
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

7. Dialogue Policy (2)
+ Language Generation

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

10. 11. 2020

http://ufal.cz/npfl099

Recap from last time: Reinforcement Learning

• RL = find a policy that maximizes long-term reward
• MDP representation: agent in an environment

• taking actions, moving across states, getting rewards

• optimization approaches:
• Monte Carlo – sample (a dialogue), then update

• Temporal Difference – look ahead, refine estimates as you go

• actor (optimize policy directly) vs. critic (indirectly via state/action values)

• Q-networks – optimizing indirectly (critic) via 𝑸 = action-value function
• 𝑄 = expected return of taking action 𝑎 in state 𝑠 under policy 𝜋

• greedy policy under 𝑄: “choose what’s best for next step according to 𝑄”

• if 𝑄 is optimal, its greedy policy is also optimal

• Deep 𝑄 Networks = just represent 𝑄 with a neural net
• + a few tricks (experience replay, target freezing)

2

Policy Gradients

• Instead of value functions, train a network to represent the policy
• allows better action sampling – according to actual stochastic policy

• no need for 𝜖-greedy (which is partially random, suboptimal)

• To optimize, we need a performance metric: 𝐽 𝜃 = 𝑉𝜋𝜃(𝑠0)
• expected return in starting state when following 𝜋𝜃
• we want to directly optimize this using gradient ascent

• Policy Gradient Theorem:
• expresses ∇𝐽 𝜃 in terms of ∇𝜋 𝑎 𝑠, 𝜃

∇𝐽 𝜃 ∝

𝑠

𝜇 𝑠

𝑎

𝑄𝜋 𝑠, 𝑎 ∇𝜋 𝑎 𝑠, 𝜃 = 𝐸𝜋

𝑎

𝑄𝜋 𝑠, 𝑎 ∇𝜋 𝑎 𝑠, 𝜃

3NPFL099 L7 2020

𝜇(𝑠) is state probability under 𝜋 – this is the same as expected value 𝐸𝜋

(Sutton & Barto, 2018; p. 324ff)

REINFORCE: Monte Carlo Policy Gradients

• direct search for policy parameters by stochastic gradient ascent
• looking to maximize performance 𝐽 𝜽 = 𝑉𝜋𝜃 𝑠0

• choose learning rate 𝛼, initialize 𝜽 arbitrarily

• loop forever:
• generate an episode 𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇, following 𝜋(⋅ | ⋅, 𝜽)

• for each 𝑡 = 0,1…𝑇: 𝜽 ← 𝜽 + 𝛼𝛾𝑡𝑅𝑡∇ ln 𝜋(𝑎𝑡|𝑠𝑡 , 𝜽)

4

returns 𝑅𝑡 = σ𝑖=𝑡
𝑇−1 𝛾𝑖−𝑡𝑟𝑖+1

variant – advantage instead of returns:
discounting a baseline

𝑏 𝑠 (predicted by any model)
𝐴𝑡 = 𝑅𝑡 − 𝑏(𝑠𝑡) instead of 𝑅𝑡

gives better performance

this is stochastic ∇𝐽 𝜽 :
• from policy gradient theorem
• using single action sample 𝑎𝑡
• expressing 𝑄𝜋 as 𝑅𝑡 (under 𝐸𝜋)

• using ∇ ln 𝑥 =
∇𝑥

𝑥

𝑉(𝑠) is actually a good 𝑏(𝑠)

this will guarantee
the right state
distribution/frequency 𝜇(𝑠)

(Sutton & Barto, 2018; p. 327f)NPFL099 L7 2020

Policy Gradients (Advantage) Actor-Critic

• REINFORCE + 𝑉 approximation + TD estimates – better convergence
• differentiable policy 𝜋 𝑎 𝑠, 𝜽

• differentiable state-value function parameterization 𝑉 𝑠,𝒘

• two learning rates 𝛼𝜽, 𝛼𝒘

• loop forever:
• set initial state 𝑠 for the episode

• for each step 𝑡 of the episode:
• sample action 𝑎 from 𝜋 ⋅ 𝑠, 𝜽 , take 𝑎 and observe reward 𝑟 and new state 𝑠′

• compute advantage 𝐴 ← 𝑟 + 𝛾 𝑉 𝑠′, 𝒘 − 𝑉(𝑠, 𝒘)

• update 𝜽 ← 𝜽 + 𝛼𝜽𝛾𝑡𝐴∇ ln𝜋(𝑎|𝑠, 𝜽), 𝒘 ← 𝒘+ 𝛼𝒘 ⋅ 𝐴∇ 𝑉(𝑠,𝒘)

