NPFL099 Statistical Dialogue Systems **5. Dialogue State Tracking**

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

27.10.2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Dialogue State Tracking

- Dialogue management consists of:
 - **State update** ← here we need DST
 - Action selection (later)
- **Dialogue state** needed to remember what was said in the past
 - tracking the dialogue progress
 - summary of the whole dialogue history
 - basis for action selection decisions

U: I'm looking for a restaurant in the <u>city centre</u>. S: OK, what kind of food do you like? U: Chinese.

- **X** S: What part of town do you have in mind?
- X S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
- S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the <u>city centre</u>.

Dialogue State Contents

- "All that is used when the system decides what to say next" (Henderson, 2015)
- User goal/preferences ~ NLU output
 - slots & values provided (search constraints)
 - information requested

Past system actions

- information provided
 - slots and values
 - list of venues offered
- slots confirmed +
- U: Give me the address of <u>the first one</u> you talked about. U: Is there <u>any other</u> place in this area?
 - S: OK, Chinese food. [...]

slots requested +

S: What time would you like to leave?

- Other semantic context
 - user/system utterance: bye, thank you, repeat, restart etc.

Problems with Dialogue State

- NLU is unreliable
 - takes unreliable ASR output
 - makes mistakes by itself some utterances are ambiguous
 - output might conflict with ontology
- Possible solutions:
 - detect contradictions, ask for confirmation
 - ignore low-confidence NLU input
 - what's "low"?
 - what if we ignore 10x the same thing?
- Better solution: make the state probabilistic **belief state**

NLU: 0.3 inform(type=restaurant, stars=5)

ASR: 0.5 I'm looking for an expensive hotel

0.5 I'm looking for inexpensive hotels

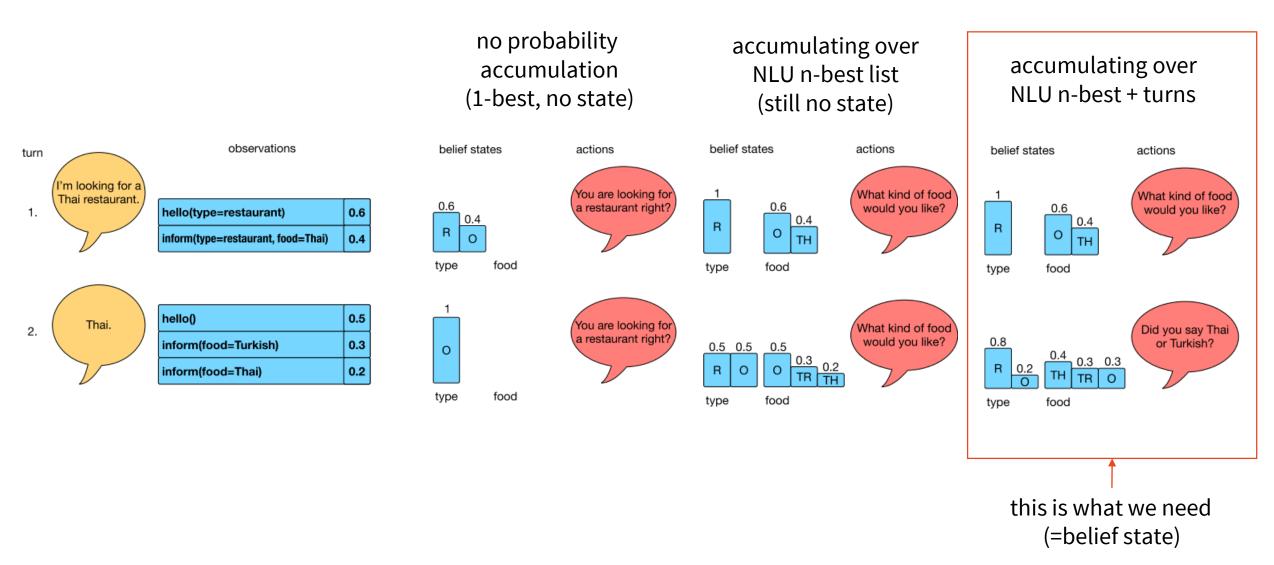
only hotels have stars!

