# NPFL099 Statistical Dialogue Systems 9. End-to-end Systems

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

1.12.2020



Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



### **End-to-end dialogue systems**

#### End-to-end = represent the whole system as one neural net

- sometimes, just some of the components can be joined
  - e.g. just NLU + tracker + policy, NLG excluded
- Pros & cons:
  - Traditional architecture separate components:
    - more flexible (replace one, keep the rest)
    - error accumulation
    - improved components don't mean improved system
    - possibly joint optimization by RL
  - End-to-end:
    - joint optimization by backprop
      - if fully differentiable
    - still can work via RL (with supervised initialization)
    - architectures still decompose into (some of) original DS components
      - and often still need DA-level annotation

### **Training end-to-end systems**

- Supervised
  - sometimes components still trained separately
    - e.g. hard knowledge base lookup
  - sometimes all in one
  - can't learn from users
  - problems with train-test mismatch
- RL
  - can learn from users, can learn all-in-one
  - doesn't work great if done on word-level
    - RL doesn't care about fluency/naturalness
    - either avoid word-level, or mix with supervised

| Alice : book=(count:3 value:1) hat=(count:2 value:1) ball=(count:1 value:5)<br>Bob : book=(count:3 value:0) hat=(count:2 value:0) ball=(count:1 value:10) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                           |
| Bob : i can i i everything else                                                                                                                           |
| Alice : balls have zero to me to                                                                                |
| Bob : you i everything else                                                                                                                               |
| Alice : balls have a ball to me                                                                                       |
| Bob : i i can i i i everything else                                                                                                                       |
| Alice : balls have a ball to me                                                                                       |
| Вор : і                                                                                                                                                   |
| Alice : balls have zero to me to                                                                                |
| Bob : you i i i i i everything else                                                                                                                       |
| Alice : balls have 0 to me to                                                                                   |
| Bob : you i i i everything else                                                                                                                           |
| Alice : balls have zero to me to                                                                                |

https://towardsdatascience.com/the-truth-behindfacebook-ai-inventing-a-new-language-37c5d680e5a7

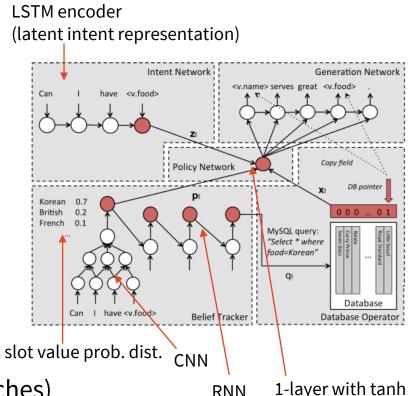
| 😵 INDEPENDENT                     | SUBSCRIBE NOW                           | LOGIN       | Q   | ≡       |
|-----------------------------------|-----------------------------------------|-------------|-----|---------|
|                                   |                                         |             |     |         |
| 5 NR                              |                                         |             | •   | -0:00 [ |
|                                   | K'S ARTIFIC                             |             |     |         |
| INTELLIGENCE R                    | OBOTS SH                                | UT D        | OW  | Ν       |
| AFTER THEY STA                    | RT TALKING                              | G TO        | EAC | Η       |
| OTHER IN THEI                     | R OWN LAN                               | IGUA        | GE  |         |
| 'you i i                          | i everything else'                      |             |     |         |
| Andrew Griffin   @_andrew_griffin | Monday 31 July 2017 17:10   ;<br>f) 💟 🖾 | 38 comments | ;   |         |

Facebook abandoned an experiment after two artificially intelligent programs appeared to be chatting to each other in a strange language only they understood.

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebookartificial-intelligence-ai-chatbot-new-language-research-openai-googlea7869706.html

