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Dialogue Management

• Two main components:
• State tracking (last lecture)

• Action selection/Policy (today)

• action selection – deciding what to do next
• based on the current belief state – under uncertainty

• following a policy (strategy) towards an end goal (e.g. book a flight)

• controlling the coherence & flow of the dialogue

• actions: linguistic & non-linguistic

• DM/policy should:
• manage uncertainty from belief state

• recognize & follow dialogue structure

• plan actions ahead towards the goal
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Did you say Indian or Italian?

follow convention, don’t be repetitive

e.g. ask for all information you require

(from Milica Gašić’s slides)



Action Selection Approaches

• Finite-state machines
• simplest possible

• dialogue state is machine state

• Frame-based (VoiceXML)
• slot-filling + providing information – basic agenda

• rule-based in essence

• Rule-based
• any kind of rules (e.g. Python code)

• Statistical
• typically using reinforcement learning
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Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?
• set of possible actions is known

• belief state should provide all necessary features

• Yes, but…
• You’d need sufficiently large human-human data – hard to get

• human-machine would just mimic the original system

• Dialogue is ambiguous & complex
• there’s no single correct next action– multiple options may be equally good

• but datasets will only have one next action

• some paths will be unexplored in data, but you may encounter them

• DSs won’t behave the same as people
• ASR errors, limited NLU, limited environment model/actions

• DSs should behave differently – make the best of what they have
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RL World Model: Markov Decision Process 

• MDP = probabilistic control process
• modelling situations that are partly random, partly controlled

• agent in an environment:
• has internal state 𝑠𝑡 ∈ 𝒮 (~ dialogue state)

• takes actions 𝑎𝑡 ∈ 𝒜 (~ system dialogue acts)

• actions chosen according to policy 𝜋: 𝒮 → 𝒜

• gets rewards 𝑟𝑡 ∈ ℝ & state changes from the environment

• rewards are typically handcrafted
• very high positive for a successful dialogue (e.g. +40)

• high negative for unsuccessful dialogue (-10)

• small negative for every turn (-1, promote short dialogues)

• Markov property – state defines everything 
• no other temporal dependency

• policy may be deterministic or stochastic
• stochastic: prob. dist. of actions, sampling
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(from Milica Gašić’s slides)

(Sutton & Barto, 2018)



Partially-observable MDPs

• POMDPs – belief states instead of dialogue states 
• true states (“what the user wants”) are not observable

• observations (“what the system hears”) depend on states

• belief – probability distribution over states

• can be viewed as MDPs with continuous-space states

• All MDP algorithms work…
• if we quantize/discretize the states

• use grid points & nearest neighbour approaches

• this might introduce errors / make computation complex

• Deep RL typically works out of the box
• function approximation approach, allows continuous states
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(from Milica Gašić’s slides)

grey = observed
white = unobserved

https://en.wikipedia.org/wiki/Voronoi_diagram

observation

state

action

reward

https://en.wikipedia.org/wiki/Voronoi_diagram


Simulated Users

• Static datasets aren’t enough for RL
• on-policy algorithms don’t work

• data might not reflect our newly learned behaviour 

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE/supervised policy from data

• combination (best!) 7(from Milica Gašić’s slides)



Summary Space

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates 
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(from Milica Gašić’s slides)



Reinforcement learning: Definition

• RL = finding a policy that maximizes long-term reward
• unlike supervised learning, we don’t know if an action is good

• immediate reward might be low while long-term reward high

• state transition is stochastic → maximize expected return 
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𝑅𝑡 =෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1
accumulated 

long-term
reward

𝛾 ∈ [0,1] = discount factor
(immediate vs. future reward trade-off)

𝛾 < 1 : 𝑅𝑡 is finite (if 𝑟𝑡 is finite)
𝛾 = 0 : greedy approach (ignore future rewards)

𝔼[𝑅𝑡|𝜋, 𝑠0] expected 𝑅𝑡 if we start from state 𝑠0 and follow policy 𝜋

alternative – episodes: only count to 𝑇 when we encounter a terminal state
(e.g. 1 episode = 1 dialogue)



State-value Function

• Using return, we define the value of a state 𝑠 under policy 𝜋: 𝑉𝜋(𝑠)
• Expected return for starting in state 𝑠 and following policy 𝜋

• Return is recursive: 𝑅𝑡 = 𝑟𝑡+1 + 𝛾 ⋅ 𝑅𝑡+1
• This gives us a recursive equation (Bellman Equation):

