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End-to-end dialogue systems

• End-to-end = represent the whole system as one neural net
• sometimes, just some of the components can be joined

• e.g. just NLU + tracker + policy, NLG excluded

• Pros & cons:
• Traditional architecture – separate components:

• more flexible (replace one, keep the rest)

• error accumulation

• improved components don’t mean improved system

• possibly joint optimization by RL

• End-to-end:
• joint optimization by backprop

• if fully differentiable

• still can work via RL (with supervised initialization)

• architectures still decompose into (some of) original DS components
• and often still need DA-level annotation
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Training end-to-end systems

• Supervised
• sometimes components still trained separately

• e.g. hard knowledge base lookup

• sometimes all in one

• can’t learn from users

• problems with train-test mismatch

• RL
• can learn from users, can learn all-in-one

• doesn’t work great if done on word-level
• RL doesn’t care about fluency/naturalness

• either avoid word-level, or mix with supervised

3NPFL099 L9 2020

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-
artificial-intelligence-ai-chatbot-new-language-research-openai-google-
a7869706.html

https://towardsdatascience.com/the-truth-behind-
facebook-ai-inventing-a-new-language-37c5d680e5a7

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-artificial-intelligence-ai-chatbot-new-language-research-openai-google-a7869706.html
https://towardsdatascience.com/the-truth-behind-facebook-ai-inventing-a-new-language-37c5d680e5a7


Supervised with component nets

• “seq2seq augmented with history (tracker) & DB”

• end-to-end, but has components
• LSTM “intent network”/encoder (latent intents)

• CNN+RNN belief tracker (prob. dist. over slot values)
• lexicalized + delexicalized CNN features

• turn-level RNN (output is used in next turn hidden state)

• MLP policy (feed-forward)

• LSTM generator
• conditioned on policy output, delexicalized

• DB: rule-based, takes most probable belief values
• creates boolean vector of selected items

• vector compressed to 6-bin 1-hot (no match, 1 match… >5 matches)
on input to policy

• 1 matching item selected at random & kept for lexicalization after generation
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1-layer with tanh

LSTM encoder
(latent intent representation)

slot value prob. dist. CNN

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

RNN
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https://www.aclweb.org/anthology/E17-1042


Supervised with component nets

• belief tracker trained separately

• rest trained by cross-entropy on generator outputs

• data: CamRest676, collected by crowdsourcing/Wizard-of-Oz
• workers take turns to be user & system, always just add 1 turn
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base seq2seq
HRED
(hierarchical
seq2seq)

length-weighted
decoding

average on top 5 candidate outputs

BLEU for best output

match + answered all requested slots

returned correct restaurant

(Wen et al., 2017)
https://www.aclweb.org/anthology/E17-1042

added 
attention

https://www.aclweb.org/anthology/E17-1042


Hybrid Code Networks

• partially handcrafted, designed for little training data
• with Alexa-type assistants in mind

• Utterance representations:
• bag-of-words binary vector

• average of word embeddings

• Entity extraction & tracking
• domain-specific NER

• handcrafted tracking

• returns action mask
• permitted actions in this step (e.g. can’t place a phone call if we don’t know who to call yet)

• return (optional) handcrafted context features (various flags)

• LSTM state tracker (output retained for next turn)

• i.e. no explicit state tracking, doesn’t need state tracking annotation

(Williams et al., 2017)
http://arxiv.org/abs/1702.03274

handcrafteddomain-specific NER

permitted actions in this timestep
(masks out any illogical steps)

various handcrafted flags

turn-level LSTM tracker
(LSTM hidden = “dialogue state”)

http://arxiv.org/abs/1702.03274


Hybrid Code Networks

• feed-forward policy – produces probability distribution over actions
• mask applied to outputs & renormalized → choosing action = output template