## **Supervised with component nets**

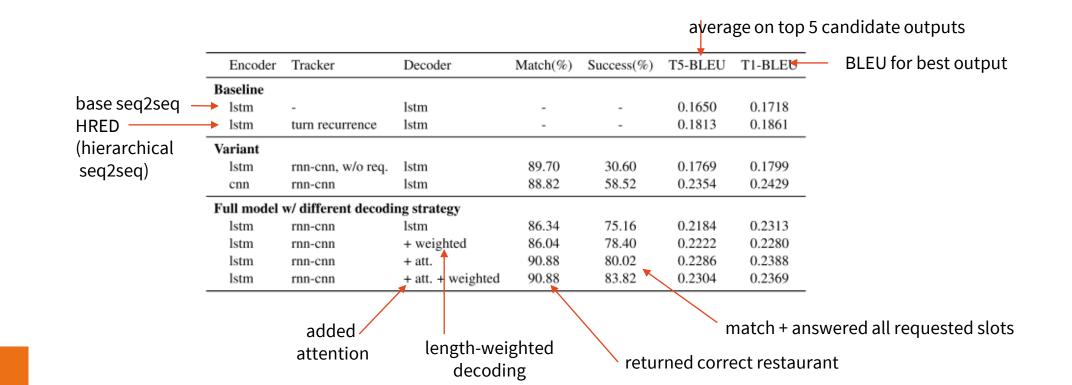
- "seq2seq augmented with history (tracker) & DB"
- end-to-end, but has components
  - LSTM "intent network"/encoder (latent intents)
  - CNN+RNN **belief tracker** (prob. dist. over slot values)
    - lexicalized + delexicalized CNN features
    - turn-level RNN (output is used in next turn hidden state)
  - MLP **policy** (feed-forward)
  - LSTM generator
    - conditioned on policy output, delexicalized
  - **DB**: rule-based, takes most probable belief values
    - creates boolean vector of selected items
    - vector compressed to 6-bin 1-hot (no match, 1 match... >5 matches) on input to policy
    - 1 matching item selected at random & kept for lexicalization after generation



RNN

### **Supervised with component nets**

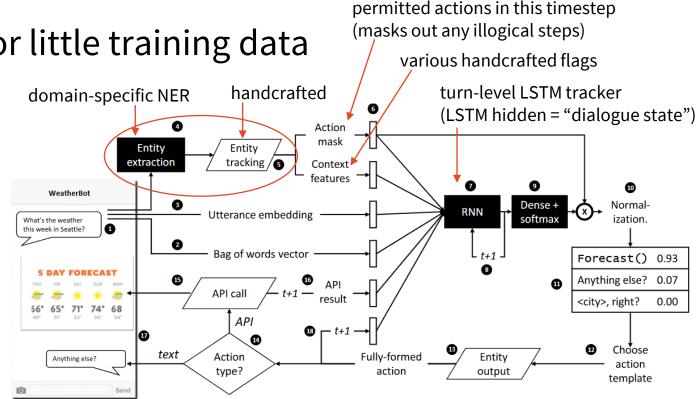
- belief tracker trained separately
- rest trained by cross-entropy on generator outputs
- data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
  - workers take turns to be user & system, always just add 1 turn



# **Hybrid Code Networks**

(Williams et al., 2017) http://arxiv.org/abs/1702.03274

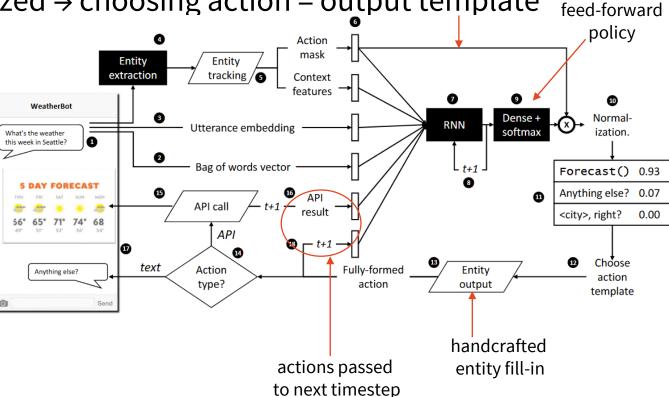
- partially handcrafted, designed for little training data
  - with Alexa-type assistants in mind
- Utterance representations:
  - bag-of-words binary vector
  - average of word embeddings
- Entity extraction & tracking
  - domain-specific NER
  - handcrafted tracking
  - returns action mask



- permitted actions in this step (e.g. can't place a phone call if we don't know who to call yet)
- return (optional) handcrafted **context features** (various flags)
- LSTM state tracker (output retained for next turn)
  - i.e. no explicit state tracking, doesn't need state tracking annotation

## **Hybrid Code Networks**

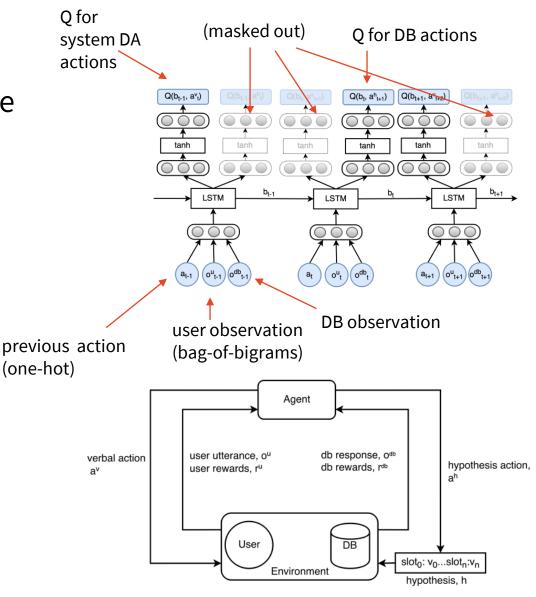
- feed-forward policy produces probability distribution over actions
  - mask applied to outputs & renormalized → choosing action = output template
- handcrafted fill-in for entities
  - takes features from ent. extraction
  - ~learned part is fully delexicalized
- actions may trigger API calls
  - APIs can return feats for next step
- training supervised & RL:
  - SL: beats a rule-based system with just 30 training dialogues
  - RL: REINFORCE with baseline
  - RL & SL can be interleaved
- extensions: better input than binary & averaged embeddings



