NPFL099 Statistical Dialogue Systems 6. Dialogue Policy

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

3.11.2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Dialogue Management

- Two main components:
 - State tracking (last lecture)
 - Action selection/Policy (today)
- action selection deciding what to do next
 - based on the current belief state under uncertainty
 - following a **policy** (strategy) towards an end **goal** (e.g. book a flight)
 - controlling the coherence & flow of the dialogue
 - actions: linguistic & non-linguistic
- DM/policy should:
 - manage uncertainty from belief state
 - recognize & follow dialogue structure
 - plan actions ahead towards the goal

- Did you say Indian or Italian?
- follow convention, don't be repetitive
- e.g. ask for all information you require

Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state
- Frame-based (VoiceXML)
 - slot-filling + providing information basic agenda
 - rule-based in essence
- Rule-based
 - any kind of rules (e.g. Python code)
- Statistical
 - typically using reinforcement learning

Why Reinforcement Learning

• Action selection ~ classification → use supervised learning?

- set of possible actions is known
- belief state should provide all necessary features
- Yes, but...
 - You'd need sufficiently large human-human data hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there's **no single correct next action** multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won't behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs should behave differently make the best of what they have

RL World Model: Markov Decision Process

- MDP = probabilistic control process
 - modelling situations that are partly random, partly controlled
 - agent in an environment:
 - has internal **state** $s_t \in S$ (~ dialogue state)
 - takes **actions** $a_t \in \mathcal{A}$ (~ system dialogue acts)
 - actions chosen according to **policy** $\pi: S \to \mathcal{A}$
 - gets **rewards** $r_t \in \mathbb{R}$ & state changes from the environment
 - rewards are typically handcrafted
 - very high positive for a successful dialogue (e.g. +40)
 - high negative for unsuccessful dialogue (-10)
 - small negative for every turn (-1, promote short dialogues)
 - Markov property state defines everything
 - no other temporal dependency
 - policy may be deterministic or stochastic
 - stochastic: prob. dist. of actions, sampling

⁽Sutton & Barto, 2018)

Partially-observable MDPs

- POMDPs **belief** states instead of dialogue states
 - true states ("what the user wants") are not observable
 - observations ("what the system hears") depend on states
 - belief probability distribution over states
 - can be viewed as MDPs with continuous-space states
- All MDP algorithms work...
 - if we quantize/discretize the states
 - use grid points & nearest neighbour approaches
 - this might introduce errors / make computation complex
- Deep RL typically works out of the box
 - function approximation approach, allows continuous states

https://en.wikipedia.org/wiki/Voronoi_diagram

Simulated Users

- Static datasets aren't enough for RL
 - on-policy algorithms don't work
 - data might not reflect our newly learned behaviour
- RL needs a lot of data, more than real people would handle
 - 1k-100k's dialogues used for training, depending on method
- solution: user simulation
 - basically another DS/DM
 - (typically) working on DA level
 - errors injected to simulate ASR/NLU
- approaches:
 - rule-based (frames/agenda)
 - n-grams
 - MLE/supervised policy from data
 - combination (best!)

Summary Space

- for a typical DS, the belief state is too large to make RL tractable
- solution: map state into a reduced space, optimize there, map back
- reduced space = summary space
 - handcrafted state features
 - e.g. top slots, # found, slots confirmed...
- reduced action set = summary actions
 - e.g. just DA types (*inform, confirm, reject*)
 - remove actions that are not applicable
 - with handcrafted mapping to real actions
- state is still tracked in original space
 - we still need the complete information for accurate updates

(from Milica Gašić's slides)

Reinforcement learning: Definition

- RL = finding a **policy that maximizes long-term reward**
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

state transition is stochastic → maximize expected return

State-value Function

- Using return, we define the **value of a state** s under policy $\pi: V^{\pi}(s)$
 - Expected return for starting in state s and following policy π
- Return is recursive: $R_t = r_{t+1} + \gamma \cdot R_{t+1}$
- This gives us a recursive equation (**Bellman Equation**):

