NPFL099 Statistical Dialogue Systems

9. End-to-end Systems

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

1. 12. 2020
End-to-end dialogue systems

• **End-to-end = represent the whole system as one neural net**
 • sometimes, just some of the components can be joined
 • e.g. just NLU + tracker + policy, NLG excluded

• **Pros & cons:**
 • Traditional architecture – separate components:
 • more flexible (replace one, keep the rest)
 • error accumulation
 • improved components don’t mean improved system
 • possibly joint optimization by RL

• **End-to-end:**
 • joint optimization by backprop
 • if fully differentiable
 • still can work via RL (with supervised initialization)
 • architectures still decompose into (some of) original DS components
 • and often still need DA-level annotation
Training end-to-end systems

• Supervised
 • sometimes components still trained separately
 • e.g. hard knowledge base lookup
 • sometimes all in one
 • can’t learn from users
 • problems with train-test mismatch

• RL
 • can learn from users, can learn all-in-one
 • doesn’t work great if done on word-level
 • RL doesn’t care about fluency/naturalness
 • either avoid word-level, or mix with supervised

Supervised with component nets

“seq2seq augmented with history (tracker) & DB”

end-to-end, but has components

- LSTM “intent network”/encoder (latent intents)
- CNN+RNN belief tracker (prob. dist. over slot values)
 - lexicalized + delexicalized CNN features
 - turn-level RNN (output is used in next turn hidden state)
- MLP policy (feed-forward)
- LSTM generator
 - conditioned on policy output, delexicalized
- DB: rule-based, takes most probable belief values
 - creates boolean vector of selected items
 - vector compressed to 6-bin 1-hot (no match, 1 match… >5 matches) on input to policy
 - 1 matching item selected at random & kept for lexicalization after generation
Supervised with component nets

• belief tracker trained separately
• rest trained by cross-entropy on generator outputs
• data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
 • workers take turns to be user & system, always just add 1 turn

<table>
<thead>
<tr>
<th>Encoder</th>
<th>Tracker</th>
<th>Decoder</th>
<th>Match(%)</th>
<th>Success(%)</th>
<th>T5-BLEU</th>
<th>T1-BLEU</th>
</tr>
</thead>
</table>
| Baseline
 | lstm | lstm | - | - | 0.1650 | 0.1718 |
| Variant
 | lstm | turn recurrence | lstm | - | 0.1813 | 0.1861 | |
| lstm | rnn-cnn, w/o req. | lstm | 89.70 | 30.60 | 0.1769 | 0.1799 |
| cnn | rnn-cnn | lstm | 88.82 | 58.52 | 0.2354 | 0.2429 |

Full model w/ different decoding strategy

<table>
<thead>
<tr>
<th>Encoder</th>
<th>Tracker</th>
<th>Decoder</th>
<th>Match(%)</th>
<th>Success(%)</th>
<th>T5-BLEU</th>
<th>T1-BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>lstm</td>
<td>rnn-cnn</td>
<td>lstm</td>
<td>86.34</td>
<td>75.16</td>
<td>0.2184</td>
<td>0.2313</td>
</tr>
<tr>
<td>lstm</td>
<td>rnn-cnn</td>
<td>+ weighted</td>
<td>86.04</td>
<td>78.40</td>
<td>0.2222</td>
<td>0.2280</td>
</tr>
<tr>
<td>lstm</td>
<td>rnn-cnn</td>
<td>+ att.</td>
<td>90.88</td>
<td>80.02</td>
<td>0.2286</td>
<td>0.2388</td>
</tr>
<tr>
<td>lstm</td>
<td>rnn-cnn</td>
<td>+ att. + weighted</td>
<td>90.88</td>
<td>83.82</td>
<td>0.2304</td>
<td>0.2369</td>
</tr>
</tbody>
</table>

- Average on top 5 candidate outputs
- BLEU for best output
- Match + answered all requested slots
- Returned correct restaurant

-base seq2seq
-HRED (hierarchical seq2seq)

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042
Hybrid Code Networks

- partially handcrafted, designed for little training data
 - with Alexa-type assistants in mind

- **Utterance representations:**
 - bag-of-words binary vector
 - average of word embeddings

- **Entity extraction & tracking**
 - domain-specific NER
 - handcrafted tracking
 - returns **action mask**
 - permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)
 - return (optional) handcrafted **context features** (various flags)