(Shalyminov & Lee, 2018) <u>https://arxiv.org/abs/1811.12148</u> (Marek, 2019) <u>http://arxiv.org/abs/1907.12162</u>

### **Reinforcement Learning: Recurrent Q-Networks**

- NLU + state tracking + DM
  - NLG still kept separate
  - actions are either system DAs or updates to state (DB hypothesis)
  - forced to alternate action types by masking
  - rewards from DB for narrowing down selection
- Models a Q-network as a LSTM
  - or rather LSTM underlying multiple MLPs
    - LSTM maintains internal state representation
  - 1 MLP for system DAs
  - 1 MLP per slot (action=select value X)



(Zhao & Eskenazi, 2016) <u>http://arxiv.org/abs/1606.02560</u>

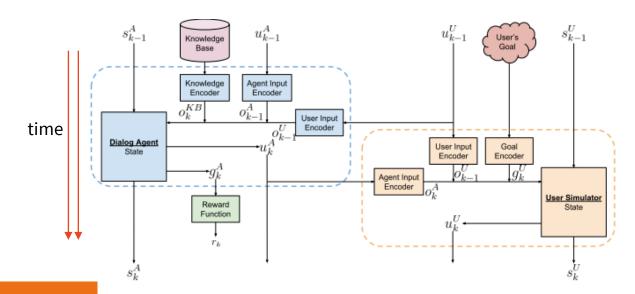
### **Dual RL optimization: agent & user simulator**

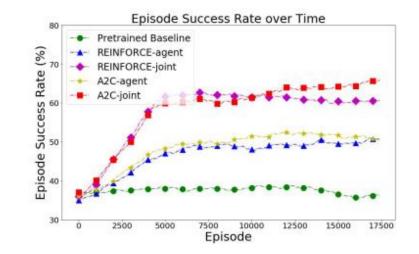
- end-to-end agent & end-to-end simulator
  - pretrains both with supervised & tunes with RL against each other



### **Dual RL optimization: agent & user simulator**

- incremental rewards based on % of completed user goal
  - used by both agent & system
- REINFORCE/Advantage Actor-Critic
- iteratively training agent & user simulator
  - fixing one and training the other for 100 dialogues, then swapping
- joint RL training is better than training just the agent

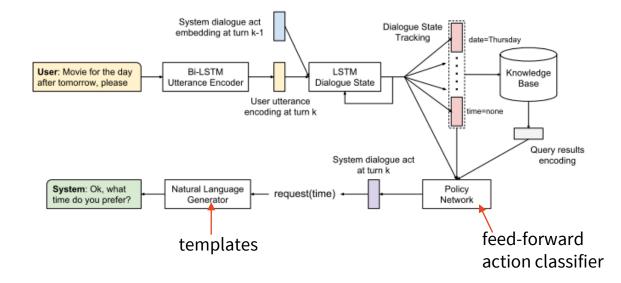


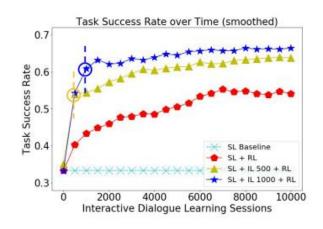


(Liu & Lane, 2017) http://arxiv.org/abs/1709.06136

# **Imitation Learning from Expert Users**

- system very similar to previous
  - but only optimizing the system
  - with humans, or simulator
- supervised pretraining
- 2nd step: hybrid SL/RL: imitation learning with expert users
  - if the system makes a mistake, user provides correct action & fixed belief
    - needs expert users, laborious or a good simulator
    - data collected in this way can be used further SL rounds
  - more guidance than RL, but system learns from its own policy
    - no mismatch between training data & policy used by system
- finally: RL with normal user feedback
  - success 0/1 at the end of the dialogue