• 𝑉𝜋(𝑠) defines a greedy policy:
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𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠 = ෍

𝑎∈𝒜

𝜋 𝑠, 𝑎 ෍

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′

prob. of choosing 
𝑎 from 𝑠 under 𝜋

transition
probs.

expected 
immediate 

reward

𝜋 𝑠, 𝑎 ≔

1

# of 𝑎′s
for 𝑎 = argmax

𝑎
σ𝑠′∈𝒮 𝑝 𝑠′ 𝑠, 𝑎 (𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′))

0 otherwise

actions that look best for the next step



Action-value (Q-)Function

• 𝑄𝜋(𝑠, 𝑎) – return of taking action 𝑎 in state 𝑠, under policy 𝜋
• Same principle as value 𝑉𝜋(𝑠), just considers the current action, too

• Has its own version of the Bellman equation

• 𝑄𝜋 𝑠, 𝑎 also defines a greedy policy:
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𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎 = ෍

𝑠′∈𝒮

𝑝 𝑠′ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾 ෍

𝑎′∈𝒜

𝑄𝜋 𝑠′, 𝑎′ 𝜋 𝑠′, 𝑎′

𝜋 𝑠, 𝑎 ≔

1

# of 𝑎′s
for 𝑎 = argmax

𝑎
𝑄𝜋(𝑠, 𝑎)

0 otherwise

simpler: no need to enumerate 𝑠′,
no need to know 𝑝(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎, 𝑠′)

again, “actions that look best for the next step”

but 𝑄 function itself tends to be more complex than 𝑉



Optimal Policy in terms of 𝑽 and 𝑸

• optimal policy 𝜋∗ – one that maximizes expected return  𝔼[𝑅𝑡|𝜋]
• 𝑉𝜋(𝑠) expresses 𝔼[𝑅𝑡|𝜋] → use it to define 𝜋∗

• 𝜋∗ is a policy such that 𝑉𝜋∗ 𝑠 ≥ 𝑉𝜋′(𝑠) ∀𝜋′, ∀𝑠 ∈ 𝒮
• 𝜋∗ always exists in an MDP (need not be unique)

• 𝜋∗ has the optimal state-value function 𝑉∗ 𝑠 ≔ max
𝜋

𝑉𝜋 (𝑠)

• 𝜋∗ also has the optimal action-value function 𝑄∗ 𝑠, 𝑎 ≔ max
𝜋

𝑄𝜋 (𝑠, 𝑎)

• greedy policies with 𝑉∗ 𝑠 and 𝑄∗ 𝑠, 𝑎 are optimal
• we can search for either 𝜋∗, 𝑉∗(𝑠) or 𝑄∗(𝑠, 𝑎) and get the same result

• each has their advantages and disadvantages

12NPFL099 L6 2020



RL Agents Taxonomy

• Quantity to optimize:
• value function – critic

• either 𝑄 or 𝑉, typically 𝑄 in practice

• policy – actor

• both – actor-critic

• Environment model:
• model-based (assume known 𝑝(𝑠′|𝑠, 𝑎), 𝑟(𝑠, 𝑎, 𝑠))

• nice but typically not satisfied in practice

• model-free (don’t assume anything, sample)
• this is the usual real-world case

• this is where using 𝑄 instead of 𝑉 comes handy
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(from David Silver’s slides)

main focus today

next week



Reinforcement Learning Approaches

• How to optimize:
• dynamic programming – find the exact solution from Bellman equation

• iterative algorithms, refining estimates

• expensive, assumes known environment → not practical for real-world use

• Monte Carlo learning – learn from experience
• sample, then update based on experience

• Temporal difference learning – like MC but look ahead (bootstrap)
• sample, refine estimates as you go

• Sampling & updates: 
• on-policy – improve the policy while you’re using it for decisions

• can’t use that with batch learning (decision policy is changing constantly)

• off-policy – decide according to a different policy

14NPFL099 L6 2020

both used 
in practice



Deep Reinforcement Learning

• Exactly the same as “plain” RL
• agent & environment, actions & rewards

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• function approximation approach
• 𝑄 values / policy are represented as a parameterized function 𝑄(𝑠, 𝑎; 𝜽) / 𝜋 𝑠; 𝜽

• enumerating in a table would take up too much space, be too sparse

• the parameters 𝜃 are optimized

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states

• needs tricks to make it stable
15

(Sutton & Barto, 2018)



