NPFL099 Statistical Dialogue Systems 7. Dialogue Policy (2) + Language Generation

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

10.11.2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Recap from last time: Reinforcement Learning

- RL = find a **policy** that maximizes long-term reward
 - MDP representation: agent in an environment
 - taking actions, moving across states, getting rewards
- optimization approaches:
 - Monte Carlo sample (a dialogue), then update
 - Temporal Difference look ahead, refine estimates as you go
 - actor (optimize policy directly) vs. critic (indirectly via state/action values)
- Q-networks optimizing indirectly (critic) via *Q* **= action-value function**
 - $Q = expected return of taking action a in state s under policy <math>\pi$
 - greedy policy under Q: "choose what's best for next step according to Q"
 - if Q is optimal, its greedy policy is also optimal
- Deep Q Networks = just represent Q with a neural net
 - + a few tricks (experience replay, target freezing)

Policy Gradients

- Instead of value functions, train a network to represent the policy
 - allows better action sampling according to actual stochastic policy
 - no need for ϵ -greedy (which is partially random, suboptimal)
- To optimize, we need a **performance metric**: $J(\theta) = V^{\pi_{\theta}}(s_0)$
 - expected return in starting state when following π_{θ}
 - we want to directly optimize this using gradient ascent

• Policy Gradient Theorem:

• expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s,\theta)$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) = E_{\pi} \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) \right]$$

 $\mu(s)$ is state probability under π – this is the same as expected value E_{π}

REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:
 - generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot | \cdot, \theta)$
 - for each $t = 0, 1 \dots T$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi (a_t | s_t, \boldsymbol{\theta})$

returns
$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

this will guarantee
the right state
distribution/frequency μ(s)

this is stochastic $\nabla J(\boldsymbol{\theta})$:

- from policy gradient theorem
- using single action sample a_t
- expressing Q^{π} as R_t (under E_{π})

• using
$$\nabla \ln x = \frac{\nabla x}{x}$$

variant – **advantage** instead of returns: discounting a **baseline** b(s) (predicted by any model) $A_t = R_t - b(s_t)$ instead of R_t gives better performance V(s) is actually a good b(s)

Policy Gradients (Advantage) Actor-Critic

- REINFORCE + V approximation + TD estimates better convergence
 - differentiable policy $\pi(a|s, \theta)$
 - differentiable state-value function parameterization $\hat{V}(s, w)$
 - two learning rates $\alpha^{\theta}, \alpha^{w}$
- loop forever:
 - set initial state *s* for the episode
 - for each step t of the episode:
 - sample action a from $\pi(\cdot | s, \theta)$, take a and observe reward r and new state s'
 - compute **advantage** $A \leftarrow r + \gamma \hat{V}(s', w) \hat{V}(s, w)$

• update
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^{t} A \nabla \ln \pi(a|s, \boldsymbol{\theta}), \boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha^{\boldsymbol{w}} \cdot A \nabla \hat{V}(s, \boldsymbol{w})$$

•
$$s \leftarrow s'$$

actor (policy update)

TD: update after each step

- same as REINFORCE, except: • we use $\hat{V}(s, w)$ as baseline
- r is used instead of R_t (TD instead of MC)

critic (value function update)

ACER: Actor-Critic with Experience Replay

- off-policy actor-critic using **experience replay** buffer
 - same approach as Q learning
 - since ER buffer has past experience with out-of-date policies (using "old" $\tilde{\theta}$), it's considered off-policy (behaviour policy $\pi_{\tilde{\theta}} \neq$ target policy π_{θ})
 - sampling behaviour from $\pi_{\tilde{\theta}}$ is biased w. r. t. π_{θ}
 - correcting the bias **importance sampling**: multiply by importance weight $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$
 - all updates are summed over batches & importance-sampled
 - new objective/performance metric: $\hat{E}_t \begin{bmatrix} \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t \end{bmatrix}$

using advantage instead of returns

batch average over timesteps *t*

importance sampled

TRACER: Trust-Region ACER

 (Wang et al., 2017)
 http://arxiv.org/abs/1611.01224

 (Su et al., 2017)
 http://arxiv.org/abs/1707.00130

 (Weisz et al., 2018)
 http://arxiv.org/abs/1802.03753

standard update

(excessive)

trust region

(approx. increase in KL)