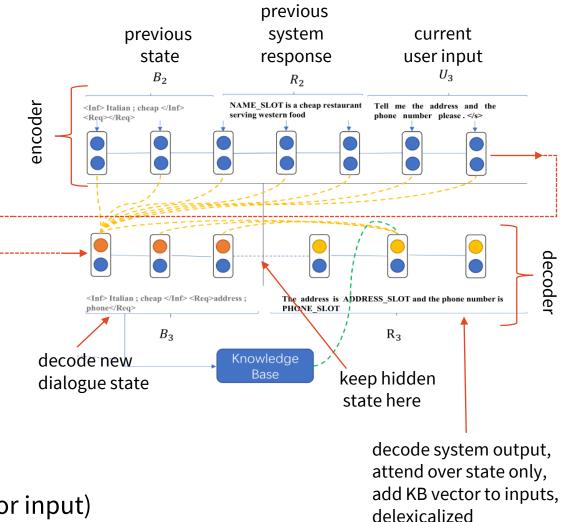




NPFL099 L9 2020

# Sequicity: Fully seq2seq-based model

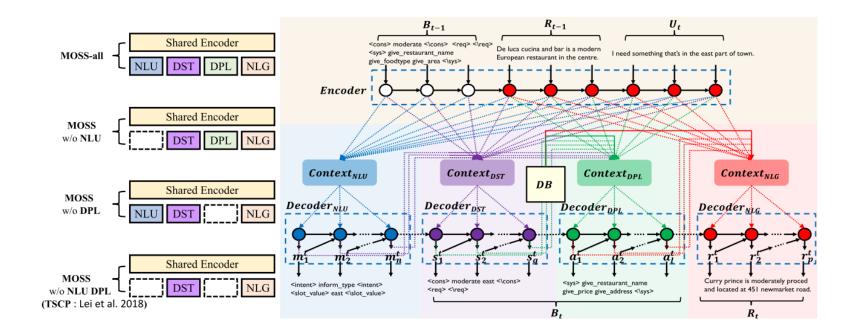
- less hierarchy, simpler architecture
  - no explicit system action direct to words
  - still explicit dialogue state
  - KB is external (as in most systems)
- seq2seq + copy (pointer-generator):
  - encode: previous dialogue state
    + prev. system response
    + current user input
  - decode new state first
    - attend over whole encoder
  - decode system output (delexicalized)
    - attend over state only
      - + use KB (one-hot vector added to each generator input)
        - KB: 0/1/more results vector of length 3



# **Sequicity: training + more supervision**

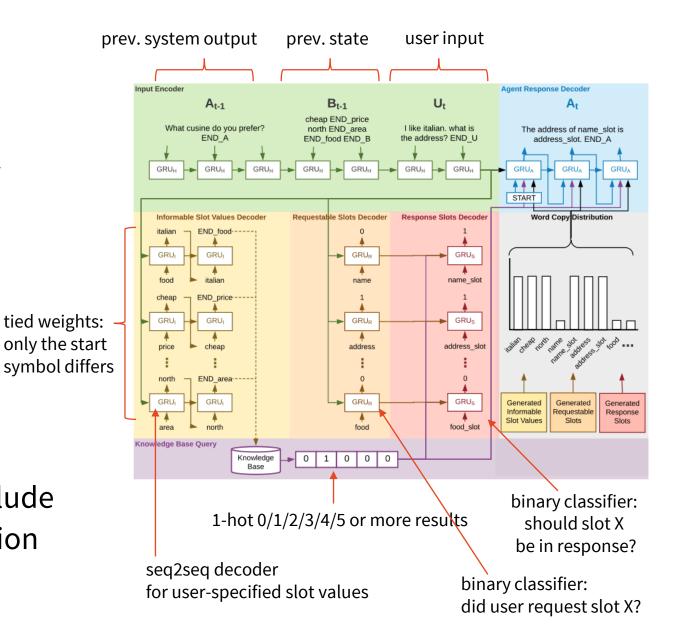
(Lei et al., 2018)https://www.aclweb.org/anthology/P18-1133(Liang et al., 2019)http://arxiv.org/abs/1909.05528

- training: supervised word-level cross-entropy
- RL fine-tuning with turn-level rewards
  - prime the system to decode user-requested slot placeholders
- variant more supervision
  - use the same approach to decode explicit NLU output & system action



