NFPL099 Statistical Dialogue Systems **10. Chatbots** (non-task-oriented)

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

8.12.2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Chatbots / Chatterbots

• dialogue systems for **open-domain** dialogue – **chitchat**

non-task-oriented

- main goal: keep the user entertained
- standard evaluation: conversation length, user engagement
- (more or less) different architecture
 - may have the same structure as task oriented (NLU \rightarrow DM \rightarrow NLG)
 - often simpler, integrated somewhat like end-to-end DS
 - it's hard to have explicit NLU for open domain
 - no task to guide a meaning formalism
 - some of them don't need a DB connection (but some use it)
- beware: *anything* can be called a "chatbot" nowadays
 - here: only chatterbots / non-task-oriented systems

3

Chatbot tests

• Turing test (1950)

- evaluator & 2 conversations, with a machine & human, text-only
- needs to tell which is which
- does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed
- Loebner Prize (1990+)
 - Turing test style, first topic-restricted 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt creates hype but no real progress
- Amazon Alexa Prize (2017+)
 - no pretending it's human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted ("on popular topics")
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of "would talk again"

Chatbot history

- natural communication important part of general AI
 - concerned people even before modern computers (cf. Turing)
- 1st chatbot: **Eliza** (1966)
 - rule-based, simulates a therapist
- Parry (1972)
 - similar, simulates a person with paranoid schizophrenia
 - was able to fool psychotherapists in a Turing test
- Not much progress until end of 1990's just better rules
 - research focused on task-oriented systems
- 1990's/2000's retrieval-based systems
- 2015+ huge surge of generative models

Notable/hyped chatbots

- **Pandorabots/AIML** framework for rule-based chatbots
 - A.L.I.C.E. bot basic implementation, ~better Eliza
 - people can reuse & add their own personality
 - Mitsuku (2013+) multiple times Loebner Prize winner
- Jabberwacky/Cleverbot (1997+)
 - attempts to learn from users
 - remembers & reuses past conversations (>100M)
 - also won Loebner Prize multiple times
- Xiaolce (2014+)
 - Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 - on social networks (mainly Weibo)
 - also learns from users & reuses user inputs
 - partly rule-based, focus on emotions
 - a lot of people bonding with "her"

https://home.pandorabots.com/home.html


```
https://www.cleverbot.com/
```


https://youtu.be/z3jqIGT-kmg

http://nautil.us/issue/33/attraction/your-next-new-best-friend-might-be-a-robot

https://www.zo.ai/

https://www.facebook.com/zo/

Chatbot basic architectures

Rule-based

- human-scripted, react to keywords/phrases in user input
- very time-consuming to make, but still popular
 - chitchat by conversational assistants is typically rule-based

Data-driven

- retrieval remember a corpus & get replies from there
 - "nearest neighbour" approaches
 - corpus can contain past conversations with users (Jaberwacky/XiaoIce)
 - chatbots differ in the sophistication of reply selection
- **generative** (typically) seq2seq-based models
 - trained typically on static corpora
 - (theoretically) able to handle unseen inputs, produce original replies
 - basic seq2seq architecture is weak (dull responses) → many extensions

Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. alike → what is the connection
 - fallbacks
 - I see. <next question>
 - Please go on
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user's phrasing
- it's all about the framing
 - it's easier to appear human as a therapist (or paranoid schizophrenic)

111-1		the second secon
_ WE I	come	TIC

EEEEE	LL	IIII	ZZZZZZZ	AA	AAA
EE	LL	II	ZZ	AA	AA
EEEEE	LL	II	ZZZ	AAA	АААА
EE	LL	II	22	AA	AA
EEEEEE	LLLLLL	IIII	ZZZZZZZ	AA	AA

Eliza is a mock Rogerian psychotherapist.

The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

ELIZA: Is something troubling you ? YOU: Men are all alike. ELIZA: What is the connection, do you suppose ? YOU: They're always bugging us about something or other. ELIZA: Can you think of a specific example ? YOU: Well, my boyfriend made me come here. ELIZA: Is it important to you that your boyfriend made you come here ? YOU: He says I'm depressed much of the time. ELIZA: I am sorry to hear that you are depressed. YOU: It's true. I am unhappy. ELIZA: Can you explain what made you unhappy ?

https://en.wikipedia.org/wiki/ELIZA

AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 🕤
- main concepts:
 - category basic unit of knowledge
 - groups patterns & templates
 - pattern user input pattern (with wildcards)
 - **set** lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - template response specification
 - allows multiple options
 - srai symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - variable can be set/retrieved in templates
 - e.g. remember user name

