NPFL099 Statistical Dialogue Systems

6. Dialogue Policy

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

3. 11. 2020
Dialogue Management

- Two main components:
 - **State tracking** (last lecture)
 - **Action selection/Policy** (today)

- action selection – deciding what to do next
 - based on the current belief state – under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic

- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

Did you say Indian or Italian?

- follow convention, don’t be repetitive
- e.g. ask for all information you require

(from Milica Gašić’s slides)
Action Selection Approaches

• Finite-state machines
 • simplest possible
 • dialogue state is machine state

• Frame-based (VoiceXML)
 • slot-filling + providing information – basic agenda
 • rule-based in essence

• Rule-based
 • any kind of rules (e.g. Python code)

• Statistical
 • typically using reinforcement learning
Why Reinforcement Learning

• **Action selection ~ classification** → use supervised learning?
 • set of possible actions is known
 • belief state should provide all necessary features
• Yes, but…
 • You’d need sufficiently large **human-human data** – hard to get
 • human-machine would just mimic the original system
 • Dialogue is ambiguous & complex
 • there’s **no single correct next action** – multiple options may be equally good
 • but datasets will only have one next action
 • **some paths will be unexplored** in data, but you may encounter them
 • DSs won’t behave the same as people
 • ASR errors, limited NLU, limited environment model/actions
 • **DSs should behave differently** – make the best of what they have
RL World Model: Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - **agent** in an **environment**:
 - has internal **state** \(s_t \in S \) (~ dialogue state)
 - takes **actions** \(a_t \in A \) (~ system dialogue acts)
 - actions chosen according to **policy** \(\pi: S \rightarrow A \)
 - gets **rewards** \(r_t \in \mathbb{R} \) & state changes from the environment
- rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
- Markov property – state defines everything
 - no other temporal dependency
- policy may be **deterministic** or **stochastic**
 - stochastic: prob. dist. of actions, sampling

(from Milica Gašić’s slides) (Sutton & Barto, 2018)
Partially-observable MDPs

- **POMDPs** – **belief** states instead of dialogue states
 - true states (“what the user wants”) are not observable
 - observations (“what the system hears”) depend on states
 - belief – probability distribution over states
 - can be viewed as **MDPs with continuous-space states**

- All MDP algorithms work…
 - if we **quantize/discretize** the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex

- Deep RL typically works out of the box
 - function approximation approach, allows continuous states

Diagram:

- States (grey = observed, white = unobserved)
- Actions
- Observations
- Transitions

[Source](https://en.wikipedia.org/wiki/Voronoi_diagram)
Simulated Users

- Static datasets aren’t enough for RL
 - on-policy algorithms don’t work
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k’s dialogues used for training, depending on method
- solution: **user simulation**
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE/supervised policy from data
 - combination (best!)

(from Milica Gašić's slides)
Summary Space

• for a typical DS, the belief state is too large to make RL tractable
• solution: map state into a reduced space, optimize there, map back
• reduced space = **summary space**
 • handcrafted state features
 • e.g. top slots, # found, slots confirmed…
• reduced action set = **summary actions**
 • e.g. just DA types (*inform*, *confirm*, *reject*)
 • remove actions that are not applicable
 • with handcrafted mapping to real actions
• state is still tracked in original space
 • we still need the complete information for accurate updates

(from Milica Gašić's slides)
Reinforcement learning: Definition

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don’t know if an action is good
 - immediate reward might be low while long-term reward high

\[R_t = \sum_{t=0}^{\infty} \gamma^t r_{t+1} \]

- accumulated long-term reward

- alternative – **episodes**: only count to \(T \) when we encounter a terminal state (e.g. 1 episode = 1 dialogue)
 - \(\gamma \in [0,1] = \text{discount factor} \)
 - immediate vs. future reward trade-off
 - \(\gamma < 1 : R_t \) is finite (if \(r_t \) is finite)
 - \(\gamma = 0 : \) greedy approach (ignore future rewards)

- state transition is stochastic \(\rightarrow \) maximize **expected return**

\[\mathbb{E}[R_t | \pi, s_0] \]

- expected \(R_t \) if we start from state \(s_0 \) and follow policy \(\pi \)
State-value Function

- Using return, we define the **value of a state** s under policy π: $V^\pi(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

\[
V^\pi(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | \pi, s_0 = s \right] = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} p(s'|s, a) (r(s, a, s') + \gamma V^\pi(s'))
\]

- $V^\pi(s)$ defines a **greedy policy**:

\[
\pi(s, a) := \begin{cases}
\frac{1}{\# \text{of } a's} & \text{for } a = \arg\max_a \sum_{s' \in S} p(s'|s, a) (r(s, a, s') + \gamma V^\pi(s')) \\
0 & \text{otherwise}
\end{cases}
\]
Action-value (Q-)Function

