7. Neural NLU & Dialogue State Tracking

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123

31. 3. 2020
Neural networks

• Can be used for both classification & sequence models

• **Non-linear functions**, composed of basic building blocks
 • stacked into **layers**

• Layers are built of **activation functions**:
 • linear functions
 • nonlinearities – sigmoid, tanh, ReLU
 • softmax – probability estimates:
 $$\text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^{\mid x \mid} \exp(x_j)}$$

• Fully differentiable – training by gradient descent
 • gradients **backpropagated** from outputs to all parameters
 • (composite function differentiation)

Sigmoid
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

tanh
$$\tanh(x)$$

ReLU
$$\max(0, x)$$

https://medium.com/@shrutija_don10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Neural networks – features

• You can use same ones as for LR/SVM…
 • but it’s a lot of work to code them in

• **Word embeddings**
 • let the network learn features by itself
 • input is just words (vocabulary is numbered)
 • top ~50k words + <unk>, or subwords
 • distributed word representation
 • each word = **vector of floats** (~50-2000 dims.)
 • part of network parameters – trained
 a) random initialization
 b) pretraining
 • the network learns which words are used similarly
 • they end up having close embedding values
 • different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
 • ~ the same layer is applied multiple times, taking its own outputs as input
 • ~ same number of layers as there are tokens
 • output = hidden state – fed to the next step
 • additional input – next token features

• Cell types
 • **basic RNN**: linear + tanh
 • problem: vanishing gradients
 • can’t hold long recurrences
 • **GRU, LSTM**: more complex, to make backpropagation work better
 • “gates” to keep old values

[Diagram of basic RNN cell, GRU cell, and LSTM cell]
Encoder-Decoder Networks

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells over vectors of ~ embedding size
- MT, dialogue, parsing...
 - more complex structures linearized to sequences

$h_0 = 0$
$h_t = \text{cell}(x_t, h_{t-1})$
$s_0 = h_T$
$p(y_t | y_1, ... y_{t-1}, x) = \text{softmax}(s_t)$
$s_t = \text{cell}(y_{t-1}, s_{t-1})$
Attention Models

- Encoder-decoder too crude for complex sequences
 - the whole input crammed into a fixed-size vector (last hidden state)
- **Attention** = “memory” of **all** encoder hidden states
 - weighted combination
 - re-weighted every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer

\[
\alpha_{ti} = \text{softmax}(v_\alpha \cdot \text{tanh}(W_\alpha \cdot s_{t-1} + U_\alpha \cdot h_i))
\]

Attention value = context vector
\(t = \text{decoder step} \)
\(1 \ldots n = \text{encoder steps} \)

attention weights = alignment model
\[
c_t = \sum_{i=1}^{n} \alpha_{ti} h_i
\]

Self-attention – over previous decoder steps

NPFL123 L7 2020

https://skymind.ai/wiki/attention-mechanism-memory-network
Neural NLU

- Various architectures possible
 - Classification
 - feed-forward NN
 - RNN + attention weight \rightarrow softmax
 - convolutional networks
 - Sequence tagging
 - RNN (LSTM/GRU) \rightarrow softmax over hidden states
 - default version: label bias (like MEMM)
 - CRF over the RNN possible
 - Still treats intent + slots independently

(Raffel & Ellis, 2016)

NN NLU – Joint Intent & Slots

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

• Same network for both tasks

• **Bidirectional encoder**
 • 2 encoders: left-to-right, right-to-left
 • concatenate hidden states
 • “see the whole sentence before you start tagging”

• Decoder – tag word-by-word, inputs:
 a) attention
 b) input encoder hidden states (“aligned inputs”)
 c) both

• Intent classification: softmax over last encoder state
 • + specific intent context vector (attention)
NN NLU – Joint Intent & Slots

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

• Extended version: use slot tagging in intent classification
 • Bidi encoder
 • Slots decoder with encoder states & attention
 • Intent decoder – attention over slots decoder states

• Works slightly better
Dialogue State Tracking

• Dialogue management consist of:
 • **State update** ← here we need DST
 • Action selection (later)

• **Dialogue State** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.
Dialogue State Contents

• “All that is used when the system decides what to say next”
• User goal/preferences ~ NLU output
 • slots & values provided (search constraints)
 • information requested
• Past system actions
 • information provided
 • slots and values
 • list of venues offered
 • slots confirmed
 • slots requested
• Other semantic context
 • user/system utterance: bye, thank you, repeat, restart etc.