Retrieval-based chatbots

- remember a large corpus
 - 1) check for similar inputs in the corpus
 - 2) retrieve & rerank corresponding outputs
- needs 2 steps
 - 1) rough retrieval
 - needs to be fast to search the whole corpus (e.g. TF-IDF)
 - 2) more accurate reranking for candidates
 - most research focuses on this step
- problems:
 - can't produce unseen sentences
 - reply consistency isn't great
- solution (XiaoIce, Cleverbot):
 - use postprocessing, combine with rules

retrieve candidates (using simple matching)

Ranking responses

- Machine learning **learning to rank**
 - **pointwise**: binary classifier
 - good=1, bad=0, ranking score = P(good)
 - pairwise: just learn to rank good > bad
 - incur loss for inversions
 - architecture anything possible
 - typical neural: dual encoder / Siamese network
 - 2 RNNs, for context & response + fully connected
- training data problem:
 - datasets = positive examples only
 - but other responses might be good, too
 - need negative examples
 - manual annotation (expensive!)
 - random sampling (not very efficient)
 - smarter sampling (e.g., replies from "bad" dialogues where long = good & short = bad)

(Shalyminov et al., 2018) https://www.aclweb.org/anthology/W18-5701

Inspiration from Statistical MT

- Early generative approach convert to **phrase-based MT**
 - align phrases in inputs & responses
 - build phrase table
 - build responses by covering input
 - cover each phrase in input with likely response phrase
 - order & select phrases according to a language model (n-gram LM)
- it's harder than MT
 - possible responses are much more variable than possible translations
 - using more sensitive phrase building (occurrence correlation)
 - discouraging input repetition (← would be vanilla MT behaviour)
- works, but...
 - fluency is not ideal
 - limited context

U: i want to go to a bonfire right about now. S: that does sound fun bonfire i wan na go !
U: riding to the arc on my bike. Hopefully I won't melt into the pavement. S: good luck on your bike ride arc
11. Leastly leasts workships were dealer to the living works

U: I really hate watching movies in the living room. S: me too, what movies are you doing in room?

what				
time				
u				
get				
out				
?	•			
	 get	off	at	5

Source	Target
rt [retweet]	thanks for the
potter	harry
ice	cream
how are you	you ?
good	morning
chuck	norris
watching	movie
i miss	miss you too
are you	i'm
my birthday	happy birthday
wish me luck	good luck
how was	it was
miss you	i miss
swine	flu
i love you	love you too
how are	are you ?
did you	i did
jackson	michael
how are you	i 'm good
michael	mj

Using RNN LMs (still MT-inspired)

• Non-LSTM solution:

(Sordoni et al., 2015) https://www.aclweb.org/anthology/N15-1020

- a) Vanilla **RNN LM, force-decode** input, decode response
 - problem: conditioned too loosely
- b) LM with extra conditioning
 - encode input into a fixed vector (using bag-of-words + feed-forward)
 - inject it into each LM decode step
- more fluent than phrase-based, problems with long replies
 - long replies get less fluent & wander off-topic
- Vanilla **Seq2seq** model
 - encode input, decode response
 - sounds great, but... (→)

(Vinyals & Le, 2015) https://arxiv.org/abs/1506.05869

> U: who is skywalker ? S: he is a hero .

U: who is bill clinton ? S: he 's a billionaire . U: what is the purpose of life ? S: to serve the greater good .

C[S]: nothin much, and how's the book?! U: its good but i'm only like halfway through cuz i don't feel like

U: its good but i'm only like halfway through cuz i don't feel like reading. i'm so bored ... S: that's good! i have the book but i'm bored too.

C[S]: thanks. yeah i am good thanks! good, but angry! U: sorry you're angry, been there, i hope it dies down. S: i hope so too, i'm not angry!!

NPFL099 L10 2020

Seq2seq Chatbot Problems

generic/dull responses

- short, low-entropy, repetitive
- see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)

limited context

- encoding long contexts is slow & ineffective
- contexts are too sparse to learn much

inconsistency

- ask the same question twice, get two different answers
- no notion of own personality

U: How old are you? S: 16 and you? U: What's your age? S: 18. U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?

Consistency/Personality

Persona embeddings

- improve consistency
- train speaker embeddings
 - this is a little data-picky
- use speaker + word embeddings in the decoder
 - can also be used in the encoder

Persona copy-net

- using a hierarchical pointer-generator net
- context includes short personal bio

(Yavuz et al., 2019) https://www.aclweb.org/anthology/W19-5917/

Diversity/Coherence

• Reranking: MMI

(Li et al., 2016) https://www.aclweb.org/anthology/N16-1014

Input: what is your name?)
-0.91 I don't know.	
-0.92 I don't know!	-1.55 My name is Robert.
-0.92 I don't know, sir.	-1.58 My name is John.
-0.97 Oh, my god!	-1.59 My name's John.

