
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

6. Dialogue Policy
Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

3. 11. 2020

http://ufal.cz/npfl099

Dialogue Management

• Two main components:
• State tracking (last lecture)

• Action selection/Policy (today)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal

2NPFL099 L6 2020

Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)

Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning

3NPFL099 L6 2020

Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You’d need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have

4NPFL099 L6 2020

RL World Model: Markov Decision Process

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮 (~ dialogue state)

• takes actions 𝑎𝑡 ∈ 𝒜 (~ system dialogue acts)

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• rewards are typically handcrafted
• very high positive for a successful dialogue (e.g. +40)

• high negative for unsuccessful dialogue (-10)

• small negative for every turn (-1, promote short dialogues)

• Markov property – state defines everything
• no other temporal dependency

• policy may be deterministic or stochastic
• stochastic: prob. dist. of actions, sampling

5

(from Milica Gašić’s slides)

(Sutton & Barto, 2018)

Partially-observable MDPs

• POMDPs – belief states instead of dialogue states
• true states (“what the user wants”) are not observable

• observations (“what the system hears”) depend on states

• belief – probability distribution over states

• can be viewed as MDPs with continuous-space states

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• Deep RL typically works out of the box
• function approximation approach, allows continuous states

NPFL099 L6 2020

(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

observation

state

action

reward

https://en.wikipedia.org/wiki/Voronoi_diagram

Simulated Users

• Static datasets aren’t enough for RL
• on-policy algorithms don’t work

• data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE/supervised policy from data

• combination (best!) 7(from Milica Gašić’s slides)

Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates

8NPFL099 L6 2020

(from Milica Gašić’s slides)

Reinforcement learning: Definition

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return

9NPFL099 L6 2020

𝑅𝑡 =

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)

State-value Function

• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠)
• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1
• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:

10NPFL099 L6 2020

𝑉𝜋 𝑠 = 𝔼

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 =

𝑎∈𝒜

𝜋 𝑠, 𝑎

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing
𝑎 from 𝑠 under 𝜋

transition
probs.

expected
immediate

reward

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step

Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) – return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎 also defines a greedy policy:

NPFL099 L6 2020

𝑄𝜋 𝑠, 𝑎 = 𝔼

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 =

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔

1

of 𝑎′s
for 𝑎 = argmax

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 function itself tends to be more complex than 𝑉

Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return 𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗ 𝑠 ≥ 𝑉𝜋′(𝑠) ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max
𝜋

𝑉𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max
𝜋

𝑄𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠 and 𝑄∗ 𝑠, 𝑎 are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages

12NPFL099 L6 2020

RL Agents Taxonomy

• Quantity to optimize:
• value function – critic

• either 𝑄 or 𝑉, typically 𝑄 in practice

• policy – actor

• both – actor-critic

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠))

• nice but typically not satisfied in practice

• model-free (don’t assume anything, sample)
• this is the usual real-world case

• this is where using 𝑄 instead of 𝑉 comes handy

13NPFL099 L6 2020

(from David Silver’s slides)

main focus today

next week

Reinforcement Learning Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment → not practical for real-world use

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates:
• on-policy – improve the policy while you’re using it for decisions

• can’t use that with batch learning (decision policy is changing constantly)

• off-policy – decide according to a different policy

14NPFL099 L6 2020

both used
in practice

Deep Reinforcement Learning

• Exactly the same as “plain” RL
• agent & environment, actions & rewards

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• function approximation approach
• 𝑄 values / policy are represented as a parameterized function 𝑄(𝑠, 𝑎; 𝜽) / 𝜋 𝑠; 𝜽

• enumerating in a table would take up too much space, be too sparse

• the parameters 𝜃 are optimized

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states

• needs tricks to make it stable
15

(Sutton & Barto, 2018)

Q-Learning

• temporal difference – update 𝑄 as you go

• off-policy – directly estimates best 𝑄∗

• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝛜-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′