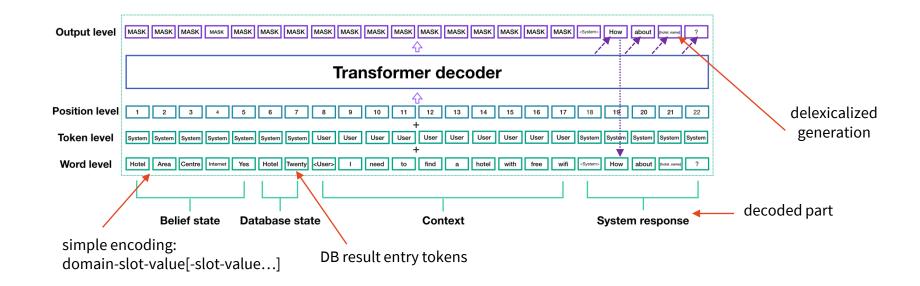
### **Sequicity + explicit state**

- the same context encoder as Sequicity
- state decoder:
  - individual slots decoded separately
    - prevents decoding invalid states
  - the same decoder run for each slot
  - informable:
    - decode values, seq2seq way
  - requestable:
    - classify 0/1 if user requested
- response generation:
  - 1st step classify which slots to include
  - then seq2seq delexicalized generation



### "Hello, it's GPT-2 – How can I help?"

- Simple adaptation of the GPT pretrained LM
  - system/user embeddings
    - added to Transformer positional embs. & word embs.
  - training to generate as well as classify utterances (good vs. random)
    - all supervised
- Again, no DB & belief tracking
  - using gold-standard belief & DB, no way of updating belief

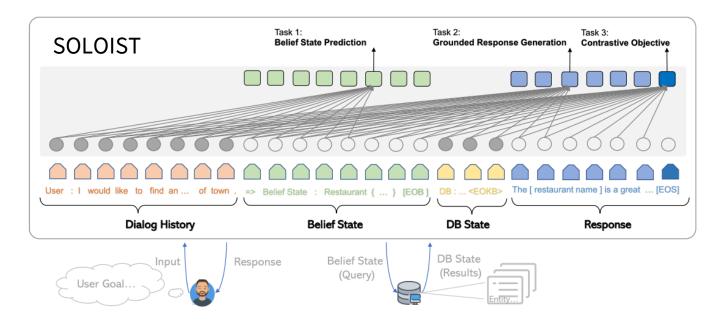


### Real stuff with GPT-2: SOLOIST, SimpleTOD, NeuralPipeline

• basically Sequicity over GPT-2

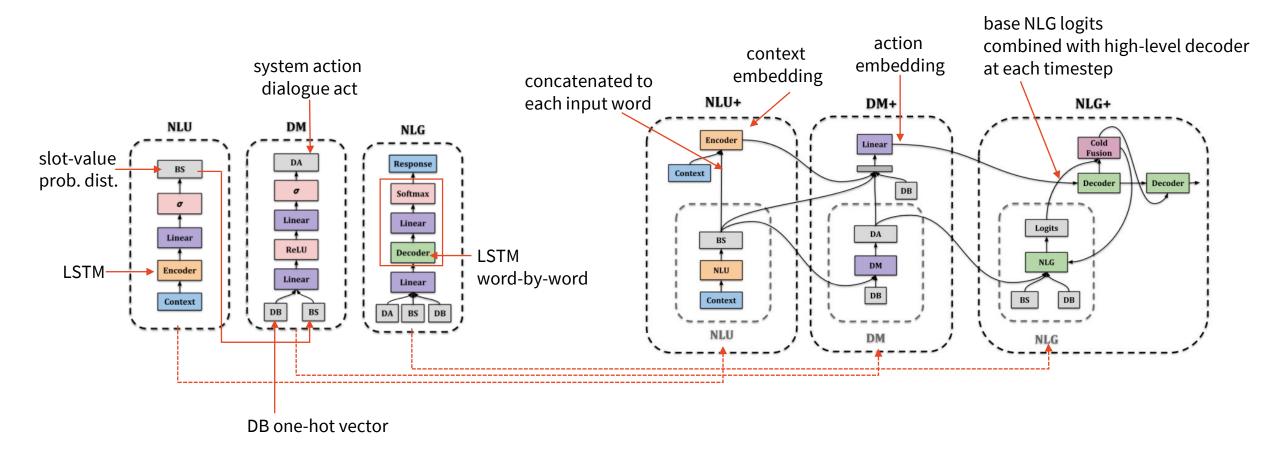
(Peng et al., 2020) (Hosseini-Asl et al., 2020) (Ham et al., 2020) <u>http://arxiv.org/abs/2005.05298</u> <u>http://arxiv.org/abs/2005.00796</u> <u>https://www.aclweb.org/anthology/2020.acl-main.54</u>

- history, state, DB results/system action all recast as sequence
- finetuning on dialogue datasets
- small differences/extensions
  - specific user/system embeddings (NP)
  - additional training (SOLOIST)
    - not just word-level generation (as GPT-2 default)
    - contrastive objective: detecting fake belief/fake response from real ones
  - explicit system actions (SimpleTOD)
    - one more decoding step



