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Dialogue Management

* Two main components: O * (P ©
* State tracking (last lecture) BELIEF TRACKING I PoLIcY

* Action selection/Policy (today) it tu pasT corent Ui el turn

(from Milica Gasic’s slides)

e action selection - deciding what to do next
 based on the current belief state - under uncertainty
* following a policy (strategy) towards an end goal (e.g. book a flight)
 controlling the coherence & flow of the dialogue
* actions: linguistic & non-linguistic

° DM/pO[ICy should: / Did you say Indian or Italian?

* manage uncertainty from belief state
* recognize & follow dialogue structure
* plan actions ahead towards the goal - e.g. ask for all information you require
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. follow convention, don’t be repetitive




Action Selection Approaches

* Finite-state machines
* simplest possible
* dialogue state is machine state

* Frame-based (VoiceXML)

* slot-filling + providing information - basic agenda
* rule-based in essence

* Rule-based
* any kind of rules (e.g. Python code)

* Statistical
* typically using reinforcement learning
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* Action selection ~ classification > use supervised learning?
* set of possible actions is known
* belief state should provide all necessary features

* Yes, but...

* You’d need sufficiently large human-human data - hard to get
* human-machine would just mimic the original system
* Dialogueis ambiguous & complex
 there’s no single correct next action- multiple options may be equally good
* but datasets will only have one next action
« some paths will be unexplored in data, but you may encounter them
« DSs won’t behave the same as people

* ASRerrors, limited NLU, limited environment model/actions
* DSs should behave differently - make the best of what they have



* MDP = probabilistic control process

modelling situations that are partly random, partly controlled

agent in an environment:
* hasinternal state s, € S (~ dialogue state)
 takes actions a; € A (~ system dialogue acts)
* actions chosen according to policy m: § = A

» getsrewardsr; € R & state changes from the environment

rewards are typically handcrafted

* very high positive for a successful dialogue (e.g. +40)

* high negative for unsuccessful dialogue (-10)

» small negative for every turn (-1, promote short dialogues)
Markov property - state defines everything

* no othertemporal dependency
policy may be deterministic or stochastic

* stochastic: prob. dist. of actions, sampling

state

(from Milica Gasi¢’s slides)
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Partially-observable MDPs

(from Milica Gasi¢’s slides)

action

* POMDPs - belief states instead of dialogue states
* true states (“what the user wants”) are not observable grey  =observed
 observations (“what the system hears”) depend on states
* belief - probability distribution over states
* can be viewed as MDPs with continuous-space states

* All MDP algorithms work...
* if we quantize/discretize the states observation
* use grid points & nearest neighbour approaches
* this might introduce errors / make computation complex

* Deep RL typically works out of the box
 function approximation approach, allows continuous states

reward

NPFL099 L6 2020 https://en.wikipedia.org/wiki/Voronoi diagram
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» Static datasets aren’t enough for RL
* on-policy algorithms don’t work

 data might not reflect our newly learned behaviour
* RL needs a lot of data, more than real people would handle

» 1k-100k’s dialogues used for training, depending on method

e solution: user simulation
* basically another DS/DM \
* (typically) working on DA level

* errors injected to simulate ASR/NLU

e approaches:
* rule-based (frames/agenda)
* n-grams
* MLE/supervised policy from data
e combination (best!)
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(from Milica Gasi¢’s slides)



Summary Space

» for a typical DS, the belief state is too large to make RL tractable

* solution: map state into a reduced space, optimize there, map back

* reduced space = summary space
* handcrafted state features
* e.g. top slots, # found, slots confirmed...

* reduced action set = summary actions | .