• \(Q^\pi(s, a) \) – return of taking action \(a \) in state \(s \), under policy \(\pi \)
 - Same principle as value \(V^\pi(s) \), just **considers the current action, too**
 - Has its own version of the Bellman equation

\[
Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} \mid \pi, s_0 = s, a_0 = a \right] = \sum_{s' \in S} p(s' \mid s, a) \left(r(s, a, s') + \gamma \sum_{a' \in A} Q^\pi(s', a') \pi(s', a') \right)
\]

• \(Q^\pi(s, a) \) also defines a greedy policy:

\[
\pi(s, a) := \begin{cases}
 \frac{1}{\# \text{ of } a's} & \text{for } a = \arg \max_a Q^\pi(s, a) \\
 0 & \text{otherwise}
\end{cases}
\]

again, “actions that look best for the next step”

simpler: no need to enumerate \(s' \), no need to know \(p(s' \mid s, a) \) and \(r(s, a, s') \)

but \(Q \) function itself tends to be more complex than \(V \)
Optimal Policy in terms of V and Q

- **optimal policy** π^* – one that maximizes expected return $\mathbb{E}[R_t | \pi]$
 - $V^\pi(s)$ expresses $\mathbb{E}[R_t | \pi]$ → use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \geq V^\pi'(s)$ $\forall \pi'$, $\forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) := \max_{\pi} V^\pi(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) := \max_{\pi} Q^\pi(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^*, $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages
RL Agents Taxonomy

- **Quantity to optimize:**
 - value function – **critic**
 - either Q or V, typically Q in practice
 - policy – **actor**
 - both – **actor-critic**

- **Environment model:**
 - **model-based** (assume known $p(s'|s, a), r(s, a, s)$)
 - nice but typically not satisfied in practice
 - **model-free** (don’t assume anything, sample)
 - this is the usual real-world case
 - this is where using Q instead of V comes handy
Reinforcement Learning Approaches

• How to optimize:
 • **dynamic programming** – find the exact solution from Bellman equation
 • iterative algorithms, refining estimates
 • expensive, assumes known environment → not practical for real-world use
 • **Monte Carlo learning** – learn from experience
 • sample, then update based on experience
 • **Temporal difference learning** – like MC but look ahead (bootstrap)
 • sample, refine estimates as you go

• Sampling & updates:
 • **on-policy** – improve the policy while you’re using it for decisions
 • can’t use that with batch learning (decision policy is changing constantly)
 • **off-policy** – decide according to a different policy
Deep Reinforcement Learning

• Exactly the same as “plain” RL
 • agent & environment, actions & rewards

• “deep” = part of the agent is handled by a NN
 • value function (typically Q)
 • policy

• function approximation approach
 • Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 • enumerating in a table would take up too much space, be too sparse
 • the parameters θ are optimized

• assuming huge state space
 • much fewer weights than possible states
 • update based on one state changes many states

• needs tricks to make it stable

(Sutton & Barto, 2018)
Q-Learning

- temporal difference – update Q as you go
- off-policy – directly estimates best Q^*
 - regardless of policy used for sampling
- choose learning rate α, initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ϵ-greedy policy based on Q
 - take action a, observe reward r and state s'
 - $Q(s, a) \leftarrow (1 - \alpha) \cdot Q(s, a) + \alpha \left(r + \gamma \cdot \max_a Q(s', a') \right)$
 - $s \leftarrow s'$

Q^* update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
Deep Q-Networks

• Q-learning, where Q function is represented by a neural net
• “Usual” Q-learning doesn’t converge well with NNs:
 a) SGD is unstable
 b) correlated samples (data is sequential)
 c) TD updates aim at a moving target (using Q in computing updates to Q)
 d) scale of rewards & Q values unknown → numeric instability
• → DQN adds fixes:
 a) minibatches (updates by averaged n samples, not just one)
 b) experience replay
 c) freezing target Q function
 d) clipping rewards

(Mnih et al., 2013, 2015)
http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

cool!

common NN tricks
DQN tricks ~ making it more like supervised learning

- **Experience replay** – break correlated samples
 - run through some episodes (dialogues, games…)
 - store all tuples \((s, a, r', s')\) in a buffer
 - for training, don’t update based on most recent moves – use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

- **Target Q function freezing**
 - fix the version of Q function used in update targets
 - have a copy of your Q network that doesn’t get updated every time
 - once in a while, copy your current estimate over

\[
\text{loss} := \mathbb{E}_{(s,a,r',s') \in \text{buf}} \left[(r' + \gamma \max_a Q(s', a'; \overline{\theta}) - Q(s, a; \theta))^2 \right]
\]
DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \ldots T$ in the episode:
 - select action a_t from ε-greedy policy based on $Q(\theta)$
 - take a_t, observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D
 - sample a batch B of random (s, a, r', s')’s from D
 - update θ using loss $\mathbb{E}_{(s,a,r',s') \in B} \left[\left(r' + \gamma \max_{a'} Q (s', a'; \overline{\theta}) - Q(s, a; \theta) \right)^2 \right]$ “replay” a. k. a. training (1 update)
 - once every λ steps (rarely):
 - $\overline{\theta} \leftarrow \theta$
 update the frozen target function

storing experience
(1 step of Q-learning exploration)
DQN for Atari

- 4-layers:
 - 2x CNN
 - 2x fully connected with ReLU activations

- Another trick:
 - output values for all actions at once
 - vector $Q(s)$ instead of $Q(s, a)$
 - a is not fed as a parameter
 - faster computation