- **LSTM state tracker** (output retained for next turn)
 - i.e. no explicit state tracking, doesn’t need state tracking annotation

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274
Hybrid Code Networks

- **feed-forward policy** – produces probability distribution over actions
 - mask applied to outputs & renormalized → choosing action = output template
- **handcrafted fill-in for entities**
 - takes features from ent. extraction
 - ~learned part is fully delexicalized
- **actions** may trigger API calls
 - APIs can return feats for next step
- **training** – supervised & RL:
 - SL: beats a rule-based system with just 30 training dialogues
 - RL: REINFORCE with baseline
 - RL & SL can be interleaved
- **extensions**: better input than binary & averaged embeddings

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162
Reinforcement Learning: Recurrent Q-Networks

• NLU + state tracking + DM
 • NLG still kept separate
 • actions are either system DAs or updates to state (DB hypothesis)
 • forced to alternate action types by masking
 • rewards from DB for narrowing down selection

• Models a Q-network as a LSTM
 • or rather LSTM underlying multiple MLPs
 • LSTM maintains internal state representation
 • 1 MLP for system DAs
 • 1 MLP per slot (action=select value X)

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560
Dual RL optimization: agent & user simulator

- end-to-end agent & end-to-end simulator
 - pretrains both with supervised & tunes with RL against each other

Agent network

policy: 1-layer feed-forward + softmax over actions

explicit belief state: 1-layer feed-forward + softmax per slot

LSTM state tracker (implicit state)

User simulator network

belief: tracking currently requested values (using current action)

goal predefined: list of slot values to provide & slots to request, constant for dialogue, binary vector

tracker, same as agent

template NLG, same as agent

pointer to k-th KB result (produced as output of tracker, moved when user requests alternatives)

NLG: simple templates

KB query is one of the actions, this manages the query results

Agent network

BiLSTM encoding

User simulator network

BiLSTM encoding

Dual RL optimization: agent & user simulator

- incremental rewards based on % of completed user goal
 - used by both agent & system
- REINFORCE/Advantage Actor-Critic
- iteratively training agent & user simulator
 - fixing one and training the other for 100 dialogues, then swapping
- joint RL training is better than training just the agent

(Liu & Lane, 2017)
http://arxiv.org/abs/1709.06136
Imitation Learning from Expert Users

- system very similar to previous
 - but only optimizing the system
 - with humans, or simulator
- supervised pretraining
- 2nd step: hybrid SL/RL: **imitation learning** with expert users
 - if the system makes a mistake, user provides correct action & fixed belief
 - needs expert users, laborious – or a good simulator
 - data collected in this way can be used further SL rounds
 - more guidance than RL, but system learns from its own policy
 - no mismatch between training data & policy used by system
- finally: RL with normal user feedback
 - success 0/1 at the end of the dialogue

(Liu et al., 2018) http://arxiv.org/abs/1804.06512
Sequicity: Fully seq2seq-based model

- less hierarchy, simpler architecture
 - no explicit system action – direct to words
 - still explicit dialogue state
 - KB is external (as in most systems)

- seq2seq + copy (pointer-generator):
 - **encode**: previous dialogue state
 + prev. system response
 + current user input
 - **decode new state** first
 - attend over whole encoder
 - **decode system output** (delexicalized)
 - attend over state only
 + use KB (one-hot vector added to each generator input)
 - KB: 0/1/more results – vector of length 3

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133
Sequicity: training + more supervision

- **training:** supervised – word-level cross-entropy
- **RL fine-tuning with turn-level rewards**
 - prime the system to decode user-requested slot placeholders
- **variant – more supervision**
 - use the same approach to decode explicit NLU output & system action

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133

Sequicity + explicit state

(Shu et al., 2019) https://www.aclweb.org/anthology/W19-5922/

- the same context encoder as Sequicity
- state decoder:
 - individual slots decoded separately
 - **prevents decoding invalid states**
 - the same decoder run for each slot
- informable:
 - decode values, seq2seq way
- requestable:
 - classify 0/1 if user requested
- response generation:
 - 1st step – classify which slots to include
 - then seq2seq delexicalized generation

![Diagram](image-url)
• Simple adaptation of the GPT pretrained LM
 • system/user embeddings
 • added to Transformer positional embs. & word embs.
 • training to generate as well as classify utterances (good vs. random)
 • all supervised