### Structured Fusion Nets: End-to-end on top of individual modules

- 1st step: optimize separate NLU/DM/NLG modules
- 2nd step: optimize end-to-end network over the outputs of modules



### **Structured Fusion Nets**

only

with

high-level

structure

- high-level module on top of NLU/DM/NLG modules works better than just joining, even with joint optimization
- modules can be fine-tuned (end-to-end differentiable)
  - this helps in either case (with modules only or high-level network)
  - multi-task learning doesn't help more (alternating fine-tuning with module-specific tasks)
- RL: only high-level
  - this way the base generator maintains fluency
  - BLEU OK & success much higher

BLEU Model Inform Success Supervised Learning Seq2Seq (Budzianowski et al., 2018) 18.80 71.29% 60.29% 18.90 Seq2Seq w/ Attention (Budzianowski et al., 2018) 71.33% 60.96% 20.78 61.40% Seq2Seq (Ours) 54.50% Seq2Seq w/ Attention (ours) 20.36 66.50% 59.50% Naïve Fusion (Zero-Shot) 7.55 70.30% 36.10% Naïve Fusion (Fine-tuned Modules) 66.50% 59.50% 16.39 Multitasking 17.51 71.50% 57.30% Structured Fusion (Frozen Modules) 17.53 51.30% 65.80% 77.30% Structured Fusion (Fine-tuned Modules) 18.51 64.30% 16.70 Structured Fusion (Multitasked Modules) 80.40% 63.60% Reinforcement Learning Structured Fusion (Frozen Modules) + RL 16.34 82.70% 72.10%

% dialogues where system also provided all requested slots

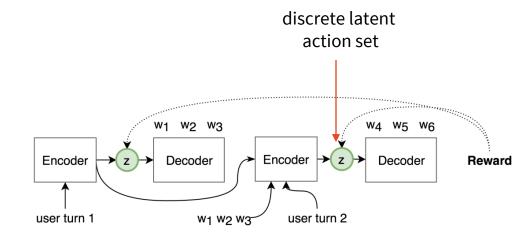
% dialogues where

appropriate entity

was provided

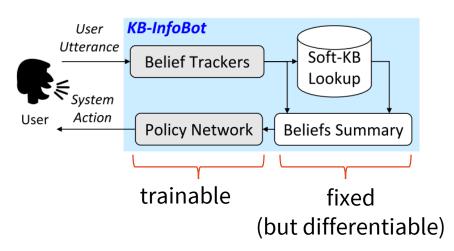
Latent Action RL (Zhao et al., 2019) https://www.aclweb.org/anthology/N19-1123

- Making system actions latent, learning them implicitly
- Like a VAE, but **discrete latent space** here (*M k*-way variables)
  - using Gumbel-Softmax trick for backpropagation
  - using Full ELBO (KL vs. prior network) or "Lite ELBO" (KL vs. uniform 1/k)
- RL over latent actions, not words
  - avoids producing disfluent language
  - "fake RL" based on supervised data
    - generate outputs, but use original contexts from a dialogue from training data
    - success & RL updates based on generated responses
  - on par with Structured Fusion Nets (slightly higher success, lower BLEU)
- again, ignores DB & belief tracking



### **Soft DB Lookups**

- incorporating NLU/tracker uncertainty into DB results
- making the system fully differentiable
  - but less interpretable
- DB output = distribution over all items
  - plain MLE estimation:  $p(row i) = \prod_{slots} \vec{j} |_{1/\# rows (uniform) otherwise}$
  - not trained, based directly on tracker
- NLU/trackers per-slot GRUs + softmaxes
  - input: counts of n-grams
- policy = GRU + softmax
- trained by RL
  - shown to outperform hard DB on a movie domain