NPFL099 L6 2020

update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

any policy that chooses all
actions & states enough times

will converge to 𝑄∗ 𝑠, 𝑎 :
we need to explore to converge

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

TD: moving estimates

𝑎 =
argmax

𝑎
𝑄(𝑠, 𝑎) with probability 1 − ϵ

random action with probability ϵ

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Deep Q-Networks

• Q-learning, where 𝑄 function is represented by a neural net

• “Usual” Q-learning doesn’t converge well with NNs:
a) SGD is unstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)

d) scale of rewards & 𝑄 values unknown → numeric instability

• → DQN adds fixes:
a) minibatches (updates by averaged 𝑛 samples, not just one)

b) experience replay

c) freezing target Q function

d) clipping rewards

17NPFL099 L6 2020

cool!

common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

DQN tricks

• Experience replay – break correlated samples
• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over

NPFL099 L6 2020

loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own
‘supervised’ training data”

“have a fixed target,
like in supervised learning”

18

DQN algorithm

• initialize 𝜽 randomly
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• set initial state 𝑠
• for all timesteps 𝑡 = 1…𝑇 in the episode:

• select action 𝑎𝑡 from 𝜖-greedy policy based on 𝑄(𝜽)
• take 𝑎𝑡, observe reward 𝑟𝑡+1 and new state 𝑠𝑡+1
• store 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in 𝐷

• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps (rarely):
• ഥ𝜽 ← 𝜽

19NPFL099 L6 2020

storing experience
(1 step of Q-learning exploration)

“replay”
a. k. a. training

(1 update)

update the frozen target function

DQN for Atari

• 4-layers:
• 2x CNN

• 2x fully connected with ReLU activations

• Another trick:
• output values for all actions at once

• ~ vector 𝑸(𝑠) instead of 𝑄 𝑠, 𝑎

• 𝑎 is not fed as a parameter

• faster computation

• Learns many games at human level
• with the same network structure

• no game-specific features

20NPFL099 L6 2020

input: Atari 2600 screen,
downsized to 84x84 (grayscale)

4 last frames

values for all actions
(joystick moves)

(Mnih et al., 2015)

(from David Silver’s slides)
https://youtu.be/V1eYniJ0Rnk?t=18

https://youtu.be/V1eYniJ0Rnk?t=18

DQN for Dialogue Systems

• DQN can drive dialogue action selection/policy

• warm start needed to make the training actually work:
• pretrain the network using supervised learning

• replay buffer spiking – initialize using simple rule-based policy
• so there are at least a few successful dialogues

• the RL agent has something to catch on

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

rule-based simulator
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer

replay memory
initialized using a

simple handcrafted policy

movie ticket booking:
better than rule-based

(Lipton et al., 2018)
https://arxiv.org/abs/1608.05081

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot
https://arxiv.org/abs/1608.05081

BBQ – Bayes-by-Backprop Q-Networks

• better exploration than 𝜖-greedy – explore uncertain regions

• Bayes-by-Backprop – probability distribution over network weights
• start from prior 𝑝 𝜃 , learn posterior 𝑝(𝜃|𝐷) for training data 𝐷

• posterior approximated by Gaussians 𝑞(𝜃|𝑤), each 𝜃𝑖~𝒩(𝜇𝑖 , 𝜎𝑖)
• now learning 𝑤𝑖 = {(𝜇𝑖, 𝜌𝑖)}where 𝜎𝑖 = log(1 + exp𝜌𝑖), to keep 𝜎𝑖 positive

• VAE-style: minimizing KL divergence between 𝑞 and 𝑝, reparameterization trick

• using BB to represent DQN + posterior (Thompson) sampling
• actions sampled acc. to posterior probability that they’re optimal in current state

• just sample 𝜃𝑡 from 𝑞, then choose 𝑎𝑡 = argmax
𝑎

𝑄 𝑠𝑡 , 𝑎; 𝜃𝑡

• no need to sample from the frozen target network, just use 𝜇
• it’s faster, actually more stable