Q-Learning

• temporal difference – update 𝑄 as you go

• off-policy – directly estimates best 𝑄∗

• regardless of policy used for sampling

• choose learning rate 𝛼, initialize 𝑄 arbitrarily

• for each episode:
• choose initial 𝑠

• for each step:
• choose 𝑎 from 𝑠 according to 𝛜-greedy policy based on 𝑄

• take action 𝑎, observe observe reward 𝑟 and state 𝑠′

• 𝑄 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 ⋅ max
𝑎′

𝑄 𝑠′, 𝑎′

• 𝑠 ← 𝑠′
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update uses best 𝑎′, regardless of current policy:
𝒂′ is not necessarily taken in the actual episode

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

any policy that chooses all 
actions & states enough times 

will converge to 𝑄∗ 𝑠, 𝑎 :
we need to explore to converge

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html  

TD: moving estimates

𝑎 =
argmax

𝑎
𝑄(𝑠, 𝑎) with probability 1 − ϵ

random action with probability ϵ

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


Deep Q-Networks

• Q-learning, where 𝑄 function is represented by a neural net

• “Usual” Q-learning doesn’t converge well with NNs:
a) SGD is unstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)

d) scale of rewards & 𝑄 values unknown → numeric instability

• → DQN adds fixes:
a) minibatches (updates by averaged 𝑛 samples, not just one)

b) experience replay

c) freezing target Q function

d) clipping rewards
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cool!

common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236


DQN tricks

• Experience replay – break correlated samples
• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over 
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loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own 
‘supervised’ training data”

“have a fixed target, 
like in supervised learning”

18



DQN algorithm

• initialize 𝜽 randomly 
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• set initial state 𝑠
• for all timesteps 𝑡 = 1…𝑇 in the episode:

• select action 𝑎𝑡 from 𝜖-greedy policy based on 𝑄(𝜽)
• take 𝑎𝑡, observe reward 𝑟𝑡+1 and new state 𝑠𝑡+1
• store 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 in 𝐷

• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps (rarely):
• ഥ𝜽 ← 𝜽
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storing experience
(1 step of Q-learning exploration)

“replay”
a. k. a. training

(1 update)

update the frozen target function



DQN for Atari

• 4-layers:
• 2x CNN 

• 2x fully connected with ReLU activations

• Another trick:
• output values for all actions at once

• ~ vector 𝑸(𝑠) instead of 𝑄 𝑠, 𝑎

• 𝑎 is not fed as a parameter

• faster computation

• Learns many games at human level
• with the same network structure

• no game-specific features
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input: Atari 2600 screen,
downsized to 84x84 (grayscale)

4 last frames

values for all actions
(joystick moves)

(Mnih et al., 2015)

(from David Silver’s slides)
https://youtu.be/V1eYniJ0Rnk?t=18

https://youtu.be/V1eYniJ0Rnk?t=18


DQN for Dialogue Systems

• DQN can drive dialogue action selection/policy

• warm start needed to make the training actually work:
• pretrain the network using supervised learning

• replay buffer spiking – initialize using simple rule-based policy
• so there are at least a few successful dialogues

• the RL agent has something to catch on

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

rule-based simulator 
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer

replay memory 
initialized using a 

simple handcrafted policy

movie ticket booking:
better than rule-based

(Lipton et al., 2018)
https://arxiv.org/abs/1608.05081

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot
https://arxiv.org/abs/1608.05081


BBQ – Bayes-by-Backprop Q-Networks

• better exploration than 𝜖-greedy – explore uncertain regions

• Bayes-by-Backprop – probability distribution over network weights
• start from prior 𝑝 𝜃 , learn posterior 𝑝(𝜃|𝐷) for training data 𝐷

• posterior approximated by Gaussians 𝑞(𝜃|𝑤), each 𝜃𝑖~𝒩(𝜇𝑖 , 𝜎𝑖)
• now learning 𝑤𝑖 = {(𝜇𝑖, 𝜌𝑖)}where 𝜎𝑖 = log(1 + exp𝜌𝑖), to keep 𝜎𝑖 positive

• VAE-style: minimizing KL divergence between 𝑞 and 𝑝, reparameterization trick

• using BB to represent DQN + posterior (Thompson) sampling
• actions sampled acc. to posterior probability that they’re optimal in current state