* e.g. just DA types (inform, confirm, reject)
* remove actions that are not applicable
 with handcrafted mapping to real actions

» state is still tracked in original space

Belief space
(Master space)

Summary

o System Actions
(Master actions)

Master

Function
A

Summary space

\ * Function

(Learned) Summary

Policy » Summary actions

(from Milica Gasic¢’s slides)

 we still need the complete information for accurate updates
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Reinforcement learning: Definition

* RL =finding a policy that maximizes long-term reward
* unlike supervised learning, we don’t know if an action is good
* immediate reward might be low while long-term reward high

alternative - episodes: only count to T when we encounter a terminal state
- (e.g. 1 episode = 1 dialogue)

0.0)

accumulated .
— ‘  .
long-term R, = E Y Teeq y € [0,1] = discount factor
reward =0 (immediate vs. future reward trade-off)

vy < 1:R;isfinite (if r; is finite)
vy = 0: greedy approach (ignore future rewards)

* state transition is stochastic > maximize expected return

E[R;|m,sg] «— expected R, if we start from state s, and follow policy 7
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State-value Function

 Using return, we define the value of a state s under policy m: V™ (s)
» Expected return for starting in state s and following policy

* Returnisrecursive: Ry = 1y.1 + Y - Riyq
* This gives us a recursive equation (Bellman Equation):

| ad !
V™(s) = E lz Yire 1|m, s = S] = Z (s, a) Z p(s'ls, a)(r(s a s') + yV”(S’))
t=0 a€EA T s'es T
- expected
prob. of choosing transition ;. adiate
a from s undern probs. reward

* V™ (s) defines a greedy policy:

actions that look best for the next step

!
fora = argmaxZS esP(S'ls, a)(r(s,a,s") +yVT(s"))

J #ofa's

0 otherwise
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Action-value (Q-)Function

* Q" (s,a) - return of taking action a in state s, under policy
« Same principle as value V™ (s), just considers the current action, too
 Has its own version of the Bellman equation

!
Q" (s,a) = [ZV Fesn |, So = S, ap = a] - Z p(s'ls, ) <r<s a,s) +y Z 0" (s', a)n(s',a ))

s'eS a'eA

* Q™ (s, a) also defines a greedy policy:

again, “actions that look best for the next step”

—

simpler: no need to enumerate s’,
no need to know p(s’|s,a) and r(s,a,s")

— T
| #ofa,sfora—argmc?xQ (s,a) «—

0 otherwise \

but Q function itself tends to be more complex than V

(s, a) =

—
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» optimal policy 7* - one that maximizes expected return E[R;|r]
« V™ (s) expresses E[R;|m] > useitto define *

- 7* is a policy such that V™' (s) = V™ (s) Vi',Vs € §

« " always exists in an MDP (need not be unique)
* T* has the optimal state-value function V" (s) := max V" (s)
T

« * also has the optimal action-value function Q*(s,a) := max Q™ (s,a)
T
» greedy policies with V*(s) and Q* (s, a) are optimal

* we can search for either *, V*(s) or Q*(s, a) and get the same result
* each has their advantages and disadvantages



RL Agents Taxonomy

* Quantity to optimize:
* value function - critic

 either Q or V, typically Q in practice

 policy - actor

 both - actor-critic} next week

* Environment model:

&
<

main focus today

* model-based (assume known p(s’|s, a), (s, a, s))

* nice but typically not satisfied in practice

* model-free (don’t assume anything, sample)

e thisisthe usual real-world case

* thisis where using Q instead of IV comes handy

NPFL099 L6 2020

e
~ .

< N
/ y&:d% \‘\\
/ / \

\ \

[ \
\
Value Function / Actor ﬁ Policy
L—TCritic
/
Value-Based / Policy-Based '
\ \
' \ ’.
\ / Medel-Bas: y
| ¢ s1

f
\ Model /

(from David Silver’s slides)
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Reinforcement Learning Approaches

* How to optimize:

« dynamic programming - find the exact solution from Bellman equation

* iterative algorithms, refining estimates
* expensive, assumes known environment - not practical for real-world use

* Monte Carlo learning - learn from experience
* sample, then update based on experience

* Temporal difference learning - like MC but look ahead (bootstrap)
« sample, refine estimates as you go
* Sampling & updates:
 on-policy - improve the policy while you’re using it for decisions
« can’t use that with batch learning (decision policy is changing constantly)
» off-policy - decide according to a different policy