Belief State

- Assume we don't know the true current dialogue state s_t
 - states (what the user wants) influence **observations** o_t (what the system hears)
 - based on observations o_t & system actions a_t, we can estimate a probability distribution b(s) over all possible states – belief state
- More robust than using dialogue state directly
 - accumulates probability mass over multiple turns
 - low confidence if the user repeats it, we get it the 2nd time
 - accumulates probability over NLU n-best lists
- Plays well with probabilistic dialogue policies (POMDPs)
 - but not only them rule-based, too

Belief State

(from Milica Gašić's slides)



Basic Discriminative Belief Tracker

• Partition the state by assuming conditional independence

- simplify assume each slot is independent:
 - state $\mathbf{s} = [s^1, \dots s^N]$, belief $b(\mathbf{s}_t) = \prod_i b(s_t^i)$
- Always trust the NLU
 - this makes the model parameter-free
 - ...and basically rule-based
 - but very fast, with reasonable performance

NLU output
"user mentioned this value"

$$p(o_t^i) \text{ if } s_t^i = o_t^i \wedge o_t^i \neq \textcircled{S}$$

$$p(o_t^i) \text{ if } s_t^i = s_{t-1}^i \wedge o_t^i = \textcircled{S}$$

$$0 \text{ otherwise}$$
"no change"

user silent about slot *i*

update
$$b(s_t^i) = \sum_{\substack{s_{t-1}^i, o_t^i \\ \text{discriminative}}} p(s_t^i | a_{t-1}^i, s_{t-1}^i, o_t^i) b(s_{t-1}^i)$$
 sub

substitution $b(s_t^i) = \begin{cases} p(s_t^i = \textcircled{k}) p(o_t^i = \textcircled{k}) & \text{if } s_t^i = \textcircled{k} \\ p(o_t^i = s_t^i) + p(o_t^i = \textcircled{k}) p(s_t^i = s_{t-1}^i) & \text{otherwise} \end{cases}$

(Žilka et al., 2013) http://www.aclweb.org/anthology/W13-4070

the belief state update rule is deterministic

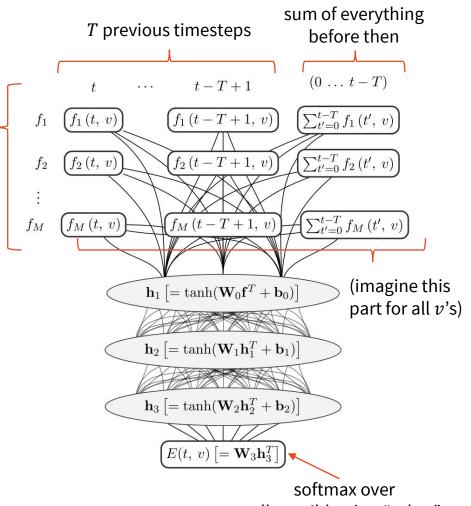
Basic Feed-forward Neural Tracker

- a simple feed-forward network
 - input features (w.r.t. slot-value v & time t)
 - NLU score of *v*
 - n-best rank of v
 - user & system intent (*inform/request*)
 - ... other domain-independent, low-level NLU features

M input

features

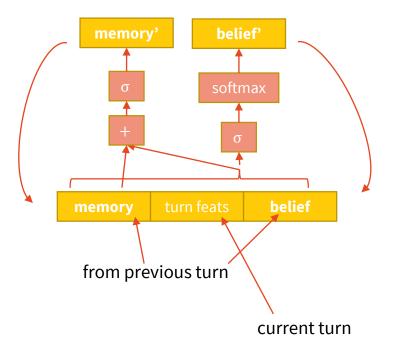
- 3 tanh layers
- output softmax (= probability distribution over values)
- static does not model dialogue as a sequence
 - uses a sliding window:
 current time t + few steps back + ∑previous



all possible v's + "other"

Basic RNN Tracker

- plain sigmoid RNN with a memory vector
 - not quite LSTM/GRU, but close
 - memory updated separately, used in belief update
- does not need NLU
 - turn features = lexicalized + delexicalized *n*-grams from ASR n-best list, weighted by confidence
- delexicalization is very harsh: <slot> <value>
 - you don't even know which slot it is
 - this apparently somewhat helps the system generalize across domains
- dynamic explicitly models dialogue as sequence
 - using the network recurrence