• handcrafted fill-in for entities
• takes features from ent. extraction

• ~learned part is fully delexicalized

• actions may trigger API calls
• APIs can return feats for next step

• training – supervised & RL:
• SL: beats a rule-based system 

with just 30 training dialogues

• RL: REINFORCE with baseline

• RL & SL can be interleaved

• extensions: better input than binary & averaged embeddings
7

(Shalyminov & Lee, 2018)
https://arxiv.org/abs/1811.12148
(Marek, 2019)
http://arxiv.org/abs/1907.12162

feed-forward
policy

handcrafted 
entity fill-inactions passed 

to next timestep

https://arxiv.org/abs/1811.12148
http://arxiv.org/abs/1907.12162


Reinforcement Learning: Recurrent Q-Networks

• NLU + state tracking + DM
• NLG still kept separate

• actions are either system DAs or updates to state
(DB hypothesis)

• forced to alternate action types by masking

• rewards from DB for narrowing down selection

• Models a Q-network as a LSTM
• or rather LSTM underlying multiple MLPs

• LSTM maintains internal state representation

• 1 MLP for system DAs

• 1 MLP per slot (action=select value X)
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(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560

(masked out)
Q for 
system DA 
actions

Q for DB actions

user observation
(bag-of-bigrams)previous  action

(one-hot)

DB observation

http://arxiv.org/abs/1606.02560


Dual RL optimization: agent & user simulator

• end-to-end agent & end-to-end simulator
• pretrains both with supervised & tunes with RL against each other
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Agent network

User simulator network

LSTM state tracker
(implicit state)

explicit belief state:
1-layer feed-forward

+ softmax per slot

policy:
1-layer feed-forward

+ softmax over actions

KB query is one of the actions,
this manages the query results

pointer to k-th KB result
(produced as output of tracker,
moved when user requests
alternatives)

NLG: simple templates

BiLSTM encoding

tracker, same as agent

BiLSTM encoding

goal predefined: 
list of slot values to provide 

& slots to request,
constant for dialogue,

binary vector

policy, 
same as agent

belief: tracking currently 
requested values

(using current action)

template NLG, 
same as agent
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http://arxiv.org/abs/1709.06136


Dual RL optimization: agent & user simulator

• incremental rewards based on % of completed user goal
• used by both agent & system

• REINFORCE/Advantage Actor-Critic

• iteratively training agent & user simulator
• fixing one and training the other for 100 dialogues, then swapping

• joint RL training is better than training just the agent

(Liu & Lane, 2017) 
http://arxiv.org/abs/1709.06136

time
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Imitation Learning from Expert Users

• system very similar to previous
• but only optimizing the system

• with humans, or simulator

• supervised pretraining

• 2nd step: hybrid SL/RL: 
imitation learning with expert users
• if the system makes a mistake, user provides correct action & fixed belief

• needs expert users, laborious – or a good simulator

• data collected in this way can be used further SL rounds

• more guidance than RL, but system learns from its own policy
• no mismatch between training data & policy used by system

• finally: RL with normal user feedback
• success 0/1 at the end of the dialogue

feed-forward
action classifier

templates

(Liu et al., 2018) http://arxiv.org/abs/1804.06512NPFL099 L9 2020

http://arxiv.org/abs/1804.06512


Sequicity: Fully seq2seq-based model

• less hierarchy, simpler architecture
• no explicit system action – direct to words

• still explicit dialogue state

• KB is external (as in most systems)

• seq2seq + copy (pointer-generator):
• encode: previous dialogue state

+ prev. system response 
+ current user input

• decode new state first
• attend over whole encoder

• decode system output (delexicalized)
• attend over state only 

+ use KB (one-hot vector added to each generator input)
• KB: 0/1/more results – vector of length 3
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en
co

d
er

d
eco

d
er

keep hidden
state here

decode new
dialogue state

decode system output,
attend over state only,
add KB vector to inputs,
delexicalized

