NPFL099 Statistical Dialogue Systems
5. Dialogue State Tracking

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček
27. 10. 2020
• Dialogue management consists of:
 • **State update** ← here we need DST
 • Action selection (later)

• **Dialogue state** needed to remember what was said in the past
 • tracking the dialogue progress
 • summary of the whole dialogue history
 • basis for action selection decisions

U: I’m looking for a restaurant in the *city centre.*
S: OK, what kind of food do you like?
U: Chinese.

* ❌ *S:* What part of town do you have in mind?
* ❌ *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the *west part of town.*
* ✔ *S:* Sure, the Golden Dragon is a good Chinese restaurant. It is located in the *city centre.*
Dialogue State Contents

• “All that is used when the system decides what to say next”
 (Henderson, 2015)

• **User goal/preferences ~ NLU output**
 - slots & values provided (search constraints)
 - information requested

• **Past system actions**
 - information provided
 - slots and values
 - list of venues offered
 - slots confirmed
 - slots requested

• **Other semantic context**
 - user/system utterance: bye, thank you, repeat, restart etc.

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?
S: OK, Chinese food. […]
S: What time would you like to leave?
Problems with Dialogue State

• NLU is unreliable
 • takes unreliable ASR output
 • makes mistakes by itself – some utterances are ambiguous
 • output might conflict with ontology

• Possible solutions:
 • detect contradictions, ask for confirmation
 • ignore low-confidence NLU input
 • what’s “low”?
 • what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!
Belief State

• Assume we don’t know the true current dialogue state s_t
 • states (what the user wants) influence observations o_t (what the system hears)
 • based on observations o_t & system actions a_t, we can estimate a probability distribution $b(s)$ over all possible states – belief state

• More robust than using dialogue state directly
 • accumulates probability mass over multiple turns
 • low confidence – if the user repeats it, we get it the 2nd time
 • accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
 • but not only them – rule-based, too
Belief State

no probability accumulation (1-best, no state)

accumulating over NLU n-best list (still no state)

accumulating over NLU n-best + turns

this is what we need (=belief state)

(from Milica Gašić's slides)
Basic Discriminative Belief Tracker

- **Partition the state** by assuming conditional independence
 - simplify – assume each slot is independent:
 - state $s = [s^1, \ldots, s^N]$, belief $b(s_t) = \prod_i b(s^i_t)$

- **Always trust the NLU**
 - this makes the model parameter-free
 - …and basically rule-based
 - but very fast, with reasonable performance

Update rule

$$b(s^i_t) = \sum_{s^i_{t-1}, o^i_t} p(s^i_t | a^i_{t-1}, s^i_{t-1}, o^i_t) b(s^i_{t-1})$$

The belief state update rule is deterministic

(Zilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070
Basic Feed-forward Neural Tracker

• a simple feed-forward network
 • input – features (w.r.t. slot-value v & time t)
 • NLU score of v
 • n-best rank of v
 • user & system intent (inform/request)
 • … – other domain-independent, low-level NLU features
 • 3 tanh layers
 • output – softmax
 (= probability distribution over values)
• **static** – does not model dialogue as a sequence
 • uses a **sliding window**: current time t + few steps back + \sum previous

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073
Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
- does not need NLU
 - turn features = lexicalized + delexicalized n-grams from ASR n-best list, weighted by confidence
- delexicalization is very harsh: <slot> <value>
 - you don’t even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- **dynamic** – explicitly models dialogue as sequence
 - using the network recurrence

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190
Neural/Rule Hybrid

• Dynamic: explicit update of belief
 • per-slot model (separate for each slot)
 • simple update rule R
 • for a value: add $a \cdot$ current NLU confidence, normalize
 • differentiable, can be trained end-to-end
 • trained models F, G provide a
 • F is generic LSTM, G is value specific feed-forward

• Needs a base NLU, but postprocesses it
 • input & output of tracker NLU step
 = prob. dist. of informs over slot values in current turn
 • generic & specific part again

(Vodolán et al., 2017)
http://arxiv.org/abs/1702.06336
Incremental Recurrent Tracker

• Simple: LSTM over words + classification on hidden states
 • runs over the whole dialogue history (user utterances + system actions)
 • classification can occur after each word, right as it comes in from ASR

• Dynamic/sequential

• Doesn’t use any NLU
 • infrequent values are delexicalized (otherwise it can’t learn them)

• Slightly worse performance – possible causes:
 • only uses ASR 1-best
 • very long recurrences (no hierarchy)

(Žilka & Jurčiček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471
NBT: Pretrained Word Embeddings

- No delexicalization needed
- Current turn + rule-based updates (=static tracker)
- Pretrained word vectors (kept fixed)
 - GloVe enhanced with paraphrases
- Text = n-gram sums/CNNs, summed
 - same parameters + handling for all inputs
 - contextual: requested/confirmed slot (+value)
 - current user utterance
 - candidate slot-value pair (run once for each)
- Simple combinations
 - dot product, feed-forward
 - binary decision: is the candidate correct?