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s\right] = \sum_{a \in \mathcal{A}} \pi(s, a) \sum_{s' \in \mathcal{S}} p(s' | s, a) \left(r(s, a, s') + \gamma V^{\pi}(s')\right)$$

$$prob. of choosing a from s under \pi probs.$$

$$expected immediate reward$$

• $V^{\pi}(s)$ defines a greedy policy:

actions that look best for the next step

$$\pi(s,a) \coloneqq \begin{cases} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a)(r(s,a,s') + \gamma V^{\pi}(s')) \\ 0 \text{ otherwise} \end{cases}$$

Action-value (Q-)Function

- $Q^{\pi}(s, a)$ return of taking action a in state s, under policy π
 - Same principle as value $V^{\pi}(s)$, just considers the current action, too
 - Has its own version of the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi, s_{0} = s, a_{0} = a\right] = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left(r(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} Q^{\pi}(s',a') \pi(s',a')\right)$$

• $Q^{\pi}(s, a)$ also defines a greedy policy:

again, "actions that look best for the next step"

$$\pi(s,a) \coloneqq \begin{bmatrix} \frac{1}{\# \text{ of } a's} \text{ for } a = \arg \max_{a} Q^{\pi}(s,a) & \longrightarrow \text{ simpler: no need to enumerate } s', \\ 0 \text{ otherwise} & & & \\ \text{ but } Q \text{ function itself tends to be more complex than } V \end{bmatrix}$$

Optimal Policy in terms of *V* **and** *Q*

- optimal policy π^* one that maximizes expected return $\mathbb{E}[R_t|\pi]$
 - $V^{\pi}(s)$ expresses $\mathbb{E}[R_t|\pi] \rightarrow$ use it to define π^*
- π^* is a policy such that $V^{\pi^*}(s) \ge V^{\pi'}(s) \ \forall \pi', \forall s \in S$
 - π^* always exists in an MDP (need not be unique)
 - π^* has the **optimal state-value function** $V^*(s) \coloneqq \max_{\pi} V^{\pi}(s)$
 - π^* also has the **optimal action-value function** $Q^*(s, a) \coloneqq \max_{\pi} Q^{\pi}(s, a)$
- greedy policies with $V^*(s)$ and $Q^*(s, a)$ are optimal
 - we can search for either π^* , $V^*(s)$ or $Q^*(s, a)$ and get the same result
 - each has their advantages and disadvantages

RL Agents Taxonomy

- Quantity to optimize:
 - value function **critic** <
 - either Q or V, typically Q in practice
 - policy **actor**
 - both actor-critic
- Environment model:
 - model-based (assume known p(s'|s, a), r(s, a, s))

next week

- nice but typically not satisfied in practice
- model-free (don't assume anything, sample)
 - this is the usual real-world case
 - this is where using Q instead of V comes handy

(from David Silver's slides)

Reinforcement Learning Approaches

- How to optimize:
 - dynamic programming find the exact solution from Bellman equation
 - iterative algorithms, refining estimates
 - expensive, assumes known environment → not practical for real-world use
 - Monte Carlo learning learn from experience
 - sample, then update based on experience
 - **Temporal difference learning** like MC but look ahead (bootstrap)
 - sample, refine estimates as you go
- Sampling & updates:
 - **on-policy** improve the policy while you're using it for decisions
 - can't use that with batch learning (decision policy is changing constantly)
 - **off-policy** decide according to a different policy

both used in practice

Deep Reinforcement Learning

- Exactly the same as "plain" RL
 - agent & environment, actions & rewards
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- function approximation approach
 - Q values / policy are represented as a parameterized function $Q(s, a; \theta) / \pi(s; \theta)$
 - enumerating in a table would take up too much space, be too sparse
 - the parameters θ are optimized
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states
- needs tricks to make it stable

(Sutton & Barto, 2018)

Q-Learning

- temporal difference update Q as you go
- off-policy directly estimates best Q^*
 - regardless of policy used for sampling
- choose learning rate α , initialize Q arbitrarily
- for each episode:
 - choose initial s
 - for each step:
 - choose a from s according to ε-greedy policy based on Q
 - take action *a*, observe observe reward *r* and state *s*'
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \left(r + \gamma \cdot \max_{a'} Q(s',a')\right)$
 - $s \leftarrow s'$

any policy that chooses all actions & states enough times will converge to $Q^*(s, a)$: we need to explore to converge