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?
S: OK, Chinese food. […]
S: What time would you like to leave?
Ontology

• To describe possible states
• Defines all concepts in the system
 • List of slots
 • Possible range of values per slot
 • Possible actions per slot
 • requestable, informable etc.
• Dependencies
 • some concepts only applicable for some values of parent concepts

food_type – only for type=restaurant
has_parking – only for type=hotel

“if entity=venue, then…”

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

some slot names may need disambiguation
(venue type vs. landmark type)

(Young, 2009)
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
Belief State

• Assume we don’t know the true dialogue state
 • but we can estimate a probability distribution over all possible states
 • In practice: per-slot distributions

• More robust
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies
 • but not only them – rule-based, too
Belief State

1. I'm looking for a Thai restaurant.
 - hello(type=restaurant) 0.6
 - inform(type=restaurant, food=Thai) 0.4

2. Thai.
 - hello() 0.5
 - inform(food=Turkish) 0.3
 - inform(food=Thai) 0.2

- No probability accumulation (1-best, no state)
- Accumulating over NLU n-best list (still no state)
- Accumulating over NLU n-best + turns

This is what we need (=belief state)

(from Milica Gašić's slides)
Dialogue as a Markov Decision Process

- MDP = probabilistic control process
 - model – Dynamic Bayesian Network
 - random variables & dependencies in a graph/network
 - “dynamic” = structure repeats over each time step t
 - s_t – dialogue states = what the user wants
 - a_t – actions = what the system says
 - r_t – rewards = measure of quality
 - typically slightly negative for each turn, high positive for successful finish
 - $p(s_{t+1}|s_t, a_t)$ – transition probabilities
- Markov property – state defines everything
- Problem: we’re not sure about the dialogue state

(from Milica Gašić’s slides)
Partially Observable (PO)MDP

- Dialogue states are **not observable**
 - modelled probabilistically – belief state $b(s)$ is a prob. distribution over states
 - states (what the user wants) influence **observations** o_t (what the system hears)

- Still Markovian
 - $b'(s') = \frac{1}{Z} p(o|s') \sum_{s \in S} p(s'|s,a)b(s)$
 - $b(s)$ can be modelled by an HMM

\[b'(s') = \frac{1}{Z} p(o|s') \sum_{s \in S} p(s'|s,a)b(s) \]
Digression: Generative vs. Discriminative Models

What they learn:

- **Generative** – whole distribution $p(x, y)$
- **Discriminative** – just decision boundaries between classes $\sim p(y|x)$

To predict $p(y|x)$...

- **Generative models**
 1) Assume some functional form for $p(y), p(x|y)$
 2) Estimate parameters of $p(y), p(x|y)$ directly from training data
 3) Use Bayes rule to calculate $p(y|x)$

- **Discriminative models**
 1) Assume some functional form for $p(y|x)$
 2) Estimate parameters of $p(y|x)$ directly from training data
Generative vs. Discriminative Models

Example: elephants vs. dogs

- **Discriminative**:
 - establish decision boundary (~find distinctive features)
 - classification: just check on which side we are

- **Generative**
 - ~ 2 models – what elephants & dogs look like
 - classification: match against the two models

- Discriminative – typically better results
- Generative – might be more robust, more versatile
 - e.g. predicting the other way, actually generating likely \((x, y)’s\)

http://cs229.stanford.edu/notes/cs229-notes2.pdf
Naïve Generative Belief Tracking
(= Belief Monitoring)