(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133

previous 
state

previous 
system

response
current

user input

https://www.aclweb.org/anthology/P18-1133


Sequicity: training + more supervision

• training: supervised – word-level cross-entropy

• RL fine-tuning with turn-level rewards
• prime the system to decode user-requested slot placeholders

• variant – more supervision
• use the same approach to decode explicit NLU output & system action
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(Lei et al., 2018) https://www.aclweb.org/anthology/P18-1133
(Liang et al., 2019) http://arxiv.org/abs/1909.05528

https://www.aclweb.org/anthology/P18-1133
http://arxiv.org/abs/1909.05528


Sequicity + explicit state

• the same context encoder
as Sequicity

• state decoder:
• individual slots decoded separately

• prevents decoding invalid states

• the same decoder run for each slot

• informable: 
• decode values, seq2seq way

• requestable: 
• classify 0/1 if user requested

• response generation:
• 1st step – classify which slots to include

• then seq2seq delexicalized generation
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seq2seq decoder
for user-specified slot values

1-hot 0/1/2/3/4/5 or more results
binary classifier: 

should slot X 
be in response?

binary classifier: 
did user request slot X?

tied weights:
only the start 
symbol differs

prev. system output prev. state user input

(Shu et al., 2019) https://www.aclweb.org/anthology/W19-5922/

https://www.aclweb.org/anthology/W19-5922/


“Hello, it’s GPT-2 – How can I help?”

• Simple adaptation of the GPT pretrained LM
• system/user embeddings

• added to Transformer positional embs. & word embs.

• training to generate as well as classify utterances (good vs. random)
• all supervised

• Again, no DB & belief tracking
• using gold-standard belief & DB, no way of updating belief
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(Budzianowski & Vulić, 2019)
https://www.aclweb.org/anthology/D19-5602

decoded part

simple encoding: 
domain-slot-value[-slot-value…] DB result entry tokens

delexicalized
generation

https://www.aclweb.org/anthology/D19-5602


Real stuff with GPT-2: SOLOIST, SimpleTOD, NeuralPipeline

• basically Sequicity over GPT-2
• history, state, DB results/system action – all recast as sequence

• finetuning on dialogue datasets

• small differences/extensions
• specific user/system embeddings (NP)

• additional training (SOLOIST)
• not just word-level generation 

(as GPT-2 default)

• contrastive objective: 
detecting fake belief/fake response
from real ones

• explicit system actions
(SimpleTOD)
• one more decoding step
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SOLOIST

(Peng et al., 2020) http://arxiv.org/abs/2005.05298
(Hosseini-Asl et al., 2020) http://arxiv.org/abs/2005.00796
(Ham et al., 2020) https://www.aclweb.org/anthology/2020.acl-main.54

http://arxiv.org/abs/2005.05298
http://arxiv.org/abs/2005.00796
https://www.aclweb.org/anthology/2020.acl-main.54


Structured Fusion Nets: End-to-end on top of individual modules

• 1st step: optimize separate NLU/DM/NLG modules

• 2nd step: optimize end-to-end network over the outputs of modules
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LSTM

slot-value
prob. dist.

DB one-hot vector

system action 
dialogue act

LSTM
word-by-word

concatenated to 
each input word

context 
embedding

action 
embedding

base NLG logits
combined with high-level decoder
at each timestep

(Mehri et al., 2019)  https://www.aclweb.org/anthology/W19-5921/

https://www.aclweb.org/anthology/W19-5921/


Structured Fusion Nets

• high-level module on top of NLU/DM/NLG modules
works better than just joining, even with joint optimization

• modules can be fine-tuned (end-to-end differentiable)
• this helps in either case 

(with modules only or 
high-level network)

• multi-task learning doesn’t help more
(alternating fine-tuning with 
module-specific tasks)

• RL: only high-level
• this way the base generator

maintains fluency

• BLEU OK & success much higher
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modules
only

with 
high-level 
structure

MultiWOZ (multi-domain data)