 $MI = \log \frac{1}{7}$

P(R, L)

- avoid dull replies that work anywhere
- instead of maximizing P(Resp|Context), maximize mutual information
 - actually can be rewritten as a trade-off between P(R|C) and P(C|R)
- can't train it easily, so train normally & rerank beams afterwards
- Longer context: HRED (Hierarchical Recurrent Encoder-Decoder)
 - 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input

Diversity

- joining seq2seq (next turn generation)
 & autoencoding
 - multi-task learning
 - shared decoder
 - additional "fusion loss" enforcing the same encoding for both tasks
- Inference: adding a little noise to produce different outputs

added noise

Coherence

CVAE with a coherence measure

- GLoVe average embedding cosine similarity
- training data: coherence of target response known
 - also good for data filtering
- inference: set coherence very high: 0.95/1.0

• GAN-style for consistent order

- detect if three turns are consecutive or not
 - given 1 ordered, 1 misordered triple from previous dialogue history
- use in dialogue generation learning: good replies are easy to check for order
 - see if misorder is easy to detect with a generated reply

Coherence: Additional Objectives

- Transformer-based architectures
- **Denoising** (autoencoder): additional decoders
 - recovering shuffled word order
 - recovering masked words
 - recovering masked utterance (mid-dialogue)
 - recovering utterance order (GRU decoding order)
- Unlikelihood demoting unlikely tokens
 - penalize set of tokens selected at each time step

• penalize set of tokens selected at each time step scale of penalization

$$\mathcal{L}_{UL}^{(i)}(p_{\theta}, \mathcal{C}_{1:T}, \mathbf{x}, \mathbf{y}) = -\sum_{t=1}^{T} \sum_{y_c \in \mathcal{C}_t} \beta(y_c) \log(1 - p_{\theta}(y_c | \mathbf{x}, y_{< t})) = 0 \quad \text{for } p_{\theta} = 0$$
summing over steps(=all words of output) tokens to be penalized

(Zhao et al., 2020)

- added to regular MLE loss
- penalized: repeating n-grams, too much high-freq. vocab, contradictions

(Li et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.428

Pretrained Language Models

- TransferTransfo GPT-like
 - pretrained on books, finetuned on PersonaChat
 - person embeddings (+training with swapped)
 - next-word prediction, next-utterance classification
- **DialoGPT** just GPT-2 finetuned on Reddit
 - 147M dialogues
 - no hierarchy, whole chat as a long text next-word prediction
 - (optional) MMI reranking
 - works better than seq2seq-based ones

• Meena

- "Evolved Transformer" architecture (Transformer + small changes automatically tuned)
- encoder-decoder, huge, trained on 867M dialogues (next-word prediction)
- rule-based postprocessing
- evaluation: "making sense" & "being specific" better on both

(Wolf et al., 2018) https://arxiv.org/abs/1901.08149

(Zhang et al., 2020) https://www.aclweb.org/anthology/2020.acl-demos.30

> (Adiwardana et al., 2020) https://arxiv.org/abs/2001.09977

Hybrid / Ensemble Chatbots (a.k.a. most Alexa Prize Entries)

- State-of-the-art today: combining all methods
 - rule-based for sensitive/frequent/important questions
 - retrieval for jokes, trivia etc.
 - task-oriented-like systems for specific topics (handcrafted/specially trained)
 - news, weather etc.
 - seq2seq only as a backoff or not at all
- NLU is typically shared, with advanced NLP pipelines
 - NER is very important can get relevant news & trivia
- Decision among bots
 - based on NLU topic detection
 - ranking multiple answers
 - profanity detection censoring outputs

Alana (Heriot-Watt University, 2017 & 2018 3rd)

- Bots:
 - Rule-based chit-chat
 - Ontologies knowledge graph walk

User

- movies, music, sports, books
- Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
- Specific services
- Bots compete for reply
 - priority list
 - bots can "lock"

http://arxiv.org/abs/1712.07558

http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alana.pdf

Alana Example dialogue

coherence: stay on topic & ask further questions

- Coherence bot Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?
 - **User:** Vanilla Sky -> I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

Ontologies bot Alana: Oh I heard something interesting about Vanilla Sky. [... Movie trivia] Speaking of movies. What actors do you like? I like Leonardo DiCaprio [...]