• Using the HMM model
 • estimate the transition & observation probabilities from data

\[b(s) = \frac{1}{Z} p(o_t|s_t) \sum_{s_{t-1} \in S} p(s_t|a_{t-1}, s_{t-1}) b(s_{t-1}) \]

• Problem: too many states
 • e.g. 10 slots, 10 values each \(\rightarrow 10^{10} \) distinct states – intractable

• Solutions: pruning/beams, additional assumptions…
 • or different models altogether
Generative BT: Pruning/Beams

- Tricks to make the naïve model tractable:
 - only track/enumerate states supported by NLU
 - “other” = all equal, don’t even keep the rest in memory explicitly
 - just keep n most probable states (beam)
 - prune others & redistribute probability to similar states
 - merge similar states (e.g. same/similar slots, possibly different history)
 - along with probability mass

- Model parameters estimated from data
 - transition probabilities $p(s_{t+1}|s_t, a_t)$
 - observation probabilities $p(o_t|s_t)$
 - this is hard to do reliably, so they’re often set by hand
Generative BT: Pruning/Beams

hypotheses not supported by NLU are ignored

merging similar states (note they’re not the same)

pruning an unlikely state & redistributing probability to similar ones

(From Filip Jurčiček’s slides)
Generative BT:
Independence Assumptions

- **Partition the state** by assuming conditional independence
 - track parts of the state independently → reduce # of combinations
 - e.g. “each slot is independent”:
 - state $s = [s^1, ... s^N]$, belief $b(s_t) = \prod_i b(s^i_t)$
 - other partitions possible – speed/accuracy trade-off

- Per-slot updates:
 - $b(s^i_t) = \sum_{s_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})$
 $$= \sum_{s_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}) p(o^i_t | s^i_t) b(s^i_{t-1})$$

per-slot dependencies only

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Generative BT: Parameter Tying

• Further simplification: keep the partition + tie some parameters
 • you basically end up with 2 parameters only 😊

transition probabilities:

\[
p(s^i_t | a^i_{t-1}, s^i_{t-1}) = \begin{cases}
\theta_T & \text{if } s^i_t = s^i_{t-1} \\
\frac{1-\theta_T}{\text{#values}^{i-1}} & \text{otherwise}
\end{cases}
\]

\(\theta_T = \text{“rigidity” (bias for keeping previous values)},\)
otherwise all value changes have the same probability

observation probabilities:

\[
p(o^i_t | s^i_t) = \begin{cases}
\theta_0 p(o^i_t) & \text{if } o^i_t = s^i_t \\
\frac{1-\theta_0}{\text{#values}^{i-1}} p(o^i_t) & \text{otherwise}
\end{cases}
\]

\(\theta_0 \sim \text{confidence in NLU}\)
\(p(o^i_t) = \text{NLU output}\)
i.e. believe in value given by NLU with \(\theta_0\),
distribute rest of probability equally

(Žilka et al., 2013)
https://www.aclweb.org/anthology/W13-4070/
Basic Discriminative Belief Tracker

- Based on the previous model
 - same slot independence assumption
- Even simpler – “always trust the NLU”
 - this makes it parameter-free
 - …and kinda rule-based
 - but very fast, with reasonable performance

update rule:
\[
b(s_t^i) = \sum_{s_{t-1}^i, o_t^i} p(s_t^i|a_{t-1}^i, s_{t-1}^i, o_t^i) b(s_{t-1}^i)
\]
discriminative model

\[
\begin{align*}
 b(s_t^i) &= \begin{cases}
 s_t^i = \text{ ● } : & p(s_{t-1}^i = \text{ ○ }) p(o_t^i = \text{ ● }) \\
 s_t^i \neq \text{ ● } : & p(o_t^i = s_t^i) + p(o_t^i = \text{ ● }) p(s_t^i = s_{t-1}^i)
 \end{cases}
\end{align*}
\]

("user mentioned this value")

\[
p(s_t^i|a_{t-1}^i, s_{t-1}^i, o_t^i) = \begin{cases}
 p(o_t^i) & \text{if } s_t^i = o_t^i \land o_t^i \neq \text{ ○ } \\
 p(o_t^i) & \text{if } s_t^i = s_{t-1}^i \land o_t^i = \text{ ○ } \\
 0 & \text{otherwise}
\end{cases}
\]