- ACER may be unstable/slow to learn
 - prone to excessively large updates
 - need to set learning rates low
 - high learning rate = unstable, high variance
 - low learning rate = too slow
- \rightarrow regularize: **limit KL-divergence change** between updated policy θ & average policy $\overline{\theta}$
 - $\overline{\theta}$ is a moving average of past policies: $\overline{\theta} \leftarrow \alpha \overline{\theta} + (1 \alpha)\theta$
 - modified policy gradient g is defined as: $\min_{g} \frac{1}{2} ||\nabla \theta - g||_{2}^{2} \text{ so that } \nabla KL[\pi_{\overline{\theta}}(s_{t})||\pi_{\theta}(s_{t})]^{T}g \leq \xi$
 - minimizing sum of squared differences (L2)
 - i.e. the closest you can get to the gradient, but don't increase KL between the average and new policy too much
 - quadratic programming, has closed-form solution

Proximal Policy Optimization

- Changing the objective to be more like trust-region
 - without the need to adjust gradients & do the optimization
- Basically clipping the ACER objective
 - define $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)}$ ratio to old params
 - starting from $\hat{E}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\tilde{\theta}}(a_t|s_t)} \hat{A}_t \right] = \hat{E}_t [r_t(\theta) \hat{A}_t]$ (see ACER)
 - using $\hat{E}_t \left[\min(r_t(\theta) \hat{A}_t, \operatorname{clip}[r_t(\theta)]_{1-\epsilon}^{1+\epsilon} \hat{A}_t) \right]$ original clipped to stay close to 1

minimum – lower bound on the unclipped objective

Rewards in RL

- Reward function is critical for successful learning
- Handcrafting is not ideal
 - domain knowledge typically needed to detect dialogue success
 - need simulated or paid users, can't learn from users without knowing their task
 - paid users often fail to follow pre-set goals
- Having users provide feedback is costly & inconsistent
 - real users don't have much incentive to be cooperative
- Learning/optimizing the rewards is desirable

Supervised dialogue quality estimation

- turn features → RNN/CNN → success/fail or return (multi-class/regression)
 - user & system DA (one-hot)
 - belief state (per-slot prob. distributions)
 - turn number
- trained from data collected by training a DM with a user simulator
 - using handcrafted rewards
 - success/failure & return known
 - acc. >93% on 18k dialogues, ~85-90% on 1k dialogues
 - binary RNN best (not too huge differences)
- used as reward estimator \geq handcrafted
 - similar performance & doesn't need known goals
 - can learn from real users
 - still ultimately based on handcrafted rewards

Turn-level Quality Estimation

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019) https://doi.org/10.1016/j.specom.2015.06.003 https://doi.org/10.21437/Interspeech.2017-1032 https://aclweb.org/anthology/W19-5902/

Interaction Quality

- turns annotated by experts (Likert 1-5)
- trained model (SVM/RNN)
 - very low-level features
 - mostly ASR-related
 - multi-class classification
- result is domain-independent
 - trained on a very small corpus (~200 dialogues)
 - same model applicable to different datasets
- can be used in a RL reward signal
 - works better than task success

		Parameter	Description
	1	ASRRecognitionStatus	ASR status: success, no match, no input
current turn	Exchange leve	ASRConfidence	confidence of top ASR results
		RePrompt?	is the system question the same as in the previous turn?
		ActivityType	general type of system action: statement, question
		Confirmation?	is system action confirm?
whole dialogue	Dialogue level	MeanASRConfidence	mean ASR confidence if ASR is success
		#Exchanges	number of exchanges (turns)
		#ASRSuccess	count of ASR status is success
		%ASRSuccess	rate of ASR status is success
		#ASRRejections	count of ASR status is reject
		%ASRRejections	rate of ASR status is reject
last 3 turns	Window level	{Mean}ASRConfidence	mean ASR confidence if ASR is success
		{#}ASRSuccess	count of ASR is success
		{#}ASRRejections	count of ASR status is reject
		{#}RePrompts	count of times RePromt? is
		{#}SystemQuestions	true count of ActivityType is ques- tion