• Again, no DB & belief tracking
 • using gold-standard belief & DB, no way of updating belief
Real stuff with GPT-2: SOLOIST, SimpleTOD, NeuralPipeline

• basically Sequicity over GPT-2
 • history, state, DB results/system action – all recast as sequence
 • finetuning on dialogue datasets

• small differences/extensions
 • specific user/system embeddings (NP)
 • additional training (SOLOIST)
 • not just word-level generation (as GPT-2 default)
 • contrastive objective: detecting fake belief/fake response from real ones
 • explicit system actions (SimpleTOD)
 • one more decoding step

(Peng et al., 2020)
(Hosseini-Asl et al., 2020)
(Ham et al., 2020)

https://www.aclweb.org/anthology/2020.acl-main.54
Structured Fusion Nets: End-to-end on top of individual modules

- 1st step: optimize separate NLU/DM/NLG modules
- 2nd step: optimize end-to-end network over the outputs of modules
Structured Fusion Nets

(Mehri et al., 2019)
https://www.aclweb.org/anthology/W19-5921/

- high-level module on top of NLU/DM/NLG modules works better than just joining, even with joint optimization
- modules can be fine-tuned (end-to-end differentiable)
 - this helps in either case (with modules only or high-level network)
 - multi-task learning doesn’t help more (alternating fine-tuning with module-specific tasks)
- RL: only high-level
 - this way the base generator maintains fluency
 - BLEU OK & success much higher

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
<th>Inform (%)</th>
<th>Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seq2Seq (Budzianowski et al., 2018)</td>
<td>18.80</td>
<td>71.29%</td>
<td>60.29%</td>
</tr>
<tr>
<td>Seq2Seq w/ Attention (Budzianowski et al., 2018)</td>
<td>18.90</td>
<td>71.33%</td>
<td>60.96%</td>
</tr>
<tr>
<td>Seq2Seq (Ours)</td>
<td>20.78</td>
<td>64.40%</td>
<td>54.50%</td>
</tr>
<tr>
<td>Seq2Seq w/ Attention (ours)</td>
<td>20.36</td>
<td>66.50%</td>
<td>59.50%</td>
</tr>
<tr>
<td>Naive Fusion (Zero-Shot)</td>
<td>7.55</td>
<td>70.30%</td>
<td>36.10%</td>
</tr>
<tr>
<td>Naive Fusion (Fine-tuned Modules)</td>
<td>16.39</td>
<td>66.50%</td>
<td>59.50%</td>
</tr>
<tr>
<td>Multitasking</td>
<td>17.51</td>
<td>71.50%</td>
<td>57.30%</td>
</tr>
<tr>
<td>Structured Fusion (Frozen Modules)</td>
<td>17.53</td>
<td>65.80%</td>
<td>51.30%</td>
</tr>
<tr>
<td>Structured Fusion (Fine-tuned Modules)</td>
<td>18.51</td>
<td>77.30%</td>
<td>64.30%</td>
</tr>
<tr>
<td>Structured Fusion (Multitasked Modules)</td>
<td>16.70</td>
<td>80.40%</td>
<td>63.60%</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured Fusion (Frozen Modules) + RL</td>
<td>16.34</td>
<td>82.70%</td>
<td>72.10%</td>
</tr>
</tbody>
</table>

MultiWOZ (multi-domain data)

% dialogues where appropriate entity was provided

% dialogues where system also provided all requested slots
• Making system actions latent, learning them implicitly
• Like a VAE, but **discrete latent space** here (\(M k\)-way variables)
 • using Gumbel-Softmax trick for backpropagation
 • using Full ELBO (KL vs. prior network)
 or “Lite ELBO” (KL vs. uniform 1/k)
• RL over latent actions, not words
 • avoids producing disfluent language
 • “fake RL” based on supervised data
 • generate outputs, but use original contexts from a dialogue from training data
 • success & RL updates based on generated responses
 • on par with Structured Fusion Nets (slightly higher success, lower BLEU)
• again, ignores DB & belief tracking

(Zhao et al., 2019)
https://www.aclweb.org/anthology/N19-1123
Soft DB Lookups

- incorporating NLU/tracker uncertainty into DB results
- making the system fully differentiable
 - but less interpretable
- DB output = distribution over all items
 - plain MLE estimation: \(p(\text{row } i) = \prod_{\text{slots } j} \frac{p(v=j)}{\# \text{ of } v's \text{ in table}} \) if \(j \) specified & in table
 - \(1/\# \text{ rows (uniform)} \) otherwise
- NLU/trackers – per-slot GRUs + softmaxes
 - input: counts of n-grams
- policy = GRU + softmax
- trained by RL
 - shown to outperform hard DB on a movie domain