Neural/Rule Hybrid

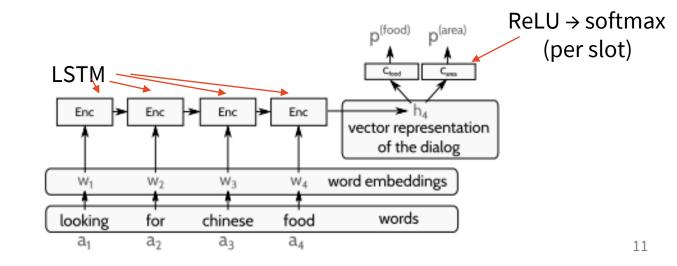
NPFL099 L5 2020

delex. ASR n-grams n-grams from Turn ASR n-best + • Dynamic: explicit update of belief base NLU output prev. system DAs (prob. dist. of informs • per-slot model (separate for each slot) over slot values) ^ht₁→ NLU G • simple update rule *R* • for a value: add $a \cdot$ current NLU confidence, normalize belief (prob. dist. over values) differentiable, can be trained end-to-end h_{t-1}^s • trained models *F*, *G* provide *a* differentiable update rule • F is generic LSTM, G is value specific feed-forward a = "transition coefficients" (control how much probability mass is moved) • Needs a base NLU, but postprocesses it input & output of tracker NLU step this part is mostly for overriding f_{italian} f, fbritish = prob. dist. of informs previous belief frequent ASR errors İ_{british} İitaliar over slot values in current turn - for carry-over h_{t-1} h_{british} h_{italiar} • generic & specific part again NLU u² british ubritish uitaliar u^zitalian (Vodolán et al., 2017) feed-forward softmax LSTM over values http://arxiv.org/abs/1702.06336 only good for estimating **U**italiar Ubritish prob. of "no value"

Incremental Recurrent Tracker

- Simple: LSTM over words + classification on hidden states
 - runs over the whole dialogue history (user utterances + system actions)
 - classification can occur after each word, right as it comes in from ASR
- Dynamic/sequential
- Doesn't use any NLU
 - infrequent values are delexicalized (otherwise it can't learn them)
- Slightly worse performance possible causes:
 - only uses ASR 1-best
 - very long recurrences (no hierarchy)

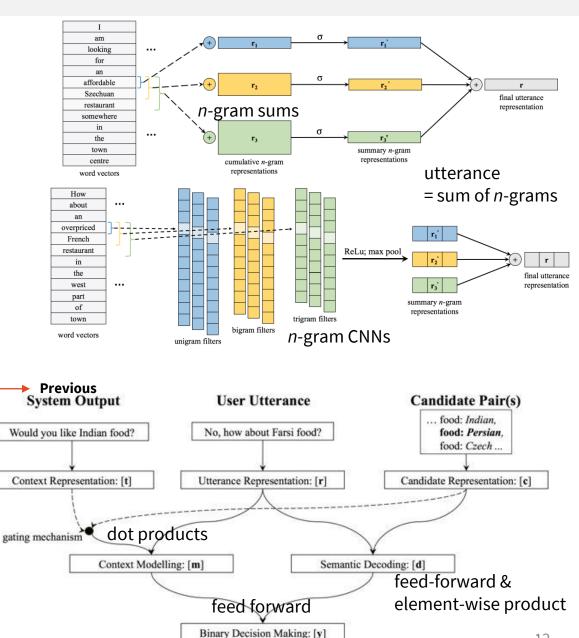
(Žilka & Jurčíček, 2015) https://dl.acm.org/citation.cfm?id=2955040 http://arxiv.org/abs/1507.03471