• 𝑠 ← 𝑠′

5NPFL099 L7 2020

actor (policy update)

same as REINFORCE, except:
• we use 𝑉 𝑠,𝒘 as baseline
• 𝑟 is used instead of 𝑅𝑡 (TD instead of MC)

TD: update
after each step

critic (value function update)

𝒔 𝒔

𝒔

(Su et al., 2017)
http://arxiv.org/abs/1707.00130

http://arxiv.org/abs/1707.00130

ACER: Actor-Critic with Experience Replay

• off-policy actor-critic – using experience replay buffer
• same approach as Q learning

• since ER buffer has past experience with out-of-date policies (using “old” ෨𝜃),
it’s considered off-policy (behaviour policy 𝜋 ෨𝜃 ≠ target policy 𝜋𝜃)
• sampling behaviour from 𝜋 ෨𝜃 is biased w. r. t. 𝜋𝜃

• correcting the bias – importance sampling: multiply by importance weight 𝜌𝑡 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋 ෨𝜃(𝑎𝑡|𝑠𝑡)

• all updates are summed over batches & importance-sampled

• new objective/performance metric: 𝐸𝑡[
𝜋𝜃 𝑎𝑡 𝑠𝑡
𝜋 ෨𝜃 𝑎𝑡 𝑠𝑡

መ𝐴𝑡]

6NPFL099 L7 2020

(Wang et al., 2017) http://arxiv.org/abs/1611.01224
(Su et al., 2017) http://arxiv.org/abs/1707.00130
(Weisz et al., 2018) http://arxiv.org/abs/1802.03753

using advantage instead of returns

batch average
over timesteps 𝑡 importance sampled

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753

TRACER: Trust-Region ACER

• ACER may be unstable/slow to learn
• prone to excessively large updates

– need to set learning rates low
• high learning rate = unstable, high variance

• low learning rate = too slow

• → regularize: limit KL-divergence change
between updated policy 𝜃 & average policy 𝜃

• 𝜃 is a moving average of past policies: 𝜃 ← 𝛼𝜃 + 1 − 𝛼 𝜃

• modified policy gradient 𝑔 is defined as:

min
𝑔

1

2
∇𝜃 − 𝑔

2

2
so that ∇𝐾𝐿[𝜋𝜃(𝑠𝑡)| 𝜋𝜃 𝑠𝑡

𝑇𝑔 ≤ 𝜉

• minimizing sum of squared differences (L2)

• i.e. the closest you can get to the gradient,
but don’t increase KL between the average and new policy too much

• quadratic programming, has closed-form solution

7

(Wang et al., 2017) http://arxiv.org/abs/1611.01224
(Su et al., 2017) http://arxiv.org/abs/1707.00130
(Weisz et al., 2018) http://arxiv.org/abs/1802.03753

standard update
(excessive)

trust region

https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

(approx. increase in KL)

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753
https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

Proximal Policy Optimization

• Changing the objective to be more like trust-region
• without the need to adjust gradients & do the optimization

• Basically clipping the ACER objective

• define 𝑟𝑡 𝜃 =
𝜋𝜃 𝑎𝑡 𝑠𝑡
𝜋 ෨𝜃 𝑎𝑡 𝑠𝑡

– ratio to old params

• starting from 𝐸𝑡
𝜋𝜃 𝑎𝑡 𝑠𝑡
𝜋 ෨𝜃 𝑎𝑡 𝑠𝑡

መ𝐴𝑡 = 𝐸𝑡 𝑟𝑡 𝜃 መ𝐴𝑡 (see ACER)

• using 𝐸𝑡 min 𝑟𝑡 𝜃 መ𝐴𝑡, clip 𝑟𝑡 𝜃 1−𝜖
1+𝜖 መ𝐴𝑡

8NPFL099 L7 2020

original clipped to stay close to 1

minimum – lower bound on the unclipped objective

optimization
starting
point

can’t get
much higher

(Schulman et al., 2017) http://arxiv.org/abs/1707.06347

positive
advantages

negative
advantages

http://arxiv.org/abs/1707.06347

Rewards in RL

• Reward function is critical for successful learning

• Handcrafting is not ideal
• domain knowledge typically needed to detect dialogue success

• need simulated or paid users,
can’t learn from users without knowing their task

• paid users often fail to follow pre-set goals

• Having users provide feedback is costly & inconsistent
• real users don’t have much incentive to be cooperative

• Learning/optimizing the rewards is desirable

9NPFL099 L7 2020

Supervised dialogue quality estimation

• turn features → RNN/CNN → success/fail or return (multi-class/regression)
• user & system DA (one-hot)

• belief state (per-slot prob. distributions)

• turn number

• trained from data collected by training a DM
with a user simulator
• using handcrafted rewards