- Learns many games at human level
 - with the same network structure
 - no game-specific features

input: Atari 2600 screen, downsized to 84x84 (grayscale)
4 last frames

values for all actions (joystick moves)

(Mnih et al., 2015)

(input: Atari 2600 screen, downsized to 84x84 (grayscale))

(from David Silver's slides)

https://youtu.be/V1eYniJ0Rnk?t=18
DQN for Dialogue Systems

- DQN can drive dialogue action selection/policy
- **Warm start** needed to make the training actually work:
 - *Pretrain* the network using supervised learning
 - **Replay buffer spiking** – initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

BBQ – Bayes-by-Backprop Q-Networks

• better exploration than ϵ-greedy – explore uncertain regions

• **Bayes-by-Backprop** – probability distribution over network weights
 • start from prior $p(\theta)$, learn posterior $p(\theta|D)$ for training data D
 • posterior approximated by Gaussians $q(\theta|w)$, each $\theta_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 • now learning $w_i = \{(\mu_i, \rho_i)\}$ where $\sigma_i = \log(1 + \exp \rho_i)$, to keep σ_i positive
 • VAE-style: minimizing KL divergence between q and p, reparameterization trick

• using BB to represent DQN + posterior (Thompson) sampling
 • actions sampled acc. to posterior probability that they’re optimal in current state
 • just sample θ_t from q, then choose $a_t = \arg \max_a Q(s_t, a; \theta_t)$

• no need to sample from the frozen target network, just use μ
 • it’s faster, actually more stable
MLP with 2 hidden layers, ReLU, width=256
movie booking task
one-hot dialogue state representation (268 dim)
39 actions (basic `hello()`, `deny()`, `thanks()` etc. + inform/request for each slot)

(enhanced rewards with surprisal)

- ϵ-greedy
- no sampling from frozen network
- sampling from frozen network

(Lipton et al., 2018)
Recurrent Q-Networks

- Joint dialogue tracking & action selection
 - actions are either system DAs or updates to state (DB hypothesis)
 - forced to alternate action types by masking
 - rewards from DB for narrowing down selection
- Models the Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

(Zhao & Eskenazi, 2016)
http://arxiv.org/abs/1606.02560
Deep Dyna-Q: learning from humans & simulator

• humans are costly, simulators are inaccurate
 • ⇒ learn from both, improve simulator as you go
 • direct RL = learn from users
 • world model learning = improve internal simulator
 • supervised, based on previous dialogues with users
 • planning = learn from simulator
 • DQN, feed-forward policy
 • simulator: feed-forward multi-task net
 • draw a goal uniformly at the start
 • predict actions, rewards, termination
 • use K simulated (“planning”) dialogues per 1 real
 • discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416
Hierarchical RL

• good for multiple subtasks
 • e.g. book a flight to London and a hotel for the same day, close to the airport
• top-level policy: select subtask g_i
• low-level policy: actions a_j, g_i to complete subtask g_i
 • given initiation/termination conditions
 • keeps on track until terminal state is reached
 • shared by all subtasks (subtask=parameter)
• internal critic (=prob. that subtask is solved)
• global state tracker
 • integrates information from subtasks

(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237
• spatial (slot-based) split instead of temporal
 - doesn’t need defined subtasks & sub-rewards
• belief state representation – features
 - master ϕ_m, slot-independent ϕ_i, per-slot ϕ_{sk}
 - handcrafted (could be neural nets)
 - supports sharing parameters across domains
• two-step action selection:
 1) master action: “slot-dependent or not”?
 - master policy
 2) primitive action
 a) slot-independent policy
 b) slot-specific policies (with shared parameters, distinguished only by belief state)
 - chooses max. Q for all slot-action pairs – involves choosing the slot
• everything is trained using the same global reward signal

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232
Summary

- Action selection = deciding what to do next (following a policy)
- FSM, frames, rule-based, supervised, reinforcement learning
- RL – agent in an environment, taking actions, getting rewards
 - MDP formalism (+POMDP can be converted to it)
 - dynamic programming, Monte Carlo, Temporal Difference
 - optimizing value function V/Q (critic), policy (actor), or both (actor-critic)
 - learning on-policy or off-policy (act by the policy you learn/not)
- summary states might be needed
- user simulators: good to use & mix with humans
- DQN – representing & optimizing Q function with a network
 - minibatches, target function freezing, experience replay
- multiple tasks: hierarchical / feudal RL
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:

• Nie et al. (2019): Neural approaches to conversational AI: https://arxiv.org/abs/1809.08267
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:

No labs today (project questions?)
Topic deadline: Nov 10
Fixes for datasets required

Next Tue 9:50am: Direct Policy Optimization
Language Generation