
unless otherwise stated

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

NPFL099 Statistical Dialogue Systems

2. Machine Learning Toolkit
http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

6. 10. 2020

http://ufal.cz/npfl099

Machine Learning

• ML is basically function approximation

• function: data (features)→ labels
• discrete labels = classification

• continuous labels = regression

• function shape
• this is where different algorithms differ

• neural nets: complex functions, composed of simple
building blocks (linear, sigmoid, tanh…)

• training/learning = adjusting
function parameters to minimize error
• supervised learning = based on data + labels given in advance

• reinforcement learning = based on exploration & rewards given online

2NPFL099 L2 2020

https://towardsdatascience.com/no-machine-
learning-is-not-just-glorified-statistics-
26d3952234e3

https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

Neural networks

• Can be used for both classification & sequence models

• Non-linear functions, composed of basic building blocks
• stacked into layers

• Layers are made of activation functions:
• linear functions

• nonlinearities – sigmoid, tanh, ReLU

• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗)

• Fully differentiable – training by gradient descent
• network output incurs loss/cost

• gradients backpropagated from loss to all parameters
(composite function differentiation)

3

https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Gradient Descent

• supervised training– gradient descent methods
• minimizing a cost/loss function

(notion of error – given system output, how far off are we?)

• calculus: derivative = steepness/slope

• follow the slope to find the minimum – derivative gives the direction

• learning rate = how fast we go (needs to be tuned)

• gradient typically computed over mini-batches
• random bunches of a few training instances

• not as erratic as using just 1 instance,
not as slow as computing over whole data

• stochastic gradient descent

NPFL099 L2 2020 https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Cost/Loss Functions

• differ based on what we’re trying to predict

• logistic / log loss (“cross entropy”)
• for classification / softmax – including word prediction

• classes from the whole dictionary

• pretty stupid for sequences, but works
• sequence shifted by 1 ⇒ everything wrong

• squared error loss – for regression
• forcing the predicted float value to be close to actual one

• hinge loss – for binary classification (SVMs), ranking
• forcing the correct sign

• many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

𝑐=1

𝐶

𝑦𝑐 ⋅ log(ෝ𝑦𝑐)

max(0, 1 − ො𝑦 ⋅ 𝑦)

𝑦𝑐 − ෝ𝑦𝑐

lo
ss

𝑦 − ො𝑦

lo
ss 𝑦 − ො𝑦 2

𝑦 − ො𝑦

lo
ss

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
https://en.wikipedia.org/wiki/Hinge_loss

Gradient Descent: Learning Rate

• Learning rate (𝛼) is tricky
• too high 𝛼 = may not find optimum

• too low 𝛼 = may take forever

• Learning rate decay: start high, lower 𝛼 gradually

• Momentum: moving average
• 𝑚 = 𝛽 ⋅ 𝑚 + (1 − 𝛽) ⋅ Δ, update by 𝑚 instead of Δ

• Better options – per-parameter
• look at how often each single weight gets updated

• AdaGrad – all history
• remember sum of total gradients squared: σ𝑡 Δ𝑡

2

• divide learning rate by √(σΔ𝑡
2)

• Adam – per-parameter momentum
• moving averages for Δ & Δ2: 𝑚 = 𝛽1 ⋅ 𝑚 + 1 − 𝛽1 Δ, 𝑣 = 𝛽2 ⋅ 𝑣 + 1 − 𝛽2 Δ2

• use 𝑚 instead of Δ, divide learning rate by √(𝑣)
6

http://cs231n.github.io/neural-networks-3/

http://kaeken.hatenablog.com/entry/2016/11/10/203151

http://cs231n.github.io/neural-networks-3/
http://kaeken.hatenablog.com/entry/2016/11/10/203151

Word Embeddings

• let the network learn features by itself
• input is just words

(vocabulary is numbered)

• distributed word representation
• each word = a vector of floats

• part of network parameters – trained
a) random initialization

b) pretraining

• the network learns which words are used similarly
• they end up having

close embedding values

• different embeddings
for different tasks

7NPFL099 L2 2020

http://ruder.io/word-embeddings-2017/

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Pretrained Word Embeddings

• Word2Vec
• Continuous Bag-of-Words

• predict a word, given ±𝑘 words window

• disregarding word order within the window

• Skip-gram: reverse
• given a word, predict its ±𝑘 word window

• closer words = higher weight in training

• GloVe
• optimized directly from corpus co-occurrences (= 𝑤1 close to 𝑤2)

• target: 𝑒1 ⋅ 𝑒2 = log(#co-occurrences)
• number weighted by distance, weighted down for low totals

• trained by minimizing reconstruction loss on a co-occurrence matrix

8NPFL099 L2 2020

(Mikolov et al., 2013)
http://arxiv.org/abs/1301.3781

softmax

one-hot

embedding

shared
weights

CBOW

skip-gram

softmaxembedding

different weights

one-hot

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/

(Pennington et al., 2014)
http://aclweb.org/anthology/D14-1162

http://arxiv.org/abs/1301.3781
https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/
http://aclweb.org/anthology/D14-1162

Word Embeddings

• Vocabulary is unlimited, embedding matrix isn’t
• + the bigger the embedding matrix, the slower your models

• Special out-of-vocabulary token <unk>

• “default” / older option

• all words not found in vocabulary are assigned this entry

• can be trained using some rare words in the data

• problem for generation – you don’t want these on the output

• Using limited sets
• characters – very small set

• works, but makes for very long sequences

• subwords – decided e.g. by byte-pair encoding
• start from individual characters

• iteratively merge most frequent bigram, until you get desired # of subwords

• sub@@ word – the @@ marks “no space after”
9

(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/

https://www.aclweb.org/anthology/P16-1162/

Convolutional Networks

• Designed for computer vision – inspired by human vision
• works for language in 1D, too!