User: Interesting

- **Alana:** I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]
- **User:** I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...] **User:** Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What's a band that you would like to see? [...]

any news about him -> any news about Kendrick Lamar [Coreference resolution] User:

Alana Example dialogue

U

User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia] User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.

Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
 - tracking user sentiment
 - change topic if user doesn't like the current one
 - attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
 - explaining itself conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

http://arxiv.org/abs/1804.10202

https://s3.amazonaws.com/alexaprize/2017/technical-article/soundingboard.pdf https://sounding-board.github.io/

Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction KB fuzzy matching (allow for "typos")
 - sentence segmentation (RNN-based)
- NLU keyphrase extraction
 - focus on noun phrases
- Dialog manager stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel...

Alquist (Czech Technical University, 2017&2018 2nd)

- full NLU pipeline (similar to Alana)
- 2017 handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

http://alexaprize.s3.amazonaws.com/2017/technical-article/alquist.pdf

http://dex-microsites-prod.s3.amazonaws.com/alexaprize/2018/papers/Alquist.pdf https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f

http://alquistai.com/

NPFL099 L10 2020

Alquist (Czech Technical University, 2019/20 3rd)

- Knowledge graph: Wikidata + User + Bot model
 - RDF triples, partially delexicalized
 - allows building user profile + referencing it
- NLU segmenting (multiple intents)
 - BERT-based segmenting
 - actions per segment = intent-properties-entities
 - produce responses to all, then select
- DM/NLG response based on "adjacency pairs"
 - predefined input-response pairs/sub-graphs
 - transition depends on KG search
 - delexicalized lexicalized subsequently
 - adding prompts (questions, fun facts etc.)

(Pichl et al., 2020) <u>https://arxiv.org/abs/2011.03261</u>

Emora (Emory Uni, 2019/20 1st) & Chirpy Cardinal (Stanford, 2019/20 2nd)

- Emora (Finch et al., 2020) <u>https://arxiv.org/abs/2009.04617</u>
 - NLU prominent topic & sentiment classifier
 - stress on emotion, personal experience
 - hierarchical ontology of topics & sub-topics
 - use higher level if more specific is not available
 - state machine manager
 - transitions similar to Alquist
- Chirpy Cardinal (Paranjape et al., 2020) <u>https://arxiv.org/abs/2008.12348</u>
 - architecture similar to Alana
 - multiple response generators
 - treelet-based handcrafted dialogues
 - GPT-2-based chatbot
 - adding prompts to replies, same as Alquist 3
 - specific "navigational" intents
 - meta-dialogue: discussing what topic to talk about

Alexa Prize bottom line

- understanding is the bottleneck
 - ASR problems chat-specific ASR improved things, but it's by far not perfect
 - vague concept of dialogue state, despite full NLP pipelines
 - result: typically very crude intents + list of named entities
 - recognizing multiple/fine-grained intents is a problem
- it's still more about social engineering than "AI"
 - a lot of strategies for not-understanding (switching topics, questions...)
- machine learning helps, but pure ML is not enough
 - lack of annotated data \rightarrow often relatively simple methods
 - ML helps mainly in NLU, end-to-end seq2seq doesn't work
- interesting content is crucial
 - the more handcrafted topics, the better
 - fluent NLG not so much (but prosody helps!)
- brutal variance in the evaluation very subjective

Summary

- chatbots = non-task oriented systems
 - targets: conversation length & user engagement
 - impersonating a human Turing test
- approaches:
 - **rule-based** keyword spotting, scripting
 - **retrieval** copy & paste from large databases
 - **generative** seq2seq/transformer trained on corpora of dialogues
 - too many possible responses don't go well with MLE \rightarrow safe, short, dull
 - many extensions: personality, coherence, diversity... still not ideal
 - hybrid combining all of the above
 - typically mainly rule-based + retrieval, machine learning in NLU only
- open-domain NLU is still an unsolved problem
 - despite that, many people enjoy conversations with chatbots
 - interesting content is crucial

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Mainly individual papers referenced directly on slides
- Ram et al. (2018): Conversational AI: The Science Behind the Alexa Prize https://arxiv.org/abs/1801.03604
- Khatri et al. (2018): Advancing the State of the Art in Open Domain Dialog Systems through the Alexa Prize <u>https://arxiv.org/abs/1812.10757</u>
- Shum et al. (2018): From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots <u>https://link.springer.com/article/10.1631/FITEE.1700826</u>
- Vlahos (2018): Inside the Alexa Prize <u>https://www.wired.com/story/inside-amazon-alexa-prize/</u>
- Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner Prize Mitsuku PARRY Turing test Xiaoice Zo (bot)

No labs today Project questions?