specifies a probability distribution $\pi(s, a)$
 - $\pi(s, a) \sim$ probability of choosing action a in state s – $p(a|s)$
 - decision = sampling from $\pi(s, a)$
Reinforcement learning

• RL = finding a policy that maximizes long-term reward
 • unlike supervised learning, we don’t know if an action is good
 • immediate reward might be low while long-term reward high

\[R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i+1} \]

return: accumulated long-term reward (from timestep \(t \) onwards)

\(\gamma \in [0,1] = \text{discount factor} \)
(Immediate vs. future reward trade-off)

\(\gamma < 1 : R_t \) is finite (if \(r_t \) is finite)
\(\gamma = 0 : \) greedy approach (ignore future rewards)

• state transition is stochastic \(\rightarrow \) maximize expected return

\[\mathbb{E}[R_t | \pi, s_0] \]

expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
State-value Function

- Using return, we define the value of a state s under policy π: $V^\pi(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (Bellman Equation):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s'|s,a) (r(s,a,s') + \gamma V^\pi(s'))$$

- $V^\pi(s)$ defines a greedy policy:
 $$\pi(s,a) := \begin{cases}
 \frac{1}{\# \text{ of } a's} & \text{for } a = \arg \max_a \sum_{s' \in \mathcal{S}} p(s'|s,a) (r(s,a,s') + \gamma V^\pi(s')) \\
 0 & \text{otherwise}
 \end{cases}$$

Action-value (Q-)Function

- $Q^\pi(s, a)$ – return of taking action a in state s, under policy π
 - Same principle as value $V^\pi(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s'|s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)$$

- $Q^\pi(s, a)$ also defines a greedy policy: again, “actions that look best for the next step”

$$\pi(s, a) := \begin{cases} \frac{1}{\# of a's} & \text{for } a = \arg \max_a Q^\pi(s, a) \\ 0 & \text{otherwise} \end{cases}$$

simpler: no need to enumerate s', no need to know $p(s'|s, a)$ and $r(s, a, s')$

but Q tables are bigger than V tables
Optimal Policy in terms of V and Q

• **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*

• π^* is a policy such that $V^{\pi^*}(s) \geq V^{\pi'}(s)$ $\forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$

• greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either $\pi^*, V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agent Taxonomy

• Quantity to optimize:
 • value function – critic
 • policy – actor
 • both – actor-critic

• Environment model:
 • model-based (assume known $p(s'|s, a), r(s, a, s)$)
 • model-free (don’t assume anything, sample)
 • this is where using Q instead of V comes handy

(from David Silver’s slides)
RL Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment
 • **Monte Carlo** learning – learn from experience
 • sample, then update based on experience
 • **Temporal difference** learning – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • **off-policy** – decide according to a different policy
Value Iteration

1) Choose a threshold τ, Initialize $V_0(s)$ arbitrarily

2) While $V_i(s) - V_{i-1}(s) \geq \tau$ for any s:

 for all s: $V_{i+1}(s) \leftarrow \max_a \sum_{s' \in S} p(s'|s, a)(r(s, a, s') + \gamma V_i(s'))$

 $i \leftarrow i + 1$

• At convergence, we’re less than τ away from optimal state values
 • resulting greedy policy is typically already optimal in practice

• Can be done with $Q_i(s, a)$ instead of $V_i(s)$

• Assumes known $p(s'|s, a)$ and $r(s, a, s')$
 • can be estimated from data if not known – but it’s expensive

as long as we’re still improving
Value iteration example
(Gridworld)

• Robot in a maze: can stay or move ←, ↑, →, ↓ (all equally likely)
 • reward +1 for staying at “G”
 • reward -1 for hitting a wall
 • discount factor $\gamma = 0.9$

(Heidrich-Meisner et al., 2007)
https://christian-igel.github.io/paper/RLiaN.pdf
Policy iteration

- Similar to value iteration, but improves both policy & value function
 - also works for Q in place of V
- Initialize π_1 and $V^{\pi_1}(s)$ arbitrarily, set $k = 1$, iterate:

1) **E: Policy evaluation** – compute $V^{\pi_k}(s)$ for policy π_k
 - iterative approximation based on Bellman equation
 - choose threshold τ, loop with i while $V^{\pi_{k+1}}_i(s) - V^{\pi_k}_i(s) \geq \tau$ for any s:
 - for all s: $a \leftarrow \pi_k(s)$, $V_{i+1}(s) \leftarrow \sum_{s'} p(s'|s, a)(r(s, a, s') + \gamma V_i(s'))$

2) **I: Policy improvement** – find better π_{k+1} based on $V^{\pi_k}(s)$
 - choose best action in each state based on $V^{\pi_k}(s)$
 - for all s: $\pi_{k+1} \leftarrow \arg \max_a \sum_{s'} p(s'|s, a)(r(s, a, s') + \gamma V^{\pi_k}(s'))$
 - end if $\pi_{k+1}(s) = \pi_k(s)$ for all s

Animated example here:
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
(note that rewards come from states, not state-action pairs)
Monte Carlo Methods

- $V(s)$ or $Q(s, a)$ estimated iteratively, on-policy
 - explores states with more value more often