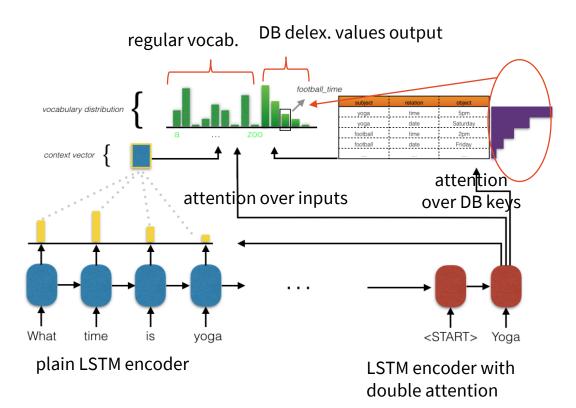
as given by tracker

if *j* specified & in table

 $\frac{p(v=j)}{\# \text{ of } v' \text{ s in table}}$ 

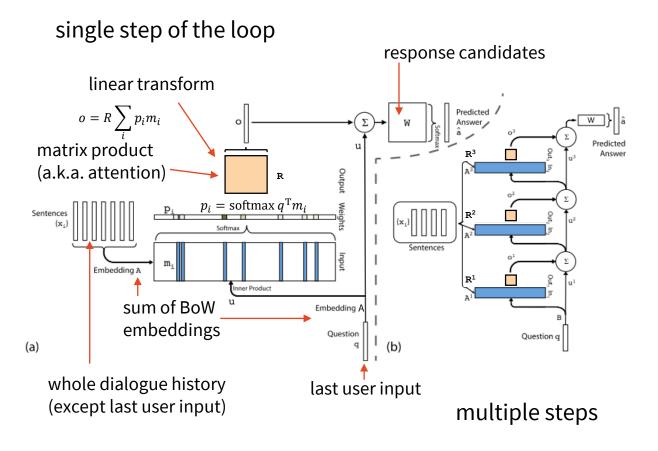
## **Key-value Retrieval Nets**

- using attention to model DB access
- LSTM encoder, no specific tracker/NLU
- DB in a "key-value" format
  - subject-relation-object (subject-property-value) dinner-time-8pm
  - key = subject + relation value = subject\_relation
    - i.e. delexicalized values
- generator: seq2seq with 2 attentions
  - over inputs (as usual)
  - over keys in the DB increases generator output probs. of DB values
    - doesn't change probs. of regular vocabulary
- supervised training, better than seq2seq/copy



### Memory networks

- not a full dialogue model, just ranker of candidate replies
- no explicit modules
- based on attention over history
  - sum of bag-of-words embeddings
    - added features (user/system, turn no.)
    - weighted match against last user input (dot + softmax)
    - linear transformation to produce next-level input
- last input matched (dot + softmax) against a pool of possible responses

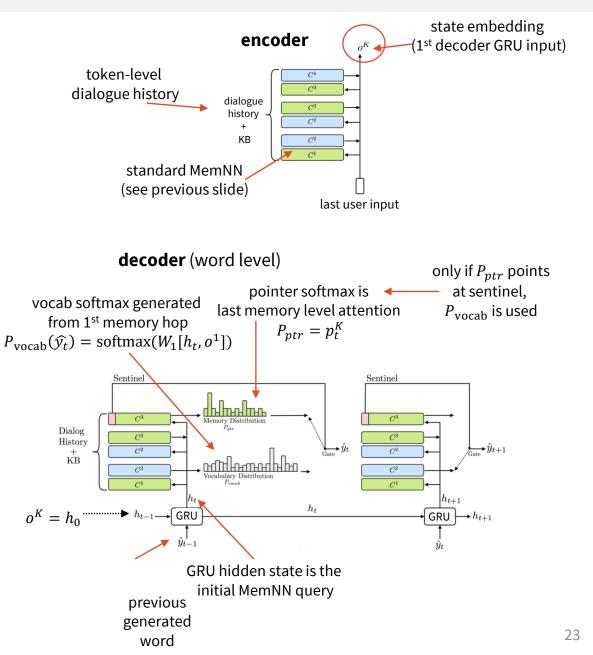


oop a few times.

# Mem2Seq: memory nets & pointer-generator

(Madotto et al., 2018) <u>https://www.aclweb.org/anthology/P18-1136</u>

- "standard" MemNN encoder:
  - special memory:
    - token-level dialogue history (whole history concatenated, no hierarchy)
      - with added turn numbers & user/system flags
    - DB tuples (sums of subject-relation-object)
    - "sentinel" (special token)
- decoder: MemNN over GRU
  - GRU state is MemNN initial query
  - last level attention is copy pointer
  - if copy pointer points at sentinel, generate from vocabulary
    - copies whenever it can
  - vocabulary distribution comes from 1st level of memory + GRU state
    - linear transform + softmax



### Mem2Seq visualization

attention weights at individual word generation steps



"don't copy, generate"

ravenswood\_shopping\_center poi shopping\_center heavy\_traffic 4\_miles

**gold**: the closest parking\_garage is civic\_center\_garage located 4\_miles away at 270\_altaire\_walk **generated**: the closest parking\_garage is civic\_center\_garage at 270\_altaire\_walk 4\_miles away through the directions