State: S Action taken: North Action with max Q value at S': East

State: S' Action taken: North (any action)

update uses best a', regardless of current policy: a' is not necessarily taken in the actual episode

TD: moving estimates

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce

Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Deep Q-Networks

- Q-learning, where Q function is represented by a neural net
- "Usual" Q-learning doesn't converge well with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - c) TD updates aim at a moving target (using Q in computing updates to Q)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- \rightarrow DQN adds fixes:
 - a) minibatches (updates by averaged *n* samples, not just one)

cool!

- b) experience replay
- c) freezing target Q function
- d) clipping rewards 🗸

- common NN tricks

17

DQN tricks ~ making it more like supervised learning

- Experience replay break correlated samples
 - run through some episodes (dialogues, games...) •
 - store all tuples (s, a, r', s') in a buffer —
 - for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
 - overwrite buffer as you go, clear buffer once in a while
 - only possible for off-policy

$$\operatorname{loss} \coloneqq \mathbb{E}_{(s,a,r',s')\in \operatorname{buf}}\left[\left(r' + \gamma \max_{a'} Q\left(s',a';\overline{\theta}\right) - Q(s,a;\theta)\right)^{2}\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

"have a fixed target, like in supervised learning"

"generate your own

'supervised' training data"

DQN algorithm

- initialize **\theta** randomly
- initialize replay memory D (e.g. play for a while using current $Q(\theta)$)
- repeat over all episodes:
 - set initial state s
 - for all timesteps $t = 1 \dots T$ in the episode:
 - select action a_t from ϵ -greedy policy based on $Q(\theta)$
 - take a_t , observe reward r_{t+1} and new state s_{t+1}
 - store $(s_t, a_t, r_{t+1}, s_{t+1})$ in D

- storing experience
- (1 step of Q-learning exploration)
- sample a batch B of random (s, a, r', s')'s from D
 - sample a batch *B* of random (*s*, *a*, *r*', *s*') show *D* update $\boldsymbol{\theta}$ using loss $\mathbb{E}_{(s,a,r',s')\in B}\left[\left(r' + \gamma \max_{a'} Q(s',a'; \overline{\boldsymbol{\theta}}) Q(s,a; \boldsymbol{\theta})\right)^2\right]$ a. k. a. training (1 update)
- once every λ steps (rarely):
 - $\overline{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta}$

DQN for Atari

- 4-layers:
 - 2x CNN
 - 2x fully connected with ReLU activations
- Another trick:
 - output values for all actions at once
 - ~ vector Q(s) instead of Q(s, a)
 - *a* is not fed as a parameter
 - faster computation
- Learns many games at human level
 - with the same network structure
 - no game-specific features

DQN for Dialogue Systems

(Li et al., 2017) <u>https://arxiv.org/abs/1703.01008</u> <u>https://github.com/MiuLab/TC-Bot</u>

(Lipton et al., 2018) https://arxiv.org/abs/1608.05081

1.0

8.0 9.0 Rate

seo 0.4

0.2

0.36

p=4.44E-06 0.78

- DQN can drive dialogue action selection/policy
- warm start needed to make the training actually work:
 - pretrain the network using supervised learning
 - replay buffer spiking initialize using simple rule-based policy
 - so there are at least a few successful dialogues
 - the RL agent has something to catch on

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

BBQ – Bayes-by-Backprop Q-Networks

- better exploration than ϵ -greedy explore uncertain regions
- **Bayes-by-Backprop** probability distribution over network weights
 - start from prior $p(\theta)$, learn posterior $p(\theta|D)$ for training data D
 - posterior approximated by Gaussians $q(\theta|w)$, each $\theta_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 - now learning $w_i = \{(\mu_i, \rho_i)\}$ where $\sigma_i = \log(1 + \exp \rho_i)$, to keep σ_i positive
 - VAE-style: minimizing KL divergence between q and p, reparameterization trick
- using BB to represent DQN + posterior (Thompson) sampling
 - actions sampled acc. to posterior probability that they're optimal in current state
 - just sample θ_t from q, then choose $a_t = \arg \max_{a} Q(s_t, a; \theta_t)$
- no need to sample from the frozen target network, just use $\overline{\mu}$
 - it's faster, actually more stable