NPFL099 L6 2020

| both used
in practice
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* Exactly the same as “plain” RL

'_l Agent |

* agent & environment, actions & rewards state | | rewarc
s, | IR

» “deep” = part of the agent is handled by a NN

R,

)

-

* value function (typically Q)
* policy

* function approximation approach

H -5‘.._ 1
4

\

Environment ]4i

(Sutton & Barto, 2018)

* Q values/ policy are represented as a parameterized function Q(s,a; 0) / n(s; 0)
* enumerating in a table would take up too much space, be too sparse

» the parameters 6 are optimized

* assuming huge state space
* much fewer weights than possible states
* update based on one state changes many states

* needs tricks to make it stable

action



Q-Learning

» temporal difference - update Q as you go any policy that chooses all
. . . actions & states enough times '
* off-policy - directly estimates best Q* il converge to Q*%S, Q) .
« regardless of policy used for sampling we need to explore to converge .
* choose learning rate a, initialize Q arbitrarily _
» for each episode: - | 3 e i e
hoose initial s argmax Q (s, a) with probability 1 — €
) C a = — a v
- for each step: l random action with probability e

* choose a from s according to e-greedy policy based on Q

 take action a, observe observe reward r and state s’
* Q(s,a)«(1—a)-0(s,a) +«a (r +vy- maxQ(s’,a’))
a

State: S’
Action taken: North (any action)

!/ Y
¢ S« S / :
update uses best a’, regardless of current policy:

a’ is not necessarily taken in the actual episode
TD: moving estimates

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
NPFL099 L6 2020 Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html
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Deep Q-Networks

* Q-learning, where Q function is represented by a neural net

» “Usual” Q-learning doesn’t converge well with NNs:

a) SGDisunstable

b) correlated samples (data is sequential)

c) TD updates aim at a moving target (using Q in computing updates to Q)
d) scale of rewards & Q values unknown - numeric instability

* > DOQN adds fixes:
a) minibatches (updates by averaged n samples, not just one)

b) experience replay ol
c) freezing target Q function '

d) Cllpplng rewards D common NN tricks

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602

NPFLO099 L6 2020 http://www.nature.com/articles/nature14236
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* Experience replay - break correlated samples
 run through some episodes (dialogues, games...) «——

store all tuples (s, a, 7, s") in a buffer

for training, don’t update based on most recent moves - use buffer
* sample minibatches randomly from the buffer

overwrite buffer as you go, clear buffer once in a while
only possible for off-policy

“generate your own
‘supervised’ training data”

' _ 2
loss = E(5 g+ s")ebut [(T' +ymax{ (s',a’;0) — Q(s, a; 9)) ]

* Target Q function freezing
» fix the version of Q function used in update targets
* have a copy of your Q network that doesn’t get updated every time
* onceinawhile, copy your current estimateover < «qe g fixed target,

like in supervised learning”




DQN algorithm

* initialize @ randomly

* initialize replay memory D (e.g. play for a while using current Q(9))

* repeat over all episodes:
* setinitial states
 foralltimestepst = 1...T in the episode:
 select action a; from e-greedy policy based on Q(0)
* take a;, observe reward 1,1 and new state s; 4
« store (S, A, 7441, Se41) iIND

« sample a batch B of random (s,a,r’,s")’sfrom D

—

storing experience

~ (1 step of Q-learning exploration)

—

“replay”

_ 27 L . .
* update 0 using loss E(sa's")eB [(r’ +ymaxQ (s’,a’;0) — Q(s, a; e)) ] a. k. a. training
w, ) a/

