
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

8. Natural Language Generation (2)
http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

24. 11. 2020

http://ufal.cz/npfl099

Recap from last time: NLG

• system action/DA → text
• other NLG applications – from DB tables, raw data etc.

• user model, dialogue history can be considered

• goal: accurate, natural, human-like, varied

• traditional pipeline:
1) content planning / content selection – selection, pre-ordering (not so much in DSs)

2) sentence planning – aggregation, lexical choice, referring expression

3) surface realization – word order, morphology

• these steps are often joined in one model

• templates – most used in industry

• neural – seq2seq + copy/delexicalization + reranking
• problems: hallucination, not enough diversity

2NPFL099 L8 2020

Data Noise & Cleaning

• NLG errors are often caused by data errors
• ungrounded facts (← hallucinating)

• missing facts (← forgetting)

• domain mismatch

• noise (e.g. source instead of target)
• just 5% untranslated stuff kills an NMT system

• Easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose

• crowdsourcing – workers forget/don’t care

• Cleaning improves situation a lot
• can be done semi-automatically up to a point

• 94-97% semantic error reduction on cleaned E2E restaurant data

• cleaning RotoWire sports report data improves accuracy

(Dušek et al., 2019)
https://arxiv.org/abs/1911.03905

(Khayrallah & Koehn, 2018)
https://www.aclweb.org/anthology/W18-2709

(Wang, 2019)
https://www.aclweb.org/anthology/W19-8639/

https://arxiv.org/abs/1911.03905
https://www.aclweb.org/anthology/W18-2709
https://www.aclweb.org/anthology/W19-8639/

Data Augmentation

1) Get more texts that look like your outputs
• get texts online that come from the target domain

2) Produce corresponding inputs
• automatically, noisily

• need a parser/NLU system for that

3) Mix the result with your training data
• potentially pretrain on synthetic data, then finetune on real data

• Increases diversity of data, robustness of models

• Relatively easy to do for broad-coverage surface realizers
• harder for everything else: where to get the right data?

4NPFL099 L8 2020

(Elder et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.665

https://www.aclweb.org/anthology/2020.acl-main.665

NLG-NLU Combo: Self-training

• Create your own additional training data
• to make the generator more robust & accurate

• needs an NLU trained on original data

• Approach:
• Train base generator

• Sample more data from it
• sample many DAs at random

• noise injection sampling – greedy decoding with Gaussian noise in hidden states
• use noise injection sampling to get many texts for each DA

• classify each sampled instance with an NLU
• discard any texts which don’t correspond to the DA

• Train generator on original & sampled data (can loop more)

• Near perfect accuracy with basic seq2seq+attention as generator
• with rule-based or CNN-based NLU, on restaurants data

5

(Kedzie & McKeown, 2019)
https://arxiv.org/abs/1911.03373

(25k for each # of slots)

(200 texts per DA)

(42k instances)

ensure clean
generated data

https://arxiv.org/abs/1911.03373

NLG-NLU Combo: NLU data cleaning

• NLU used to clean training data
• NLU model – BiLSTM + attention & vector distance

• Training NLU iteratively:
• train initial NLU on all data

• parse DAs for all data

• select only data where NLU gives high confidence

• use high-confidence data to tune the NLU

• NLG (seq2seq+copy) trained on NLU-reparsed data
• increases semantic accuracy greatly

NPFL099 L8 2020

plain supervised NLU

original data

iterative NLU training

handcrafted NLU

softmax(dist)

∑

(Nie et al., 2019)
https://www.aclweb.org/anthology/P19-1256 6

https://www.aclweb.org/anthology/P19-1256

NLG-NLU Combo: Dual training

• multi-objective optimization
• basically normal training with regularization for duality:

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦 𝑥, 𝜃𝑥→𝑦 = 𝑃 𝑦 𝑃(𝑥|𝑦, 𝜃𝑦→x)
• attempting to model the whole distribution 𝑃(𝑥, 𝑦), should work both ways

(via both NLU and NLG)

• regularization term: log𝑃 𝑥 + log𝑃 𝑦 𝑥, 𝜃𝑥→𝑦 − log𝑃 𝑦 − log𝑃 𝑥 𝑦, 𝜃𝑦→x
2

• if duality holds, this is 0

• added to both NLG and NLU training, with given weight

• NLG & NLU = seq2seq (GRU)