% dialogues where 
appropriate entity 
was provided

% dialogues where system 
also provided all requested slots

(Mehri et al., 2019)
https://www.aclweb.org/anthology/W19-5921/

https://www.aclweb.org/anthology/W19-5921/


Latent Action RL

• Making system actions latent, learning them implicitly

• Like a VAE, but discrete latent space here (𝑀 𝑘-way variables)
• using Gumbel-Softmax trick for backpropagation

• using Full ELBO (KL vs. prior network)
or “Lite ELBO” (KL vs. uniform 1/𝑘)

• RL over latent actions, not words
• avoids producing disfluent language

• “fake RL” based on supervised data
• generate outputs, but use original contexts

from a dialogue from training data

• success & RL updates based on generated responses

• on par with Structured Fusion Nets (slightly higher success, lower BLEU)

• again, ignores DB & belief tracking
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discrete latent 
action set

(Zhao et al., 2019)
https://www.aclweb.org/anthology/N19-1123

https://www.aclweb.org/anthology/N19-1123


Soft DB Lookups

• incorporating NLU/tracker uncertainty into DB results

• making the system fully differentiable
• but less interpretable

• DB output = distribution over all items
• plain MLE estimation: 𝑝 row 𝑖 = ςslots 𝑗

• not trained, based directly on tracker

• NLU/trackers – per-slot GRUs + softmaxes
• input: counts of n-grams

• policy = GRU + softmax

• trained by RL
• shown to outperform hard DB on a movie domain
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(Dinghra et al., 2017)
https://www.aclweb.org/anthology/P17-1045

𝑝(𝑣=𝑗)

# of 𝑣′s in table
if 𝑗 specified & in table

1/# rows (uniform) otherwise

as given by tracker

trainable fixed
(but differentiable)
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https://www.aclweb.org/anthology/P17-1045


Key-value Retrieval Nets

• using attention to model DB access

• LSTM encoder, no specific tracker/NLU

• DB in a “key-value” format
• subject-relation-object 

(subject-property-value)
dinner-time-8pm

• key = subject + relation
value = subject_relation
• i.e. delexicalized values

• generator: seq2seq with 2 attentions
• over inputs (as usual)

• over keys in the DB – increases generator output probs. of  DB values
• doesn’t change probs. of regular vocabulary

• supervised training, better than seq2seq/copy
21

(Eric et al., 2017)
https://www.aclweb.org/anthology/W17-5506

plain LSTM encoder

attention over inputs

DB delex. values outputregular vocab.

attention 
over DB keys

LSTM encoder with
double attention

https://www.aclweb.org/anthology/W17-5506


whole dialogue history
(except last user input)

sum of BoW
embeddings

A

last user input

R

linear transform

matrix product
(a.k.a. attention)

R1

R2

R3

response candidates

Memory networks

• not a full dialogue model,
just ranker of candidate replies

• no explicit modules

• based on attention over history
• sum of bag-of-words embeddings

• added features (user/system, turn no.)

• weighted match against
last user input (dot + softmax)

• linear transformation to produce
next-level input

• last input matched (dot + softmax)
against a pool of possible responses
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single step of the loop

multiple steps

(Sukhbaatar et al., 2015) http://arxiv.org/abs/1503.08895
(Bordes et al., 2017) http://arxiv.org/abs/1605.07683

𝑜 = 𝑅෍

𝑖

𝑝𝑖𝑚𝑖

𝑝𝑖 = softmax 𝑞T𝑚𝑖

http://arxiv.org/abs/1503.08895
http://arxiv.org/abs/1605.07683


last user input

dialogue 
history 

+ 
KB

Mem2Seq: memory nets & pointer-generator

• “standard” MemNN encoder:
• special memory:

• token-level dialogue history
(whole history concatenated, no hierarchy)
• with added turn numbers & user/system flags

• DB tuples (sums of subject-relation-object)

• “sentinel” (special token)