(Mrkšić et al., 2017) <u>https://www.aclweb.org/anthology/P17-1163</u>

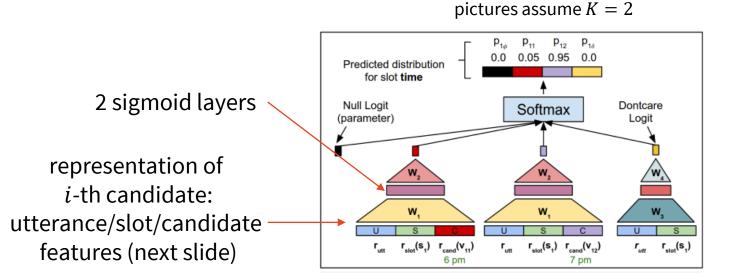
NBT: Pretrained Word Embeddings

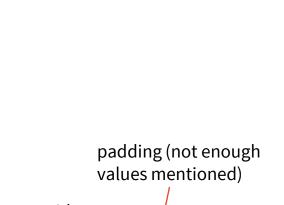
- No delexicalization needed
- Current turn + rule-based updates (=**static** tracker)
- Pretrained word vectors (kept fixed)
 - GloVe enhanced with paraphrases
- Text = *n*-gram sums/CNNs, summed
 - same parameters + handling for all inputs
 - contextual: requested/confirmed slot (+value)-
 - current user utterance
 - candidate slot-value pair (run once for each)
- Simple combinations
 - dot product, feed-forward
 - binary decision: is the candidate correct?



Candidate Ranking

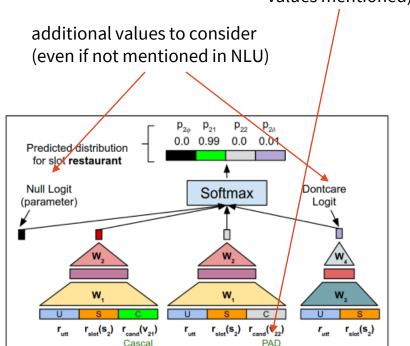
- Previous systems consider all values for each slot
 - this is a problem for open-ended slots (e.g. restaurant name)
 - enumerating over all takes ages, some are previously unseen
- Alternative: always consider just K candidates
 - use last K candidates from system actions and NLU output
 - NB: only way history is incorporated here (~static)
 - select from them using a per-slot softmax





https://arxiv.org/abs/1712.10224

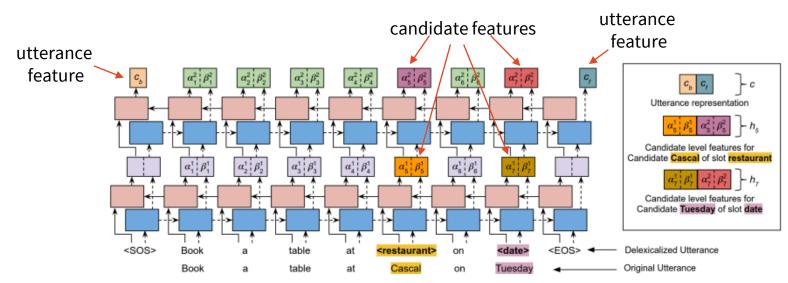
(Rastogi et al., 2017)



Candidate Ranking – representation

- Using BiGRU over lexicalized & delexicalized utterance
- Features:
 - utterance last GRU state + NLU indicators for non-slot DAs (user & prev. system)
 - slot NLU indicators for DAs with this slot (user & prev. system) inform(slot=*), request(slot) + last turn scores for null & dontcare
 - candidate GRU states over matched value words

+ NLU indicators for DAs with this slot & value (user & prev. system) inform(slot=value)

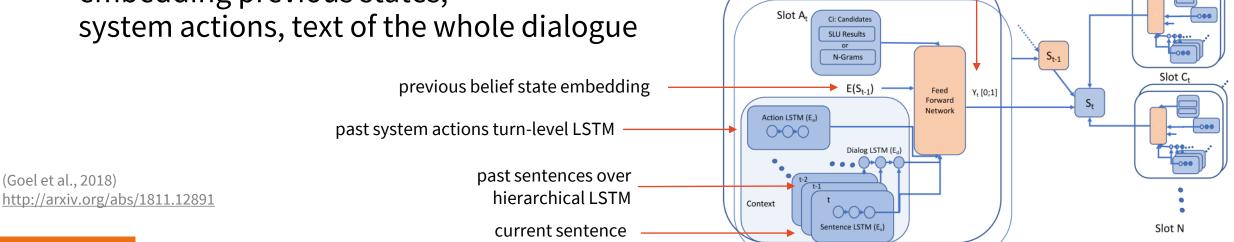


(Rastogi et al., 2017) https://arxiv.org/abs/1712.10224

bye(), affirm()

Multi-value Candidate Ranking

- What if multiple values are true?
 - previous approach picks one (softmax)
 - use set of binary classifiers (log loss) instead (similar to NBT)
- More flexible regarding candidates (still a fixed max. number)
 - can be past k from NLU, but also just current ASR n-grams
 - ElMo helps with ASR *n*-grams
- Dynamic –keeps context by itself
 - embedding previous states, system actions, text of the whole dialogue