• just sample 𝜃𝑡 from 𝑞, then choose 𝑎𝑡 = argmax
𝑎

𝑄 𝑠𝑡 , 𝑎; 𝜃𝑡

• no need to sample from the frozen target network, just use 𝜇
• it’s faster, actually more stable

22NPFL099 L6 2020 (Lipton et al., 2018)     https://arxiv.org/abs/1608.05081

https://arxiv.org/abs/1608.05081


BBQ performance
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MLP with 2 hidden layers, ReLU, width=256
movie booking task
one-hot dialogue state representation (268 dim)
39 actions (basic hello(), deny(), thanks() etc. + inform/request for each slot)

𝜖-greedy

no sampling from
frozen network

sampling from
frozen network

(enhanced rewards with surprisal)

(Lipton et al., 2018)
https://arxiv.org/abs/1608.05081

https://arxiv.org/abs/1608.05081


Recurrent Q-Networks

• Joint dialogue tracking & action selection
• actions are either system DAs or updates to state

(DB hypothesis)

• forced to alternate action types by masking

• rewards from DB for narrowing down selection

• Models the Q-network as a LSTM
• or rather LSTM underlying multiple MLPs

• LSTM maintains internal state representation

• 1 MLP for system DAs

• 1 MLP per slot (action=select value X)
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(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560

(masked out)
Q for 
system DA 
actions

Q for DB actions

user observation
previous action

DB observation

http://arxiv.org/abs/1606.02560


Deep Dyna-Q: learning from humans & simulator

• humans are costly, simulators are inaccurate

• ⇒ learn from both, improve simulator as you go
• direct RL = learn from users

• world model learning = improve internal simulator
• supervised, based on previous dialogues with users 

• planning = learn from simulator

• DQN, feed-forward policy

• simulator: feed-forward multi-task net
• draw a goal uniformly at the start

• predict actions, rewards, termination

• use 𝐾 simulated (“planning”) dialogues per 1 real

• discriminative DDQ: only use a simulated dialogue 
if it looks real (according to a discriminator)

user action

internal simulator = world model

reward terminate?

movie booking:
name, date, # tickets etc.

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416

https://www.aclweb.org/anthology/P18-1203
https://www.aclweb.org/anthology/D18-1416


Hierarchical RL

• good for multiple subtasks
• e.g. book a flight to London and a hotel for the same day,

close to the airport

• top-level policy: select subtask 𝑔𝑖

• low-level policy: actions 𝑎𝑗,𝑔𝑖 to complete subtask 𝑔𝑖
• given initiation/termination conditions

• keeps on track until terminal state is reached

• shared by all subtasks (subtask=parameter)

• internal critic (=prob. that subtask is solved)

• global state tracker 
• integrates information from subtasks
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top-level Q-network low-level Q-network
(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237

http://aclweb.org/anthology/D17-1237


Feudal RL

• spatial (slot-based) split instead of temporal
• doesn’t need defined subtasks & sub-rewards

• belief state representation – features
• master 𝜙𝑚, slot-independent 𝜙𝑖, per-slot 𝜙𝑠𝑘
• handcrafted (could be neural nets)

• supports sharing parameters across domains

• two-step action selection:
1) master action: “slot-dependent or not”?

• master policy

2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)

• chooses max. 𝑄 for all slot-action pairs – involves choosing the slot

• everything is trained using the same global reward signal
27

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

request, confirmhello, inform

inform = “inform over all slots”

http://arxiv.org/abs/1803.03232


Summary

• Action selection = deciding what to do next (following a policy)

• FSM, frames, rule-based, supervised, reinforcement learning

• RL – agent in an environment, taking actions, getting rewards
• MDP formalism (+POMDP can be converted to it)

• dynamic programming, Monte Carlo, Temporal Difference

• optimizing value function 𝑉/𝑄 (critic), policy (actor), or both (actor-critic)

• learning on-policy or off-policy (act by the policy you learn/not)

• summary states might be needed

• user simulators: good to use & mix with humans

• DQN – representing & optimizing 𝑄 function with a network
• minibatches, target function freezing, experience replay

• multiple tasks: hierarchical / feudal RL
28NPFL099 L6 2020



Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099
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• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.)
http://incompleteideas.net/book/the-book.html

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
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Next Tue 9:50am: 
Direct Policy Optimization
Language Generation

No labs today (project questions?)
Topic deadline: Nov 10
Fixes for datasets required

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1809.08267
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