- Loop over episodes (dialogues)
 - record (s_t, a_t, r_t) for $t = 0, ..., T$ in the episode
 - for all s, a in the episode:
 - $R(s, a) \leftarrow$ list of all returns for taking action a in state s (sum of rewards till end of episode)
 - $Q(s, a) \leftarrow \text{mean}(R(s, a))$

- To converge, we need to explore – using ϵ-greedy policy:

 $$a = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}$$

 ϵ can be large initially, then gradually lowered

 Here: model-free for Q’s, but also works model-based for V’s

 $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

 Off-policy extensions exist (omitted)
SARSA *(state-action-reward-state-action)*

- estimate $Q(s, a)$ iteratively, on-policy, with immediate updates
 - **TD**: don’t wait till the end of episode
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s, initial a according to ϵ-greedy policy based on Q
- for each step:
 - take action a, observe reward r and state s'
 - choose action a' from s' acc. to ϵ-greedy policy based on Q
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
 - $s \leftarrow s'$, $a \leftarrow a'$

- typically converges faster than MC (but not always)

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
Q-Learning (off-policy TD)

- off-policy – directly estimate $Q^*(s, a)$
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s', a') \right)$
 - $s \leftarrow s'$

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
REINFORCE – MC policy search

• assuming a differentiable parametric policy $\pi(a|s, \theta)$
• direct search for policy parameters by stochastic gradient ascent
 • looking to maximize performance $J(\theta) = V^{\pi_{\theta}}(s_0)$
• choose learning rate α, initialize θ arbitrarily
• loop forever:
 • generate an episode $s_0, a_0, r_1, ..., s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot|\cdot, \theta)$
 • for each $t = 0,1,...,T$: $\theta \leftarrow \theta + \alpha \gamma^t R_t \nabla \ln \pi(a_t|s_t, \theta)$

variant: discounting a baseline $b(s)$ (predicted by any model)
 $R_t - b(s_t)$ instead of R_t
gives better performance

returns $R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$

this is stochastic $\nabla J(\theta)$
 • from policy gradient theorem
 • with action sample a_t

a good $b(s)$ is actually $V(s)$

NPFL123 L8 2020
Policy Gradients Actor-Critic

• REINFORCE + V approximation + TD estimates – better convergence
 • differentiable policy $\pi(a|s, \theta)$
 • differentiable state-value function parameterization $\hat{V}(s, w)$
 • two learning rates α^θ, α^w

• loop forever:
 • set initial state s for the episode
 • for each step t of the episode:
 • sample action a from $\pi(\cdot|s, \theta)$, take a and observe reward r and new state s'
 • compute $\delta \leftarrow r + \gamma \hat{V}(s', w) - \hat{V}(s, w)$
 • update $\theta \leftarrow \theta + \alpha^\theta \gamma^t \delta \nabla \ln \pi(a|s, \theta)$, $w \leftarrow w + \alpha^w \cdot \delta \nabla \hat{V}(s, w)$
 • $s \leftarrow s'$

actor (policy update)

same as REINFORCE, except:
• we use $\hat{V}(s, w)$ as baseline
• r is used instead of R_t (TD instead of MC)

TD model-free policy + value

TD: update after each step
POMDP Case

• POMDPs – belief states instead of dialogue states
 • probability distribution over states
 • can be viewed as MDPs with continuous-space states

• All MDP algorithms work...
 • if we quantize/discretize the states
 • use grid points & nearest neighbour approaches
 • this might introduce errors / make computation complex

• REINFORCE/policy gradients work out of the box
 • function approximation approach, allows continuous states

Grey = observed
White = unobserved

(from Milica Gašić’s slides)

https://en.wikipedia.org/wiki/Voronoi_diagram
Summary Space

- for a typical DS, the belief state is too large to make RL tractable
- solution: map state into a reduced space, optimize there, map back
- reduced space = summary space
 - handcrafted state features
 - e.g. top slots, # found, slots confirmed…
- reduced action set = summary actions
 - e.g. just DA types (inform, confirm, reject)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions
- state is still tracked in original space
 - we still need the complete information for accurate updates

(from Milica Gašić's slides)
Simulated Users

• We can’t really learn just from static datasets
 • on-policy algorithms don’t work
 • data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
 • 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
 • basically another DS/DM
 • (typically) working on DA level
 • errors injected to simulate ASR/NLU

• approaches:
 • rule-based (frames/agenda)
 • n-grams
 • MLE policy from data

(from Milica Gašić’s slides)
Summary

• Action selection – deciding what to do next

• Approaches
 • Finite-state machines (system-initiative)
 • Frames (VoiceXML)
 • Rule-based
 • Machine learning (RL better than supervised)

• RL – in a POMDP scenario (can be approximated by MDP)
 • optimizing value function or policy
 • learning on-policy or off-policy
 • learning with or without a model
 • using summary space
 • training with a user simulator
Thanks

Contact us:
 odusek@ufal.mff.cuni.cz
 hudecek@ufal.mff.cuni.cz
 Slack

Get these slides here:
 http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Barnabás Póczos’s slides (Carnegie-Mellon University): https://www.cs.cmu.edu/~mgormley/courses/10601-s17/