* once every A steps (rarely):
RS

NPFL099 L6 2020

update the frozen target function

(1 update)
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DQN for Atari

input: Atari 2600 screen,

. 4—[aye rs: downsized to 84x84 (grayscale)
. 2X CN N 4 la St frames Convolution Convglution Fully connected Fully cgnrj
.
* 2x fully connected with ReLU activations \ (R
. L ==
* Another trick: "
onsatonce——, Hl-aemi-0 o E
* output values for all actions at once ;
« ~vector Q(s) instead of Q(s,a) .
* aisnot fed as a parameter v
* faster computation
* Learns many games at human level values for all actions
* with the same network structure - o) deaw (joystick moves)
* no game-specific features ! i et ol 2015
A~ A
I I I (from David Silver’s slides) -

https://voutu.be/V1eYniJORNk?t=18



https://youtu.be/V1eYniJ0Rnk?t=18

(Lietal.,2017) (Lipton et al., 2018)

D Q N fo r D i a lo g u e SySte m S https://arxiv.org/abs/1703.01008 https://arxiv.org/abs/1608.05081

https://github.com/MiuLab/TC-Bot

* DQN can drive dialogue action selection/policy

* warm start needed to make the training actually work:
* pretrain the network using supervised learning

1.0

* replay buffer spiking - initialize using simple rule-based policy b —msemon
* so there are at least a few successful dialogues
* the RL agent has something to catch on .
EMC _ error model controller 5 Rmepﬂ . -
rule-based simulator 4 user a0ign e Error - (simulating ASR/NLU noise) fj r.
with agenda :

running on DA level T

0

\ State Tracker Rule DQN '
User Sim. Agent | Update w/ User | movie ticket booking:

Le- || Update w/ User i
step 1| | Add Exp. |[Srexste ;‘_‘_‘_'_'_‘_‘:_‘:::_:; better than rule-based
e e S ' 1. state i Get State |
DQN - feed-forward, | Getaction i il replay memory
1 hidden ReLU layer A H K SRR initialized using a

3. (updated) agent action fmmmmmm oo Simple handcrafted pOlicy

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
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* better exploration than e-greedy - explore uncertain regions

* Bayes-by-Backprop - probability distribution over network weights
e start from prior p(8), learn posterior p(8|D) for training data D

 posterior approximated by Gaussians q(8|w), each 8,~N (u;, g;)
* now learning w; = {(u;, p;)} where o; = log(1 + exp p;), to keep g; positive
* VAE-style: minimizing KL divergence between g and p, reparameterization trick

* using BB to represent DQN + posterior (Thompson) sampling
* actions sampled acc. to posterior probability that they’re optimal in current state
* just sample 6, from g, then choose a, = argmax Q(s,, a; 6,)
a

* no need to sample from the frozen target network, just use u
* it’s faster, actually more stable

(Lipton etal.,2018) https://arxiv.org/abs/1608.05081



https://arxiv.org/abs/1608.05081

(Lipton et al., 2018)

BBQ performance ..ieozabsiesosos

MLP with 2 hidden layers, ReLU, width=256

movie booking task

one-hot dialogue state representation (268 dim)

39 actions (basic hello(), deny(), thanks() etc. + inform/request for each slot)

NPFLO99 L6 2020

(enhanced rewards with surprisal)

ok

BBQN-VIME-MAP

no sampling from

—— BBQN-VIME-MC
—» —— BBQN-MAP
0.5
frozen network i
DQN-VIME-MAP
DQN-VIME-MC

sampling from 5
frozen network

- = DQN-Bootstrap
= = DQN-Boltzmann

susgess rate
o

o
(N

e-greedy

0.1

0.0
50 100 150 200 250 300 350 400
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Recurrent Q-Networks

» Joint dialogue tracking & action selection Qlor n (maskedow)  Qfor DB actons
* actions are either system DAs or updates to state  actions ™~ J' |
DB hypothests D eto oo SEDEID Ste

Tto @ho CeoGeD @ oo

* rewards from DB for narrowing down selection
* Models the Q-network as a LSTM

* or rather LSTM underlying multiple MLPs @)
« LSTM maintains internal state representation / t .
P _ _ user observation DB observation
* 1 MLP for system DAs previous action
* 1 MLP perslot (action=select value X) { sgen
s \
(Zhao & Eskenazi, 2016) > 3'0‘0""0"'f'5'°t“:"“

http://arxi /abs/1606.02560 ~ Environment / hypothesis, h
NPEL099 L6 2020 ttp://arxiv.org/abs .
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Deep Dyna-Q: learning from humans & simulator