Reward as discriminator

- no predefined rewards, learn from data
 - known success, but learned reward for it
 - success = match user slot values & provide all requested information
- discriminator: LSTM + max-pooling
 - classify 1/0 successful (from dataset) vs. simulated over whole dialogue
- dialogue manager
 - LSTM tracker & feed-forward policy in a single model
- supervised pretraining + GAN-style training
 - supervised reward learning = "inverse RL"
 - DM: REINFORCE with rewards from discriminator
 - discriminator: sample with current DM & train to classify successful vs. simulated

Reward as discriminator

• comparing rewards

does not copy the actual dialogue success

- goal only **oracle** = 1/0 successful/failed ullet
 - **designed** = +1 for each correct slot,
 - +1 for each informed request (with correct slots)
 - **pretrained** = without the GAN training
 - **adversarial** = full setup with GAN training
 - adversarial better than handcrafted
- can also learn from partial user feedback
 - counters disadvantage for dialogues different from previous policy
 - use discriminator if feedback is not available
 - further slight improvement

known

also

unknown

(Liu & Lane, 2018) http://arxiv.org/abs/1805.11762

Turn-level adversarial rewards

- discriminator: policy vs. human-human
 - irrespective of success \rightarrow can be done on turn level
- policy π & reward estimator f are feed-forward
 - ReLU, 1 hidden layer
- still the same process:
 - pretrain both $\pi \& f$ using supervised learning
 - sample dialogs using π
 - update *f* to distinguish sampled vs. human-human
 - update π using rewards provided by f
- using proximal policy optimization to update π
- using 2 different user simulators
 - provides more diversity

Alternating supervised & RL

- we can do better than just supervised pretraining
- alternate regularly
 - start with supervised more frequently
 - alleviate sparse rewards, but don't completely avoid exploring
 - later do more RL
 - but don't forget what you learned by supervised learning
- options:
 - schedule supervised every *N* updates
 - same + increase *N* gradually
 - use supervised after RL does poorly (worse than baseline)
 - baseline = moving average over history + λ · std. error of the average
 - agent is less likely to be worse than baseline in later stages of learning

Natural Language Generation

- conversion of system action semantics → text (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model e.g. "user wants short answers"
 - dialogue history e.g. for referring expressions, avoiding repetition

can be any kind of

knowledge representation

• general NLG objective:

given input & communication goal, create accurate + natural, well-formed, human-like text

- additional NLG desired properties:
 - variation
 - simplicity
 - adaptability

NLG Subtasks (textbook pipeline)

- Inputs
- • Content/text/document planning
- deciding content selection according to communication goal
- what to say basic structuring & ordering
 - Content plan

↓ Sentence planning/microplanning

- aggregation (facts → sentences)
- lexical choice
- referring expressions ,
- Sentence plan

e.g. restaurant vs. it

↓ Surface realization

deciding
linearization according to grammar
word order, morphology

organizing content into sentences & merging simple sentences

typically handled by

dialogue manager

in dialogue systems

this is needed for NLG in dialogue systems

• Text

NLG Basic Approaches

canned text

- most trivial completely hand-written prompts, no variation
- doesn't scale (good for DTMF phone systems)

templates

- "fill in blanks" approach
- simple, but much more expressive covers most common domains nicely
- can scale if done right, still laborious
- most production dialogue systems

• grammars & rules

- grammars: mostly older research systems, realization
- rules: mostly content & sentence planning

machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- NNs made it work much better

Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation

'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
 "Alright, from {from_stop} to {to_stop},",

'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
 "Alright, to {to_stop} in {arrival_time_rel},",

'iconfirm(arrival_time="{arrival_time}")':
 "You want to be there at {arrival_time},",

(Alex public transport information rules) 'iconfirm(arrival_time_rel="{arrival_time_rel}")':
https://github.com/UFAL-DSG/alex "You want to get there in {arrival_time_rel},",

NPFL099 L7 2020

Neural End-to-End NLG: RNNLG

(Wen et al, 2015; 2016) http://aclweb.org/anthology/D15-1199 http://arxiv.org/abs/1603.01232