0 1 2 3 4

5

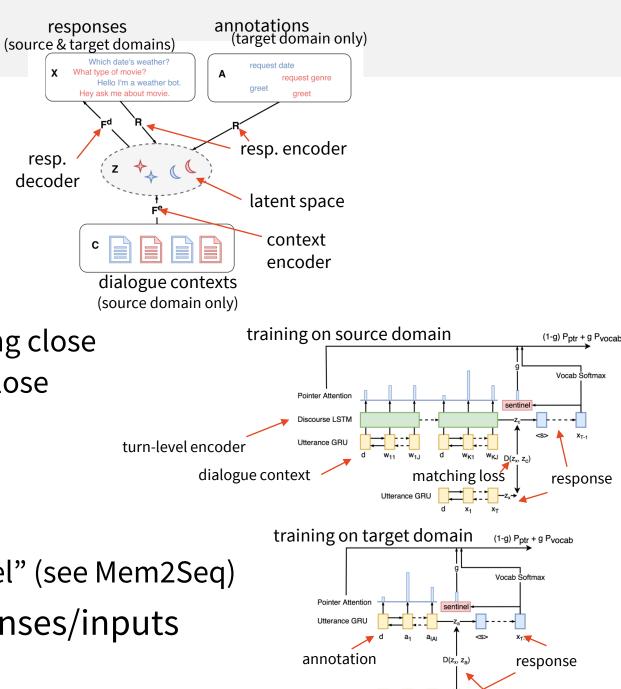
Generation Step

6 7 8 9 10 11 12 13

# **Few-shot dialogue generation**

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001

- Domain transfer:
  - source domain training dialogues
  - target domain "seed responses" with annotation
- encoding all into latent space
  - keeping response & annotation encoding close
  - keeping context & response encoding close
  - decoder loss + matching loss
- encoder: HRE (hierarchical RNN)
- decoder: copy RNN (with sentinel)
  - "copy unless attention points to sentinel" (see Mem2Seq)
- DB queries & results treated as responses/inputs
  - DB & user part of environment



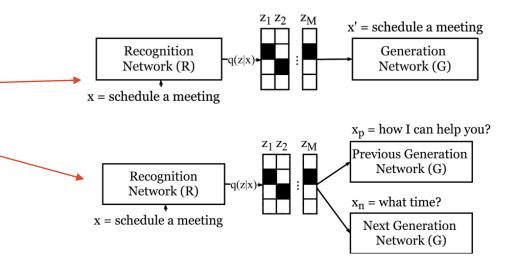
Vocab Softmax

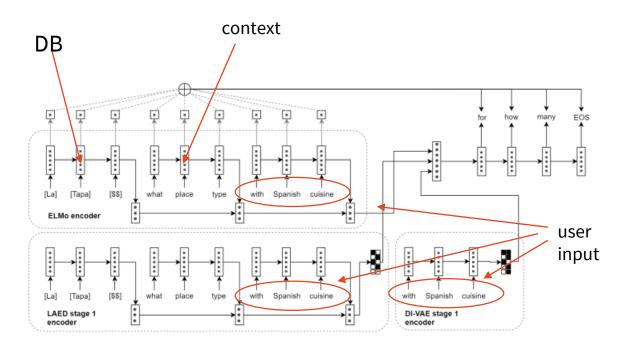
matching loss

## **Few-shot & Latent Actions**

(Zhao et al., 2018)http://aclweb.org/anthology/P18-1101https://www.cs.cmu.edu/~tianchez/data/ACL2018-talk.pdf(Shalyminov et al., 2019)http://arxiv.org/abs/1910.01302

- Latent discrete encoder-decoder
  - discrete VAE for dialogue turns
  - discrete Variational Skip Thought
    - predicting next turn
  - trained jointly
- Full model:
  - LAED to predict next action
  - DI-VAE for user input representation
  - HRED with ELMo
  - KVRET-like DB representation
    - DB is treated as part of context
  - decoder: same as previous
    - copy with sentinel
  - uses NER/entity linking instead of handcrafted annotations





### **Summary**

- End-to-end = single network for NLU/tracker + DM + (sometimes) NLG
  - networks often decompose to components + need dialogue state annotation
  - joint training by backprop (if differentiable)
  - RL interleaved with supervised, without NLG (over actions)
- Hybrid Code Nets: partially handcrafted, but end-to-end
- Sequicity: seq2seq-based & decoding dialogue state
- GPT-2-based: same idea, just with pretrained LMs
- Soft DB lookups making the whole system differentiable
  - "transparent" (directly based on tracker)
  - attention/memory nets (multi-hop attention)
- Few-shot: lot of autoencoding

### **Thanks**

#### **Contact us:**

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

#### Get these slides here:

http://ufal.cz/npfl099

#### **References/Inspiration/Further:**

- Gao et al. (2019): Neural Approaches to Conversational AI: <u>https://arxiv.org/abs/1809.08267</u>
- Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems: <u>http://dad.uni-bielefeld.de/index.php/dad/article/view/3690</u>