Slot A_{t-1}

multiple per-slot models share info about previous beliefs

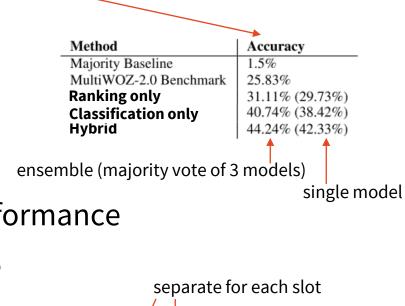
Slot B₊

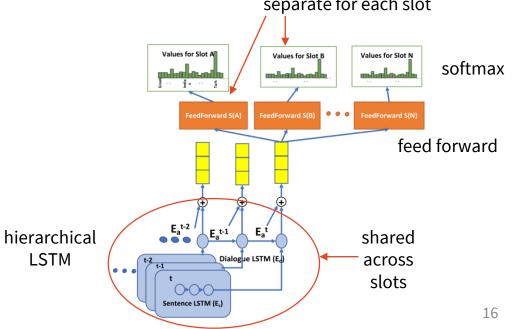
binary decision for a candidate

Hybrid Classify/Rank

metric: **joint goal accuracy** – exact match on dialogue state (most probable value only)

- Ranking is faster & more flexible
- Classification over all values is more accurate
 - at least for most slots, where # of values is limited
- Solution: combine classification & ranking
 - choose best model for each slot based on dev data performance
- Ranking approach multi-value from previous slide
- Classification approach straightforward:
 - hierarchical LSTM
 - per-slot feed-forward
 - softmax





(Goel et al., 2019) http://arxiv.org/abs/1907.00883

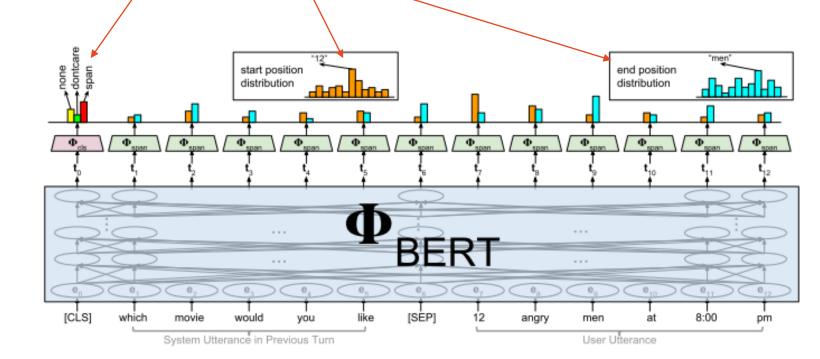
NPFL099 L5 2020

BERT & Span Tagging (~similar to reading comprehension)

• BERT over previous system & current user utterance

(Chao & Lane, 2019) http://arxiv.org/abs/1907.03040

- from 1st token's representation, get a **decision:** *none/dontcare/span*
 - per-slot (BERT is shared, but the final decision is slot-specific)
- span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes over tokens
- rule-based update (static):
 - if *none* is predicted, keep previous value