* humans are costly, simulators are inaccurate

(Pengetal., 2018)

https://www.aclweb.org/anthology/P18-1203

(Suetal., 2018)

https://www.aclweb.org/anthology/D18-1416

* = learn from both, improve simulator as you go

e direct RL =learn from users

* world model learning = improve internal simulator

* supervised, based on previous dialogues with users
* planning =learn from simulator

* DQN, feed-forward policy

 simulator: feed-forward multi-task net
» draw a goal uniformly at the start -
 predict actions, rewards, termination
* use K simulated (“planning”) dialogues per 1 real

movie booking:
name, date, # tickets etc.

e discriminative DDQ: only use a simulated dialogue

if it looks real (according to a discriminator)

Human
Conversational Data
Imitation

Learning l

Policy
Model

wg
Dirpct
Reinforpement

Planning

World

Model User

Learhing
Real

World mode .
Experience

learning

user action reward terminate?

a r t
Tesk-Specific j 0])1c’s<‘nr(1‘r1'm

Shared T
layers

[

§: state

D)
1
( ) (a: agent action)

internal simulator = world model
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* good for multiple subtasks L =
* e.g. book aflight to London and a hotel for the same day, o \f:;’;”,if otes
close to the airport e o
* top-level policy: select subtask g; [stg0n
* low-level policy: actions a; ,. to complete subtask g; f[
* given initiation/termination conditions pa TS
* keeps on track until terminal state is reached S -
 shared by all subtasks (subtask=parameter)
* internal critic (=prob. that subtask is solved) a T -
* global state tracker 206 ©-8-6
Low-level Dialogue Policy 14 g(a; ¢, gt)

* integrates information from subtasks

—;g'l '

St — Tg(Gei St) —92 Mag(asiSe ge) —— Q2
_',gn Yt— N e

St—»

top-level Q-network low-level Q-network

(Pengetal., 2017)
http://aclweb.org/anthology/D17-1237
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(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

* spatial (slot-based) split instead of temporal [ o ettt (b)
, . [- . [N O)
* doesn’t need defined subtasks & sub-rewards D) | |fm ® s (5) B (D) b
. . ; bsl sz "
* belief state representation - features ’ //@\ p e F--
. Y Qg:f” Argmax Qgin: ' T :
* master ¢y, slot-independent ¢;, per-slot ¢, Ep ermaser N (R !
* handcrafted (could be neural nets) oo QQQQQ ’an
* supports sharing parameters across domains — =t gmd
* two-step action selection: hello, inform request, confirm
1) master action: “slot-dependent or not”? | T | )
inform = “inform over all slots

* master policy
2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)
» chooses max. Q for all slot-action pairs - involves choosing the slot

 everything is trained using the same global reward signal


http://arxiv.org/abs/1803.03232

* Action selection = deciding what to do next (following a policy)
* FSM, frames, rule-based, supervised, reinforcement learning

* RL - agent in an environment, taking actions, getting rewards
 MDP formalism (+POMDP can be converted to it)
* dynamic programming, Monte Carlo, Temporal Difference
 optimizing value function 1//Q (critic), policy (actor), or both (actor-critic)
* learning on-policy or off-policy (act by the policy you learn/not)

* summary states might be needed
 user simulators: good to use & mix with humans

* DQN - representing & optimizing Q function with a network
* minibatches, target function freezing, experience replay

* multiple tasks: hierarchical / feudal RL
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Contact us: No labs today (project questions?)
https://ufaldsg.slack.com/ Topic deadline: Nov 10
{odusek,hudecek}@ufal.mff.cuni.cz Fixes for datasets required

Skype/Meet/Zoom (by agreement)

Get these slides here: Next Tue 9:50am:

http://ufal.cz/npfl099 Direct Policy Optimization
' ' Language Generation
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