• decoder: MemNN over GRU
• GRU state is MemNN initial query

• last level attention is copy pointer

• if copy pointer points at sentinel,
generate from vocabulary
• copies whenever it can

• vocabulary distribution comes from
1st level of memory + GRU state
• linear transform + softmax 23

(Madotto et al., 2018)   https://www.aclweb.org/anthology/P18-1136
encoder

decoder (word level)

GRU GRU

GRU hidden state is the 
initial MemNN query

standard MemNN
(see previous slide)

state embedding 
(1st decoder GRU input)

previous 
generated 

word

𝑜𝐾 = ℎ0

vocab softmax generated 
from 1st memory hop

𝑃vocab ෝ𝑦𝑡 = softmax(𝑊1[ℎ𝑡, 𝑜
1])

pointer softmax is 
last memory level attention 

𝑃𝑝𝑡𝑟 = 𝑝𝑡
𝐾

only if 𝑃𝑝𝑡𝑟 points

at sentinel, 
𝑃vocab is used

token-level 
dialogue history

https://www.aclweb.org/anthology/P18-1136


attention weights
at individual 
word generation steps

Mem2Seq visualization
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gold
generated

dialogue 
history

DB

sentinel
“don’t copy, generate”

values
(these get output)

subject-relation-object
(this gets embedded)



Few-shot dialogue generation

• Domain transfer:
• source domain training dialogues

• target domain “seed responses”
with annotation

• encoding all into latent space
• keeping response & annotation encoding close

• keeping context & response encoding close

• decoder loss + matching loss

• encoder: HRE (hierarchical RNN)

• decoder: copy RNN (with sentinel)
• “copy unless attention points to sentinel” (see Mem2Seq)

• DB queries & results treated as responses/inputs
• DB & user part of environment

responses annotations

dialogue contexts
(source domain only)

(target domain only)(source & target domains)

resp. encoder
resp.

decoder
latent space

context
encoder

training on source domain

dialogue context responsematching loss

matching loss

training on target domain

turn-level encoder

annotation response

(Zhao & Eskenazi, 2018) http://aclweb.org/anthology/W18-5001

http://aclweb.org/anthology/W18-5001


Few-shot & Latent Actions

• Latent discrete encoder-decoder
• discrete VAE for dialogue turns

• discrete Variational Skip Thought
• predicting next turn

• trained jointly

• Full model:
• LAED to predict next action

• DI-VAE for user input representation

• HRED with ELMo

• KVRET-like DB representation
• DB is treated as part of context

• decoder: same as previous
• copy with sentinel

• uses NER/entity linking instead of
handcrafted annotations

DB
context

user 
input

(Zhao et al., 2018) http://aclweb.org/anthology/P18-1101
https://www.cs.cmu.edu/~tianchez/data/ACL2018-talk.pdf
(Shalyminov et al., 2019) http://arxiv.org/abs/1910.01302
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http://aclweb.org/anthology/P18-1101
https://www.cs.cmu.edu/~tianchez/data/ACL2018-talk.pdf
http://arxiv.org/abs/1910.01302


Summary

• End-to-end = single network for NLU/tracker + DM + (sometimes) NLG
• networks often decompose to components + need dialogue state annotation

• joint training by backprop (if differentiable)

• RL – interleaved with supervised, without NLG (over actions)

• Hybrid Code Nets: partially handcrafted, but end-to-end

• Sequicity: seq2seq-based & decoding dialogue state

• GPT-2-based: same idea, just with pretrained LMs

• Soft DB lookups – making the whole system differentiable
• “transparent” (directly based on tracker)

• attention/memory nets (multi-hop attention)

• Few-shot: lot of autoencoding
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Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Gao et al. (2019): Neural Approaches to Conversational AI: https://arxiv.org/abs/1809.08267

• Serban et al. (2018): A Survey of Available Corpora For Building Data-Driven Dialogue Systems: 
http://dad.uni-bielefeld.de/index.php/dad/article/view/3690
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