("no change")

user silent about slot \(i \)
Discriminative Trackers

• Generative trackers – need many assumptions to be tractable
 • cannot exploit arbitrary features
 • … or they can, but not if we want to keep them tractable
 • often use handcrafted parameters
 • … may produce unreliable estimates [http://ieeexplore.ieee.org/document/6424197/]

• Discriminative trackers – can use any features from dialogue history
 • parameters estimated from data more easily

• General distinction
 • static models – encode whole history into features
 • sequence models – explicitly model dialogue as sequential
Static Discriminative Trackers

• Generally predict $p(s_t|o_1, a_1, \ldots, a_{t-1}, o_t)$
 • any kind of classifier (SVM, LR…)
 • need fixed feature vector from $o_1, a_1, \ldots, a_{t-1}, o_t$ (where t is arbitrary)
 • current turn, cumulative, sliding window
 • per-value features & tying weights– some values are too rare

• Global feature examples:
 (Metallinou et al., 2013) https://www.aclweb.org/anthology/P13-1046
 • NLU n-best size, entropy, lengths (current turn, cumulative)
 • ASR scores

• Per-value ν examples:
 • rank & score of hypo with ν on current NLU n-best + diff vs. top-scoring hypo
 • # times ν appeared so far, sum/average confidence of that
 • # negations/confirmations of ν so far
 • reliability of NLU predicting ν on held-out data
Sequence-Based Discriminative Trackers

- Dialogue as a sequence $p(s_1, \ldots, s_t | o_1, \ldots, o_t)$
- **CRF** models
 - similar features as previously – can be current-slot only (CRF will handle it)
 - feature value: NLU score for the given thing (e.g. DA type + slot + value)
 - target: per-slot BIO coding

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Goals</th>
<th>Food</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1 Hello, how may I help you?</td>
<td>Persian</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_2 What kind of food would you like?</td>
<td>Persian</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_3 I'm sorry but there is no restaurant serving Persian food</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_4 How about Portuguese food?</td>
<td>Portuguese</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_5 Peking restaurant is a nice place in the south of town.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_6 Is that Portuguese?</td>
<td>Portuguese</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_7 Nanidos is a nice place in the south of town serving tasty Portuguese food.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_8 Alright, what's the phone number?</td>
<td>Portuguese</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_9 The phone number of Nanidos is 0123327908.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_10 And the address?</td>
<td>Portuguese</td>
<td>South</td>
<td></td>
</tr>
<tr>
<td>S_11 Start, Nanidos is on Cambridge Leisure Park Clifton Way.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_12 Thank you good bye.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neural State Trackers

- discriminative, many architectures
- basic **static** example:
 - use a **feed-forward** as your classifier
 - input – features (w.r.t. slot-value v & time t)
 - SLU score of v
 - n-best rank of v
 - user & system act type
 - … – domain-independent, low-level NLU outputs
 - 3 tanh layers
 - output – softmax (= probability distribution over values)
 - static: sliding window
 - current time t
 - few steps back
 - \sum previous

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Dynamic Neural State Trackers

• Based on RNNs (turn-level or word-level)
• Typically not using NLU – directly ASR/words → belief
• Simple example: RNN over words + classification on hidden states
 • runs over the whole dialogue history (user utterances + system actions)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471
Summary

• Neural networks primer
 • embeddings
 • layers (sigmoid, tanh, ReLU)
 • recurrent networks (LSTM, GRU), attention

• NN SLU examples: classifier/sequence

• Dialogue state vs. belief state

• Dialogue as (Partially observable) Markov Decision Process

• Tracker examples:
 • Generative (partitioning, parameter tying)
 • Discriminative (basic “rule-based”, classifier, neural)
 • static vs. dynamic

• Next time: dialogue policies
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
Slack

Get these slides here:
http://ufal.cz(npfl123

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html