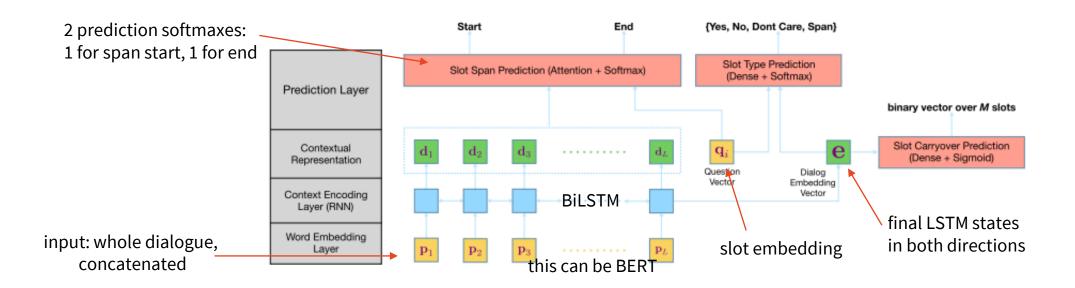


Span Tagging with Modelled Update

• Also uses BERT, but not necessarily

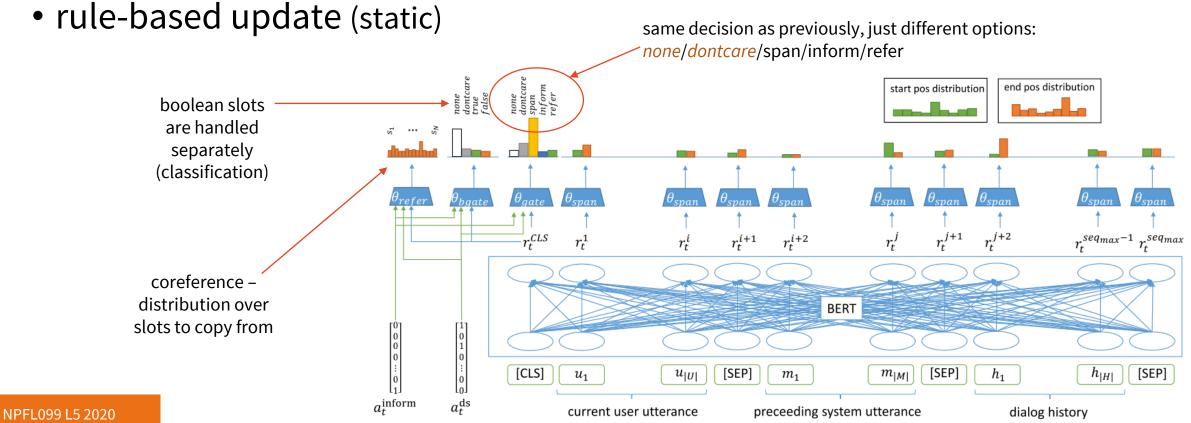
(Gao et al., 2019) https://www.aclweb.org/anthology/W19-5932/

- works slightly worse with random-initialized word embeddings
- sequence of 3 decisions
 - do we carry over last turn's prediction? (Yes/No) (~static tracking, but not so rigid)
 - if no: what kind of answer are we looking for? (*yes/no/dontcare*/span of text)
 - if span: predict span's start and end



Span Tagging & Better Copying

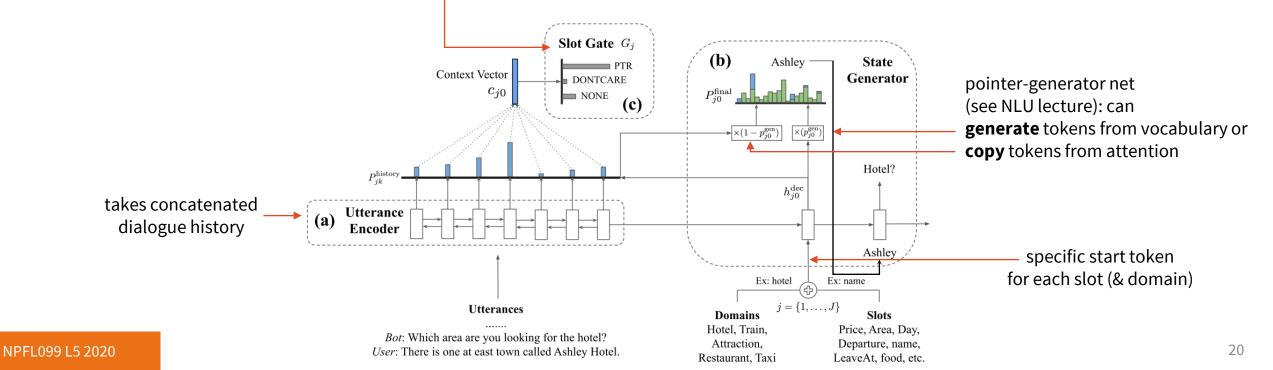
- "triple-copy" gets the value from 3 sources:
 - user utterance (same as previous span tagging models)
 - system informs (last value the system mentioned)
 - another slot (coreference), e.g. a taxi ride to a hotel (hotel name = destination)