• success/failure & return known

• acc. >93% on 18k dialogues, ~85-90% on 1k dialogues
• binary RNN best (not too huge differences)

• used as reward estimator ≥ handcrafted
• similar performance & doesn’t need known goals

• can learn from real users

• still ultimately based on handcrafted rewards
10

turn features

turn features

(Su et al., 2015)
http://arxiv.org/abs/1508.03386

http://arxiv.org/abs/1508.03386

Turn-level Quality Estimation

Interaction Quality

• turns annotated by experts (Likert 1-5)

• trained model (SVM/RNN)
• very low-level features

• mostly ASR-related

• multi-class classification

• result is domain-independent
• trained on a very small corpus (~200 dialogues)

• same model applicable to different datasets

• can be used in a RL reward signal
• works better than task success

current
turn

last 3
turns

whole
dialogue

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019)
https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/

“reject” = ASR output
doesn’t match in-domain LM

NPFL099 L7 2020

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/

Reward as discriminator

• no predefined rewards, learn from data
• known success, but learned reward for it

• success = match user slot values
& provide all requested information

• discriminator: LSTM + max-pooling
• classify 1/0 successful (from dataset) vs. simulated over whole dialogue

• dialogue manager
• LSTM tracker & feed-forward policy in a single model

• supervised pretraining + GAN-style training
• supervised reward learning = “inverse RL”

• DM: REINFORCE with rewards from discriminator

• discriminator: sample with current DM
& train to classify successful vs. simulated

12

discriminator

(Liu & Lane, 2018) http://arxiv.org/abs/1805.11762

dialogue manager

integrated
state tracker

http://arxiv.org/abs/1805.11762

Reward as discriminator

• comparing rewards
• oracle = 1/0 successful/failed

• designed = +1 for each correct slot,
+1 for each informed request (with correct slots)

• pretrained = without the GAN training

• adversarial = full setup with GAN training

• adversarial better than handcrafted

• can also learn from partial user feedback
• counters disadvantage for dialogues different

from previous policy

• use discriminator if feedback is not available

• further slight improvement

NPFL099 L7 2020

kn
o

w
n

g

o
a

l o
n

ly
a

ls
o

u

n
kn

o
w

n

(Liu & Lane, 2018) http://arxiv.org/abs/1805.11762

does not copy the
actual dialogue success

(results on DSTC2 data)

http://arxiv.org/abs/1805.11762

Turn-level adversarial rewards

• discriminator: policy vs. human-human
• irrespective of success → can be done on turn level

• policy 𝜋 & reward estimator 𝑓 are feed-forward
• ReLU, 1 hidden layer

• still the same process:
• pretrain both 𝜋 & 𝑓 using supervised learning

• sample dialogs using 𝜋

• update 𝑓 to distinguish sampled vs. human-human

• update 𝜋 using rewards provided by 𝑓

• using proximal policy optimization to update 𝜋

• using 2 different user simulators
• provides more diversity

14
(Takanobu et al., 2019) http://arxiv.org/abs/1908.10719

rule-based
feed-forward feed-forward

generated

human-human
from data

2 simulators:
- agenda/rules
- seq2seq

domains
(previous slide)

(this model)

NPFL099 L7 2020

http://arxiv.org/abs/1908.10719

Alternating supervised & RL

• we can do better than just supervised pretraining

• alternate regularly
• start with supervised more frequently

• alleviate sparse rewards, but don’t completely avoid exploring

• later do more RL
• but don’t forget what you learned by supervised learning

• options:
• schedule supervised every 𝑁 updates

• same + increase 𝑁 gradually

• use supervised after RL does poorly (worse than baseline)
• baseline = moving average over history + 𝜆 ⋅ std. error of the average

• agent is less likely to be worse than baseline in later stages of learning

15NPFL099 L7 2020
(Xiong et al., 2018)
http://arxiv.org/abs/1806.06187

http://arxiv.org/abs/1806.06187

Natural Language Generation

• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective:
given input & communication goal,

create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

16

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition

NLG Subtasks (textbook pipeline)

• Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

• Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

• Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

• Text 17

organizing content into sentences
& merging simple sentences

this is needed for NLG
in dialogue systems

typically handled by
dialogue manager

in dialogue systems
deciding

what to say

deciding
how to say it

e.g. restaurant vs. it

NLG Basic Approaches

• canned text
• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• NNs made it work much better

18NPFL099 L7 2020

Template-based NLG

• Most common in dialogue systems
• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