• 𝑃(𝑦) = RNN language model

• 𝑃(𝑥) = masked autoencoder
• create dependencies among slots

• join multiple possible dependency orders

7NPFL099 L8 2020

(Su et al., 2019)
https://www.aclweb.org/anthology/P19-1545

NLUNLGDAs
(empirical dist. used)

texts
(empirical dist. used) prediction

order

(Germain et al., 2015) http://proceedings.mlr.press/v37/germain15.pdf

https://www.aclweb.org/anthology/P19-1545
http://proceedings.mlr.press/v37/germain15.pdf

NLG-NLU Combo: Semi-supervised

• learn from partially unpaired data
• some DA-text pairs, some loose DAs, some loose texts

• similar to previous: symmetric models, joint optimization

• loss = 𝛼 ⋅ lossNLG
paired

+ 𝛽 ⋅ lossNLG
unpaired

+ 𝛾 ⋅ lossNLU
paired

+ 𝛿 ⋅ lossNLU
unpaired

• losses for paired data are as usual (MLE, seq2seq models)

• unpaired case: models are connected, reconstruction loss
• loss is difference from original text/DA when passing through the whole loop

• greedy decoding

• making it fully differentiable:
Straight-Through Gumbel-Softmax
• Gumbel-Softmax: approximate sampling

from categorial token distributions

• straight-through = real (hard) sampling for forward pass,
smooth approximation for backward pass

(Qader et al., 2019)
https://arxiv.org/abs/1910.03484

for unpaired data

orig.
DA

pred.
DA

predicted
text

original
text

8NPFL099 L8 2020

https://arxiv.org/abs/1910.03484

Gumbel-Softmax

• “reparameterization trick for discrete distributions”
• reparameterization: 𝑧~𝒩(𝜇, 𝜎) → 𝑧~𝜇 + 𝜎 ⋅ 𝒩 0,1

• differentiating w. r. t. 𝜇 & 𝜎 still works, no hard sampling on that path

• Gumbel-max:
• categorial distribution 𝜋 with probabilities 𝜋𝑖
• sampling from 𝜋: 𝑧 = onehot(argmax

𝑖
log 𝜋𝑖 + 𝑔𝑖)

• Swap argmax for softmax with temperature 𝜏:
• can differentiate w. r. t. 𝜋 if 𝜏 > 0

NPFL099 L8 2020

𝑦𝑖 =
exp

log 𝜋𝑖 + 𝑔𝑖
𝜏

∑𝑗=1
𝑁 exp

log 𝜋𝑗 + 𝑔𝑗
𝜏

Gumbel noise:

𝑔𝑖 = − log − log Uniform 0,1

𝜏 → 0: more like one-hot 𝜏 → ∞: more like uniform

Normal noise

(Jang et al., 2017)
https://arxiv.org/abs/1611.01144

9https://anotherdatum.com/gumbel-gan.html

https://arxiv.org/abs/1611.01144
https://anotherdatum.com/gumbel-gan.html

Few-shot NLG with Pretrained LMs

• GPT-2 (pretrained Transformer LM)
• Transformer trained for next-word prediction

• initialized by preceding context by default
→ tuned to use input data

• word embeddings fixed

• using copy (pointer-generation) on top
• LM fine-tuned, forced to copy inputs

• additional loss term for copying

• encoder: field-gating LSTM
• 2-layers: bottom (table field info)

added to cell state of top (values)

• learns from very few training examples
• reasonable outputs with 200 training instances

(Chen et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.18/

newly trained LM context

generate from LM
or copy from input?

during training:
to find out where to copy inputs

input: WikiBio – tables

NPFL099 L8 2020 10

https://www.aclweb.org/anthology/2020.acl-main.18/

Pretrained LMs with Reranking

• Simpler than previous
• Basically the same as seq2seq + reranking

• just with GPT-2 & RoBERTa instead of LSTMs

• GPT-2 fine-tuned for <data> name[Zizzi] eatType[bar] <text> Zizzi is a bar .