(Dinghra et al., 2017)
https://www.aclweb.org/anthology/P17-1045
Key-value Retrieval Nets

- using attention to model DB access
- LSTM encoder, no specific tracker/NLU
- DB in a “key-value” format
 - subject-relation-object (subject-property-value)
 - dinner-time-8pm
 - key = subject + relation
 value = subject_relation
 - i.e. delexicalized values
- generator: seq2seq with 2 attentions
 - over inputs (as usual)
 - over keys in the DB – increases generator output probs. of DB values
 - doesn’t change probs. of regular vocabulary
- supervised training, better than seq2seq/copy

(eric et al., 2017)
https://www.aclweb.org/anthology/W17-5506
Memory networks

• not a full dialogue model, just ranker of candidate replies
• no explicit modules
• based on attention over history
 • sum of bag-of-words embeddings
 • added features (user/system, turn no.)
• weighted match against last user input (dot + softmax)
• linear transformation to produce next-level input
• last input matched (dot + softmax) against a pool of possible responses

(single step of the loop)

\[o = R \sum p_i m_i \]

(matrix product (a.k.a. attention))

```latex
\bar{v}_{ij} = \text{softmax}(q^T m_i)
```

(last user input)

(add features)

```latex
\text{linear transform}
```

(bag-of-words embeddings)

(last user input against a pool of possible responses)

(response candidates)

(last input matched)

(with attention)
• “standard” MemNN encoder:
 • special memory:
 • token-level dialogue history
 (whole history concatenated, no hierarchy)
 • with added turn numbers & user/system flags
 • DB tuples (sums of subject-relation-object)
 • “sentinel” (special token)

• decoder: MemNN over GRU
 • GRU state is MemNN initial query
 • last level attention is copy pointer
 • if copy pointer points at sentinel, generate from vocabulary
 • copies whenever it can
 • vocabulary distribution comes from 1st level of memory + GRU state
 • linear transform + softmax

(Madotto et al., 2018) https://www.aclweb.org/anthology/P18-1136
Mem2Seq visualization

attention weights at individual word generation steps

generated gold: the closest parking garage is civic center garage located 4 miles away at 270 altaire walk
generated gold: the closest parking garage is civic center garage at 270 altaire walk 4 miles away through the directions

subject-relation-object (this gets embedded)

values (these get output)

DB

Memory Context

sentinel "don't copy, generate"
Few-shot dialogue generation

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001

- **Domain transfer:**
 - source domain training dialogues
 - target domain “seed responses” with annotation

- **encoding all into latent space**
 - keeping response & annotation encoding close
 - keeping context & response encoding close
 - decoder loss + matching loss

- **encoder:** HRE (hierarchical RNN)
- **decoder:** copy RNN (with sentinel)
 - “copy unless attention points to sentinel” (see Mem2Seq)

- DB queries & results treated as responses/inputs
 - DB & user part of environment
Few-shot & Latent Actions

- Latent discrete encoder-decoder
 - discrete VAE for dialogue turns
 - discrete Variational Skip Thought
 - predicting next turn
 - trained jointly

- Full model:
 - LAED to predict next action
 - DI-VAE for user input representation
 - HRED with ELMo
 - KVRET-like DB representation
 - DB is treated as part of context
 - decoder: same as previous
 - copy with sentinel
 - uses NER/entity linking instead of handcrafted annotations

(Zhao et al., 2018) http://aclweb.org/anthology/P18-1101

Summary

• End-to-end = single network for NLU/tracker + DM + (sometimes) NLG
 • networks often decompose to components + need dialogue state annotation
 • joint training by backprop (if differentiable)
 • RL – interleaved with supervised, without NLG (over actions)

• Hybrid Code Nets: partially handcrafted, but end-to-end
• Sequicity: seq2seq-based & decoding dialogue state
• GPT-2-based: same idea, just with pretrained LMs
• Soft DB lookups – making the whole system differentiable
 • “transparent” (directly based on tracker)
 • attention/memory nets (multi-hop attention)

• Few-shot: lot of autoencoding
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267
• Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems:
 http://dad.uni-bielefeld.de/index.php/dad/article/view/3690