22NPFL099 L6 2020 (Lipton et al., 2018) https://arxiv.org/abs/1608.05081

https://arxiv.org/abs/1608.05081

BBQ performance

23NPFL099 L6 2020

MLP with 2 hidden layers, ReLU, width=256
movie booking task
one-hot dialogue state representation (268 dim)
39 actions (basic hello(), deny(), thanks() etc. + inform/request for each slot)

𝜖-greedy

no sampling from
frozen network

sampling from
frozen network

(enhanced rewards with surprisal)

(Lipton et al., 2018)
https://arxiv.org/abs/1608.05081

https://arxiv.org/abs/1608.05081

Recurrent Q-Networks

• Joint dialogue tracking & action selection
• actions are either system DAs or updates to state

(DB hypothesis)

• forced to alternate action types by masking

• rewards from DB for narrowing down selection

• Models the Q-network as a LSTM
• or rather LSTM underlying multiple MLPs

• LSTM maintains internal state representation

• 1 MLP for system DAs

• 1 MLP per slot (action=select value X)

NPFL099 L6 2020

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560

(masked out)
Q for
system DA
actions

Q for DB actions

user observation
previous action

DB observation

http://arxiv.org/abs/1606.02560

Deep Dyna-Q: learning from humans & simulator

• humans are costly, simulators are inaccurate

• ⇒ learn from both, improve simulator as you go
• direct RL = learn from users

• world model learning = improve internal simulator
• supervised, based on previous dialogues with users

• planning = learn from simulator

• DQN, feed-forward policy

• simulator: feed-forward multi-task net
• draw a goal uniformly at the start

• predict actions, rewards, termination

• use 𝐾 simulated (“planning”) dialogues per 1 real

• discriminative DDQ: only use a simulated dialogue
if it looks real (according to a discriminator)

user action

internal simulator = world model

reward terminate?

movie booking:
name, date, # tickets etc.

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416

https://www.aclweb.org/anthology/P18-1203
https://www.aclweb.org/anthology/D18-1416

Hierarchical RL

• good for multiple subtasks
• e.g. book a flight to London and a hotel for the same day,

close to the airport

• top-level policy: select subtask 𝑔𝑖

• low-level policy: actions 𝑎𝑗,𝑔𝑖 to complete subtask 𝑔𝑖
• given initiation/termination conditions

• keeps on track until terminal state is reached

• shared by all subtasks (subtask=parameter)

• internal critic (=prob. that subtask is solved)

• global state tracker
• integrates information from subtasks

26NPFL099 L7 2019

top-level Q-network low-level Q-network
(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237

http://aclweb.org/anthology/D17-1237

Feudal RL

• spatial (slot-based) split instead of temporal
• doesn’t need defined subtasks & sub-rewards

• belief state representation – features
• master 𝜙𝑚, slot-independent 𝜙𝑖, per-slot 𝜙𝑠𝑘
• handcrafted (could be neural nets)

• supports sharing parameters across domains

• two-step action selection:
1) master action: “slot-dependent or not”?

• master policy

2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)

• chooses max. 𝑄 for all slot-action pairs – involves choosing the slot

• everything is trained using the same global reward signal
27

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

request, confirmhello, inform

inform = “inform over all slots”

http://arxiv.org/abs/1803.03232

Summary

• Action selection = deciding what to do next (following a policy)

• FSM, frames, rule-based, supervised, reinforcement learning

• RL – agent in an environment, taking actions, getting rewards
• MDP formalism (+POMDP can be converted to it)

• dynamic programming, Monte Carlo, Temporal Difference

• optimizing value function 𝑉/𝑄 (critic), policy (actor), or both (actor-critic)

• learning on-policy or off-policy (act by the policy you learn/not)

• summary states might be needed

• user simulators: good to use & mix with humans

• DQN – representing & optimizing 𝑄 function with a network
• minibatches, target function freezing, experience replay

• multiple tasks: hierarchical / feudal RL
28NPFL099 L6 2020

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.)
http://incompleteideas.net/book/the-book.html

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

29

Next Tue 9:50am:
Direct Policy Optimization
Language Generation

No labs today (project questions?)
Topic deadline: Nov 10
Fixes for datasets required

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1809.08267
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