BBQ performance

(Lipton et al., 2018) https://arxiv.org/abs/1608.05081

MLP with 2 hidden layers, ReLU, width=256
movie booking task
one-hot dialogue state representation (268 dim)
39 actions (basic *hello()*, *deny()*, *thanks()* etc. + inform/request for each slot)

Recurrent Q-Networks

- Joint dialogue tracking & action selection
 - actions are either system DAs or updates to state (DB hypothesis)
 - forced to alternate action types by masking
 - rewards from DB for narrowing down selection
- Models the Q-network as a LSTM
 - or rather LSTM underlying multiple MLPs
 - LSTM maintains internal state representation
 - 1 MLP for system DAs
 - 1 MLP per slot (action=select value X)

(Zhao & Eskenazi, 2016) <u>http://arxiv.org/abs/1606.02560</u>

Deep Dyna-Q: learning from humans & simulator

- humans are costly, simulators are inaccurate
- \Rightarrow learn from both, improve simulator as you go
 - direct RL = learn from users
 - world model learning = improve internal simulator
 - supervised, based on previous dialogues with users
 - planning = learn from simulator
- DQN, feed-forward policy
- simulator: feed-forward multi-task net
 - draw a goal uniformly at the start
 - predict actions, rewards, termination
 - use *K* simulated ("planning") dialogues per 1 real
- discriminative DDQ: only use a simulated dialogue if it looks real (according to a discriminator)

internal simulator = world model

movie booking: name, date, # tickets etc.

Hierarchical RL

- good for multiple subtasks
 - e.g. book a flight to London and a hotel for the same day, close to the airport
- top-level policy: select subtask g_i
- low-level policy: actions a_{j,g_i} to complete subtask g_i
 - given initiation/termination conditions
 - keeps on track until terminal state is reached
 - shared by all subtasks (subtask=parameter)
 - internal critic (=prob. that subtask is solved)
- global state tracker
 - integrates information from subtasks

- spatial (slot-based) split instead of temporal
 - doesn't need defined subtasks & sub-rewards
- belief state representation features
 - master ϕ_m , slot-independent ϕ_i , per-slot ϕ_{s_k}
 - handcrafted (could be neural nets)
 - supports sharing parameters across domains
- two-step action selection:
 - 1) master action: "slot-dependent or not"?
 - master policy
 - 2) primitive action
 - a) slot-independent policy
 - b) slot-specific policies (with shared parameters, distinguished only by belief state)
 - chooses max. Q for all slot-action pairs involves choosing the slot
 - everything is trained using the same global reward signal

Summary

- Action selection = deciding what to do next (following a **policy**)
- FSM, frames, rule-based, supervised, reinforcement learning
- **RL** agent in an environment, taking actions, getting rewards
 - MDP formalism (+POMDP can be converted to it)
 - dynamic programming, Monte Carlo, Temporal Difference
 - optimizing value function *V*/*Q* (critic), policy (actor), or both (actor-critic)
 - learning **on-policy** or **off-policy** (act by the policy you learn/not)
- summary states might be needed
- user simulators: good to use & mix with humans
- **DQN** representing & optimizing *Q* function with a network
 - minibatches, target function freezing, experience replay
- multiple tasks: hierarchical / feudal RL

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.) <u>http://incompleteideas.net/book/the-book.html</u>
- Nie et al. (2019): Neural approaches to conversational AI: <u>https://arxiv.org/abs/1809.08267</u>
- Filip Jurčíček's slides (Charles University): <u>https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/</u>
- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: <u>https://christian-igel.github.io/paper/RLiaN.pdf</u>
- Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review: <u>http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf</u>

No labs today (project questions?) Topic deadline: Nov 10 Fixes for datasets required

> Next Tue 9:50am: Direct Policy Optimization Language Generation