19

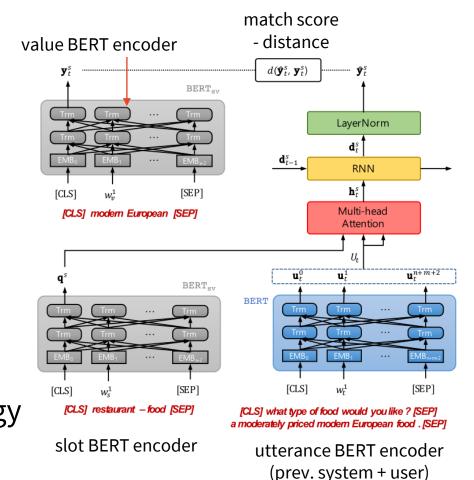
Generator-based Tracker

- Similar to span tagging: encodes whole dialogue history (static)
- Pointer-generator seq2seq decoder produces values
 - specific start token for each slot -- copies from input & generates new tokens
- Slot gate: "use generated"/dontcare/none
 - same as the decisions done in span tagging, just applied *after* getting the value



Slot-Utterance Matching

- different take on BERT reading comprehension
 - considers "domain slot" a question & tries to find the best-matching value
 - ~ candidate ranking/binary classification approach
- tracker over BERT
 - attention + turn-based RNN (dynamic)
 - attention over current utterance
 - with BERT-encoded slot name as guidance
 - RNN (LSTM/GRU) keeps past values
 - RNN output layer-normalized to match BERT outputs
 - trained to match the correct values from the ontology
 - loss: distance of true value's BERT encoding from the tracker output (Euclidean/Cosine)
 - BERT encodings of all possible values can be precomputed



Dialogue State as SQL

(Yu et al., 2019) http://arxiv.org/abs/1909.05378 http://arxiv.org/abs/1906.02285

- User goal is a query → why not SQL query?
- Text-to-SQL models used for tracking
 - with contextual enhancements, input:
 - all user inputs so far
 - previous system response
 - database schema
- Seq2seq-based model example:
 - hierarchical LSTM for encoding user & system
 - database column embeddings

 averaged embeddings over table + column name
 - decoder:
 - decide between SQL keyword vs. column
 - then select which keyword / column via softmax
- So far, experimental performance is low

D_1 : Database about student dormitories containing 5 tables	
Q_1 : What are the names of all the dorms?	INFORM_SQL
S_1 : Select dorm name FROM dorm	
A_1 : (Result table with many entries)	
R_1 : This is the list of the names of all the dorms.	CONFIRM_SQL
Q_2 : Which of those dorms have a TV lounge?	INFORM_SQL
S2 : SELECT T1.dorm name FROM dorm AS T1 JOIN has amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = `TV Lounge'	
A_2 : (Result table with many entries)	
R_2 : This shows the names of dorms with TV lounges.	CONFIRM_SQL
Q_3 : What dorms have no study rooms as amenities?	AMBIGUOUS
R_3 : Do you mean among those with TV Lounges?	CLARIFY
$Q_4: Yes.$	AFFIRM
<pre>S4: SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = `TV Lounge' EXCEPT SELECT T1.dorm_name FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = `Study Room'</pre>	
A ₄ : Fawlty Towers	
R_4 : Fawlty Towers is the name of the dorm that has a TV lounge but not a study room as an amenity.	CONFIRM_SQL
Q_8 : Thanks!	THANK_YOU
R_8 : You are welcome.	WELCOME

Summary

- State tracking is needed to maintain user goal over multiple turns
- Best to make the state probabilistic **belief state**
- Architectures many options
 - good NLU + rules works well!
 - static (sliding-window or with rule-based value update)
 vs. dynamic (modelling dialogue as sequence, modelling value update)
 - with vs. without NLU
 - classification vs. candidate ranking vs. span tagging vs. generation
 - classifiers are more accurate than rankers but slower, limited to seen values
 - tagging is a rather new approach, works nicely but probably slow
 - using BERT & co. as usual good but slow
 - incremental not used too much so far

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Skype/Meet/Zoom (by agreement) Labs in 10 minutes Lab Projects Intro

Next Tue 9:50am: Dialogue Policy

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

- Filip Jurčíček's slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić's slides (Cambridge University): <u>http://mi.eng.cam.ac.uk/~mg436/teaching.html</u>
- Henderson (2015): Machine Learning for Dialog State Tracking: A Review <u>https://ai.google/research/pubs/pub44018</u>