19NPFL099 L7 2020

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex

Neural End-to-End NLG: RNNLG

• Unlike previous, doesn’t need alignments
• no need to know which word/phrase

corresponds to which slot

• Using RNNs, generating word-by-word
• neural language models conditioned on DA

• generating delexicalized texts

• input DA represented as binary vector

• Enhanced LSTM cells (SC-LSTM)
• special part of the cell (gate)

to control slot mentions

20NPFL099 L7 2020

delexicalized (~generated templates)

after lexicalization (templates filled in)
R

N
N

R
N

N

R
N

N

R
N

N

R
N

N

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

dialogue act
binary representation

dialogue act
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

Seq2seq NLG (TGen)

• Standard seq2seq with attention
• encoder – triples <DA type, slot, value>

• decodes words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

21NPFL099 L7 2020

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

https://aclweb.org/anthology/P16-2008

Delexicalization vs. Copy/Pointer net

• Most models still use it
• preprocess/postprocess step – names to <placeholders>

• generator works with template-like stuff

• Alternative – copy mechanisms (see NLU)
• generate or point & copy from input

• does away with the pre/postprocessing

• Czech & other languages with rich morphology
• basic delexicalization or copy don’t work

• nouns need to be inflected
(unlike English, where they only have 1 form)

• basically another step needed: inflection model
• one option: RNN LM

NPFL099 L7 2020

Baráčnická rychta je na <area>

Baráčnická rychta is in Malá Strana

inform(name=Baráčnická rychta, area=Malá Strana)

Malá Strana nominative
Malé Strany genitive
Malé Straně dative, locative
Malou Stranu accusative
Malou Stranou instrumental

0.10
0.07
0.60
0.10
0.03

lstm lstm lstm lstm

(Shi et al., 2018) http://arxiv.org/abs/1812.02303
(Dušek & Jurčíček, 2019) https://arxiv.org/abs/1910.05298

http://arxiv.org/abs/1812.02303
https://arxiv.org/abs/1910.05298

Ensembling

• “two heads are better than one” – use more models & aggregate
• common practice in neural models elsewhere in NLP

• base version: same model, different random initializations

• getting diverse predictions: use different models
• different architectures – e.g. CNN vs. LSTM encoder

• different data – diverse ensembling
• cluster training data & train different models on different portions

• clustering & training can be done jointly:
• assign into groups randomly/train 𝑘 models for 1 iteration

• check prob. of each training instance under each model

• reassign to model that predicts it with highest probability

23NPFL099 L7 2020
(Juraska et al., 2018) http://arxiv.org/abs/1805.06553
(Gehrmann et al., 2018) https://www.aclweb.org/anthology/W18-6505

it
er

a
te

 u
n

ti
l

a
ss

ig
n

m
en

ts

co
n

ve
rg

e

http://arxiv.org/abs/1805.06553
https://www.aclweb.org/anthology/W18-6505

Ensembling

• combine predictions from multiple models:
• just use the model that’s best on development data

• won’t give diverse outputs, but may give better quality

• compose n-best list from predictions of all models
• n-best lists are more diverse

• assuming reranking (e.g. checking against input DA)

• vote on the next word at each step / average predicted word distributions
• & force-decode chosen word with all models

• this is rather slow

• might not even work:
• each model may expect different sentence structures, combination can be incoherent

24NPFL099 L7 2020

Problems with neural NLG

• Checking the semantics
• neural models tend to forget / hallucinate (make up irrelevant stuff)

• reranking works currently best to mitigate this, but it’s not perfect

• Delexicalization needed (at least some slots)
• otherwise the data would be too sparse

• alternative: copy mechanisms

• Diversity & complexity of outputs
• still can’t match humans by far

• needs specific tricks to improve this
• vanilla seq2seq models tend to produce repetitive outputs

• Still more hassle than writing up templates

25NPFL099 L7 2020

(Dušek et al., 2019)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)

(Puzikov & Gurevych, 2018)
https://www.aclweb.org/anthology/W18-6557

http://arxiv.org/abs/1901.07931
https://www.aclweb.org/anthology/W18-6557

Summary

• Policy optimization
• optimizing directly (Policy Gradient Theorem)

• REINFORCE = Monte Carlo policy gradients

• advantage =return – baseline

• policy gradients actor-critic = REINFORCE + TD + state value estimates

• ACER (actor-critic with experience replay) + extensions

• RL rewards: critical for good performance & can be (partially) learned

• NLG: system DA → text
• templates work pretty well

• seq2seq & similar = best data-driven
• problems: hallucination, not enough diversity

• fixes: reranking, delexicalization/copy nets, ensembling

26NPFL099 L7 2020

Thanks

27NPFL099 L7 2020

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:
• Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

No class next week (holiday)

24 November: rest of NLG
+ hints on your experiments

No labs today (project questions?)
Topic deadline – today!

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