• on the target datasets

• beam search decoding

• RoBERTa for classification
• accurate/omission/repetition/hallucination/value error

• training data synthesized
• “accurate” examples from original training data

• others created by manipulating the data and texts
(adding/removing/replacing sentences and/or data items)

11NPFL099 L8 2020

prompt (fed into GPT-2)

this is decoded
given the prompt

(Harkous et al., 2020)
http://arxiv.org/abs/2004.06577

http://arxiv.org/abs/2004.06577

Two-step: content selection & realization

• explicit content planning step (selection & ordering)
• designed for sports report generation – longer texts, selection needed

• records (team / entity / type / value) → summary

• record encoder: feed-forward + attention gate

• content selection: pointer network
• decode records with top attention

• generation: pointer-generator net
• generating/copying tokens

• attending over selected records

• two-stage training
• selected records extracted

automatically from texts

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

col1 col2 col3 col4

input
sigmoid

NPFL099 L8 2020

http://arxiv.org/abs/1809.00582

Two-step: content selection & realization

13NPFL099 L8 2020

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

source statistics target text
content plan
• automatic conversion
• content selection is done here

(shown for 1st sentence)

team ID – home/visiting

http://arxiv.org/abs/1809.00582

Two-step: content planning & realization

• create explicit text plans by aggregating inputs
• RDF triples → list of trees (one per sentence)

• joining + ordering (←→)

• create all possibilities + rank
• product of experts for given features:

• individual arrow directions

• % of reversed

• sentence split + # of triplets in each

• relation bigrams (e.g. p(capital|residence))

• can select the best plan, or a random highly-rated one
• most plans beyond a certain threshold are fine

• training plans extracted automatically
• text is consistent with a plan if it has the right sentence split & assignment + order of entities

• relations are not checked (this is much harder than for entities)

• sentence-by-sentence generation: pointer-generator net
• more faithful than generating everything in one step 14

(Moryossef et al., 2019)
http://arxiv.org/abs/1904.03396

John | residence | London
John | occupation | bartender
England | capital | London

John lives in London, the capital of England,
and works as a bartender.

input RDF

text plan

Π of cond.
distributions

http://arxiv.org/abs/1904.03396

Hidden Semi-Markov Model

• learning latent “templates” (sequences of phrases)
• discrete, induced during training automatically

• provide (some) interpretation

• can be used to condition generation

• HMM on the level of phrases + word-level RNN
• encoder: max-pooling of item embs. + ReLU

• transitions: softmax of
dot prod. of state embs. + transformed inputs

• lengths: uniform

• emissions: RNN with attention over input items + copy

• training – backward algorithm
• can be end-to-end differentiable

(Wiseman et al., 2018) http://aclweb.org/anthology/D18-1356

output words generated by RNN
– depend on input
+ current phrase (state/template)

phrase/state transition
– independent of word-level realization

input

HMM states

NPFL099 L8 2020 15

http://aclweb.org/anthology/D18-1356

Hidden Semi-Markov Model

• phrases can be associated with state numbers
• “Viterbi segmentation” on training data

• this provides the interpretation

• generation – can do “template extraction” first
• collect frequent templates (sequences of phrases/states) from training data

• restrict generation to just one/some of them
• constrained beam search

(within phrases only, state transitions are given)

• allows for diversity
• choosing different templates each time

• allows checking what slots are generated

• outputs not as fluent as plain seq2seq

16NPFL099 L8 2020

55 – 59 – 12 – 3 – 50 – 1 -17 – 26 – 16 – 2 – 8 – 25 – 40 –
53 – 19 – 23 – 2

name[_], type[_], rating[_], food[_], area[_], price[_]

(Wiseman et al., 2018) http://aclweb.org/anthology/D18-1356

http://aclweb.org/anthology/D18-1356

Explicit Segmentation

• Same idea, just 1 segment = 1 data record
• exception: “null record” for phrases like and, is a, there is

• HSMM used more fine-grained segments – this has better interpretation

• Segment-record alignment is learned + explicit
• enumerating all possibilities – forward/EM algorithm

• Generation on 2 levels, using LSTMs:
• choosing record → decoding its words

• record transitions – depends on 1 previous record & all previous words

• word generation
• attention is limited to current record

• end-of-segment symbol = move to next segment

17NPFL099 L8 2020

data records

generated words/segments

end-of-segment symbol
(not used to update RNN state)

(Shen et al., 2020)
https://www.aclweb.org/anthology/2020.acl-main.641

https://www.aclweb.org/anthology/2020.acl-main.641

Realizing from Trees

• Input: tree-shaped MRs
• hierarchy: discourse relation ↓ dialogue act ↓ slot

• can be automatically induced, much flatter than usual syntactic trees
• discourse connectives, sentence splits