- Unlike previous, doesn't need alignments
 - no need to know which word/phrase corresponds to which slot

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

- Using RNNs, generating word-by-word
 - neural language models conditioned on DA
 - generating delexicalized texts
- input DA represented as binary vector
- Enhanced LSTM cells (SC-LSTM)
 - special part of the cell (gate) to control slot mentions

Seq2seq NLG (TGen)

- Standard seq2seq with attention
 - encoder triples <DA type, slot, value>
 - decodes words (possibly delexicalized)
- Beam search & reranking
 - DA classification of outputs
 - checking against input DA

Delexicalization vs. Copy/Pointer net

- Most models still use it
 - preprocess/postprocess step names to <placeholders>
 - generator works with template-like stuff
- Alternative **copy mechanisms** (see NLU)
 - generate or point & copy from input
 - does away with the pre/postprocessing
- Czech & other languages with rich morphology
 - basic delexicalization or copy don't work
 - nouns need to be inflected (unlike English, where they only have 1 form)
 - basically another step needed: inflection model
 - one option: RNN LM

inform(name=Baráčnická rychta, area=Malá Strana)

Ensembling

- "two heads are better than one" use more models & aggregate
 - common practice in neural models elsewhere in NLP
- base version: same model, different random initializations
- getting diverse predictions: use different models
 - different architectures e.g. CNN vs. LSTM encoder
 - different data diverse ensembling
 - cluster training data & train different models on different portions
 - clustering & training can be done jointly:
 - assign into groups randomly/train *k* models for 1 iteration
 - check prob. of each training instance under each model
 - reassign to model that predicts it with highest probability

(Juraska et al., 2018) <u>http://arxiv.org/abs/1805.06553</u> (Gehrmann et al., 2018) <u>https://www.aclweb.org/anthology/W18-6505</u>

assignments

converge

iterate until

Ensembling

- combine predictions from multiple models:
 - just use the model that's best on development data
 - won't give diverse outputs, but may give better quality
 - compose n-best list from predictions of all models
 - n-best lists are more diverse
 - assuming reranking (e.g. checking against input DA)
 - vote on the next word at each step / average predicted word distributions
 - & force-decode chosen word with all models
 - this is rather slow
 - might not even work:
 - each model may expect different sentence structures, combination can be incoherent

Problems with neural NLG

- Checking the semantics
 - neural models tend to forget / hallucinate (make up irrelevant stuff)
 - reranking works currently best to mitigate this, but it's not perfect
- Delexicalization needed (at least some slots)
 - otherwise the data would be too sparse
 - alternative: copy mechanisms
- Diversity & complexity of outputs
 - still can't match humans by far
 - needs specific tricks to improve this
 - vanilla seq2seq models tend to produce repetitive outputs
- Still more hassle than writing up templates

(Puzikov & Gurevych, 2018) https://www.aclweb.org/anthology/W18-6557

open sets, verbatim on the output (e.g., restaurant/area names)

Summary

- Policy optimization
 - optimizing directly (Policy Gradient Theorem)
 - REINFORCE = Monte Carlo policy gradients
 - advantage = return baseline
 - policy gradients actor-critic = REINFORCE + TD + state value estimates
 - ACER (actor-critic with experience replay) + extensions
- RL **rewards**: critical for good performance & can be (partially) learned
- **NLG**: system DA \rightarrow text
 - templates work pretty well
 - **seq2seq** & similar = best data-driven
 - problems: hallucination, not enough diversity
 - fixes: reranking, delexicalization/copy nets, ensembling

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

Topic deadline – today!

No class next week (holiday)

No labs today (project questions?)

24 November: rest of NLG + hints on your experiments

- Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
- Karpathy (2016): Deep Reinforcement Learning Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
- David Silver's course on RL (UCL): <u>http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</u>
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): <u>http://incompleteideas.net/book/the-book.html</u>
- Milan Straka's course on RL (Charles University): <u>http://ufal.mff.cuni.cz/courses/npfl122/</u>
- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation <u>http://arxiv.org/abs/1703.09902</u>
- My PhD thesis (2017), especially Chapter 2: <u>http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf</u>