(Mrkšić et al., 2017)
https://www.aclweb.org/anthology/P17-1163
Candidate Ranking

• Previous systems consider all values for each slot
 • this is a problem for open-ended slots (e.g. restaurant name)
 • enumerating over all takes ages, some are previously unseen

• Alternative: always consider just K candidates
 • use last K candidates from system actions and NLU output
 • NB: only way history is incorporated here (~static)
 • select from them using a per-slot softmax

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

representation of i-th candidate:
utterance/slot/candidate
features (next slide)
Candidate Ranking – representation

- Using BiGRU over lexicalized & delexicalized utterance

- Features:
 - **utterance** – last GRU state + NLU indicators for non-slot DAs (user & prev. system)
 - **slot** – NLU indicators for DAs with this slot (user & prev. system) + last turn scores for **null** & **dontcare**
 - **candidate** – GRU states over matched value words + NLU indicators for DAs with this slot & value (user & prev. system)

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224
Multi-value Candidate Ranking

• What if multiple values are true?
 • previous approach picks one (softmax)
 • use set of binary classifiers (log loss) instead (similar to NBT)

• More flexible regarding candidates (still a fixed max. number)
 • can be past k from NLU, but also just current ASR n-grams
 • ElMo helps with ASR n-grams

• Dynamic – keeps context by itself
 • embedding previous states, system actions, text of the whole dialogue

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891
Hybrid Classify/Rank

- Ranking is faster & more flexible
- Classification over all values is more accurate
 - at least for most slots, where # of values is limited
- Solution: combine classification & ranking
 - choose best model for each slot based on dev data performance
- Ranking approach – multi-value from previous slide
- Classification approach – straightforward:
 - hierarchical LSTM
 - per-slot feed-forward
 - softmax

metric: joint goal accuracy
- exact match on dialogue state (most probable value only)

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority Baseline</td>
<td>1.5%</td>
</tr>
<tr>
<td>MultiWOZ-2.0 Benchmark</td>
<td>25.83%</td>
</tr>
<tr>
<td>Ranking only</td>
<td>31.11% (29.73%)</td>
</tr>
<tr>
<td>Classification only</td>
<td>40.74% (38.42%)</td>
</tr>
<tr>
<td>Hybrid</td>
<td>44.24% (42.33%)</td>
</tr>
</tbody>
</table>

ensemble (majority vote of 3 models)
single model

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883
BERT & Span Tagging (~similar to reading comprehension)

- BERT over previous system & current user utterance
 - from 1st token’s representation, get a decision: none/dontcare/span
 - per-slot (BERT is shared, but the final decision is slot-specific)
- span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes over tokens
- rule-based update (static):
 - if none is predicted, keep previous value

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040

NPFL099 L5 2020
Span Tagging with Modelled Update

- Also uses BERT, but not necessarily
 - works slightly worse with random-initialized word embeddings
- sequence of 3 decisions
 - do we carry over last turn’s prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)
 - if span: predict span’s start and end

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/
Span Tagging & Better Copying

• “triple-copy” – gets the value from 3 sources:
 • user utterance (same as previous span tagging models)
 • system informs (last value the system mentioned)
 • another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)

• rule-based update (static)

boolean slots are handled separately (classification)

coreference – distribution over slots to copy from

same decision as previously, just different options: none/dontcare/span/inform/refer

(Heck et al., 2020)
https://aclweb.org/anthology/2020.sigdial-1.4/
Generator-based Tracker

- Similar to span tagging: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: “use generated”/\textit{dontcare}/\textit{none}
 - same as the decisions done in span tagging, just applied \textit{after} getting the value

(Wu et al., 2019)
https://www.aclweb.org/anthology/P19-1078
Slot-Utterance Matching

- different take on BERT reading comprehension
 - considers “domain – slot” a question & tries to find the best-matching value
 - ~ candidate ranking/binary classification approach

- tracker over BERT
 - attention + turn-based RNN (dynamic)
 - attention over current utterance
 - with BERT-encoded slot name as guidance
 - RNN (LSTM/GRU) keeps past values
 - RNN output layer-normalized to match BERT outputs
 - trained to match the correct values from the ontology
 - loss: distance of true value’s BERT encoding from the tracker output (Euclidean/Cosine)
 - BERT encodings of all possible values can be precomputed

(Lee et al., 2019)
https://aclweb.org/anthology/P19-1546/
• User goal is a query → why not SQL query?
• Text-to-SQL models used for tracking
 • with contextual enhancements, input:
 • all user inputs so far
 • previous system response
 • database schema
• Seq2seq-based model example:
 • hierarchical LSTM for encoding user & system
 • database column embeddings
 = averaged embeddings over table + column name
 • decoder:
 • decide between SQL keyword vs. column
 • then select which keyword / column via softmax
• So far, experimental – performance is low

D1 : Database about student dormitories containing 5 tables
Q1 : What are the names of all the dorms? INFORM_SQL
S1 : `SELECT dorm_name FROM dorm` INFORM_SQL
A1 : (Result table with many entries) CONFIRM_SQL
R1 : This is the list of the names of all the dorms.

Q2 : Which of those dorms have a TV lounge? INFORM_SQL
S2 : `SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = 'TV Lounge'`
A2 : (Result table with many entries) CONFIRM_SQL
R2 : This shows the names of dorms with TV lounges.

Q3 : What dorms have no study rooms as amenities? AMBIGUOUS
R3 : Do you mean among those with TV Lounges? CLARIFY
Q4 : Yes. AFFIRM
S4 : `SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = 'TV Lounge' EXCEPT SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = 'Study Room'`
A4 : Faulty Towers CONFIRM_SQL
R4 : Faulty Towers is the name of the dorm that has a TV lounge but not a study room as an amenity.

Q5 : Thanks! THANK_YOU
R5 : You are welcome. WELCOME
Summary

• State tracking is needed to maintain user goal over multiple turns
• Best to make the state probabilistic – belief state
• Architectures – many options
 • good NLU + rules – works well!
 • static (sliding-window or with rule-based value update) vs. dynamic (modelling dialogue as sequence, modelling value update)
 • with vs. without NLU
 • classification vs. candidate ranking vs. span tagging vs. generation
 • classifiers are more accurate than rankers but slower, limited to seen values
 • tagging is a rather new approach, works nicely but probably slow
• using BERT & co. as usual – good but slow
• incremental – not used too much so far
Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Skype/Meet/Zoom (by agreement)

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Next Tue 9:50am: Dialogue Policy