• could potentially use other tree-like structures (such as the text plans made from RDF)

• Output: annotated responses
• generate trees parallel to MRs – more guidance for the generator

• less ambiguity, the MR shows a sentence plan as well

• can use standard seq2seq/pointer-generator, with linearized trees

(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220

Parker is not expecting any snow, but today there’s a very likely chance of
heavy rain showers and it’ll be partly cloudy

18NPFL099 L8 2020

http://arxiv.org/abs/1906.07220

Realizing from Trees

• Consistency checks – constrained decoding
• when decoding, check any non-terminal against the MR

• disallow any opening tokens not covered by MR

• disallow any closing brackets until all children from MR are generated

• Tree-aware model
• n-ary TreeLSTM encoder – copies the input MR tree structure bottom-up

• LSTM conditioned not on just previous, but all child nodes
• all LSTM equations sum 𝑁 nodes (padded with zeros for fewer children)

• Tree-aware decoder
• nothing special, just use both current & previous hidden state in final prediction

(Luong attention + previous hidden state)
• previous state is often the parent tree node

• all of this improves consistency & data-efficiency

NPFL099 L8 2020
(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220
(Rao et al., 2019) https://www.aclweb.org/anthology/W19-8611/

OK

this token will be disallowed

(Luong et al., 2015)
http://arxiv.org/abs/1508.04025

http://arxiv.org/abs/1906.07220
https://www.aclweb.org/anthology/W19-8611/
http://arxiv.org/abs/1508.04025

Generating trees

• Adapting seq2seq to produce real (not just linearized) trees
• generating tree topology along with the output

• using 2 LSTM decoders:
• rule RNN

• produces CFG rules

• applies them top-down, left-to-right
(expand current non-terminal)

• word RNN
• turned on upon seeing a pre-terminal

• generates terminal phrase word-by-word

• ends with <eop> token, switch back to rule RNN

• rule RNN’s state is updated when word RNN generates

• can work for any type of trees
• but found to work best for binary trees without linguistic information

(Wang et al., 2018)
https://www.aclweb.org/anthology/D18-1509/

pre-terminals

generated tree

decoding process

w
o

rd
 R

N
N

ru
le

 R
N

N

20NPFL099 L8 2020

https://www.aclweb.org/anthology/D18-1509/

“Unsupervised” NLG

• treat an NLG system as a denoising autoencoder
• “fill in missing/corrupted sentences”

• DA is a “corrupted sentence” with just the values to generate

• preparing unlabeled data:
• removing only frequent words

(~assuming these are not slot values)

• shuffling, but keeping original bigrams

• adding more out-of-domain data (news)

• model: standard seq2seq

• works better than supervised (lower BLEU, but better accuracy)

• only works for simple DAs
• E2E restaurants: not even a real DA, just slots & values, overlap with text

21NPFL099 L8 2020
(Freitag & Roy, 2018)
http://aclweb.org/anthology/D18-1426

this one is used

+

+

http://aclweb.org/anthology/D18-1426

BART for NLG

• BART ~ BERT (encoder) + GPT-2 (decoder)

• LM pretrained for denoising autoencoding

• works nicely when finetuned for data-to-text
• encode linearized data, decode text

• just like seq2seq

• multilingual BART → allows multilingual generation
• the model works well for machine translation

• can generate Russian outputs from English triples

22NPFL099 L8 2020

(Kasner & Dušek, 2020, WebNLG workshop – upcoming)

(Liu et al., 2020)
http://arxiv.org/abs/2001.08210

(Lewis et al., 2019)
https://arxiv.org/abs/1910.13461

http://arxiv.org/abs/2001.08210
https://arxiv.org/abs/1910.13461

Summary

• good NLG = seq2seq + reranking
• problems: hallucination, omission etc.

• improvements:
• GPT-2 + RoBERTa reranking

• data manipulation: cleaning, augmentation

• NLG-NLU joint training
• for data cleaning, augmentation, semi-supervised

• 2-step: planning & realization

• more supervision – tree decoding

• “unsupervised” NLG – denoising (incl. BART – pretrained for denoising)

23NPFL099 L8 2020

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

24NPFL099 L8 2020

Next week: End-to-end models

Labs in 10 minutes
Project topic description – today!

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