• Use less parameters than fully connected
– filter/kernel

• Apply filter repeatedly over the input
• element-wise multiply window of input x filter

• sum + apply non-linearity (ReLU) to result

• => produce 1 element of output

• Stride – how many steps to skip
• less overlap, reducing output dimension

• Pooling – no filter, pre-set operation
• maximum/average on each window

• typical CNN architecture alternates convolution & pooling
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

input x filter

output

input

filter

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• Cell types
• basic RNN: linear + tanh

• problem: vanishing gradients

• can’t hold long recurrences

• GRU, LSTM: more complex,
to make backpropagation
work better
• “gates” to keep old values

11NPFL099 L2 2020

basic RNN cell

https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-
in-more-flexible-control-5f33e07b1e57

LSTM cell
GRU cell

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57

RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

Encoder-Decoder Networks (Sequence-to-sequence)

• Default RNN paradigm for sequences/structure prediction
• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡

• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state

• output: hidden state & softmax over output vocabulary + argmax

• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size

• used in MT, dialogue, parsing…
• more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

𝒔0 = 𝒉𝑇
𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡

𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Attention

• Encoder-decoder is too crude for complex sequences
• the whole input is crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination, re-weighted for every decoder step

→ can focus on currently important part of input

• fed into decoder inputs + decoder softmax layer

• Self-attention – over previous decoder steps
• increases consistency when generating long sequences

13NPFL099 L2 2020

https://skymind.ai/wiki/attention-mechanism-memory-network

https://skymind.ai/wiki/attention-mechanism-memory-network

Bahdanau & Luong Attention

• different combination with decoder state
• Bahdanau: use on input to decoder cell

• Luong: modify final decoder state

• different weights computation

• both work well – exact formula not important

𝒄𝑡 =

𝑖=1

𝑛

𝛼𝑡𝑖𝒉𝑖
attention value = context vector

attention weights = alignment model

𝛼𝑡𝑖 = softmax(𝒗𝛼 ⋅ tanh(𝐖𝜶 ⋅ 𝒔𝑡−1 + 𝐔𝛼 ⋅ 𝒉𝑖))

decoder state

trained parameters

encoder hidden state

same for both – sum encoder hidden states
weighted by 𝛼𝑡𝑖

Bahdanau:

Luong:

ℎ1 ℎ𝑛 𝑠𝑡−1 𝑠𝑡

encoder

decoder

context vector

alignment

ℎ1 ℎ𝑛

𝑠𝑡 𝑠𝑡+1encoder

decoder

context vector

alignment

ǁ𝑠𝑡

𝛼𝑡𝑖 = softmax(𝒉𝑖
⊤ ⋅ 𝒔𝑡))

encoder hidden state

decoder state

(Bahdanau et al., 2015)
http://arxiv.org/abs/1409.0473
(Luong et al., 2015)
http://arxiv.org/abs/1508.04025

Luong attention

Bahdanau attention

http://cnyah.com/2017/08/01/attention-variants/

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://cnyah.com/2017/08/01/attention-variants/

Transformer

• getting rid of (encoder) recurrences
• making it faster to train, allowing bigger nets

• replace everything with attention
+ feed-forward networks

• ⇒ needs more layers

• ⇒ needs to encode positions

• positional encoding
• adding position-dependent

patterns to the input

• attention – dot-product (Luong style)

• scaled by
1

#dims
(so values don’t get too big)

• more heads (attentions in parallel)
– focus on multiple inputs

15NPFL099 L2 2020

sin(
pos

10000
2⋅dim
#dims

) cos(
pos

10000
2⋅dim
#dims

)

one of these

for each word

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

http://jalammar.github.io/illustrated-transformer/ https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

encoder

decoder

attention

attention

attention

self-att

self-att

self-att

FF

FF

FF

FF

FF

FF

https://arxiv.org/abs/1706.03762
http://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Contextual Word Embeddings

• Beyond pretrained word embeddings
• words have different meanings based on context

• static word embeddings (word2vec/GloVe) don’t reflect that

• ELMo
• LSTMs trained for language modelling

• ELMo embeddings = weighted sum of
input static embeddings & LSTM outputs
• the weights are trained for a specific downstream task

• BERT
• huge Transformer encoder trained for:

• masked word prediction

• adjacent sentences detection (does B come right after A?)

• BERT embeddings
= any combination of the Transformer layers

NPFL099 L2 2020 http://jalammar.github.io/illustrated-bert/

http://jalammar.github.io/illustrated-bert/

Pretrained Language Models (~ Contextual Word Embeddings)

• Basically a newer name/perspective for the same idea
1. Pretrain a model on a huge dataset and some meaningful language-related task

2. Fine-tune for your own task on your (smaller) data

• There are many variants of the pretrained models
• mostly based on the Transformer architecture

• pretraining tasks vary and make a difference

• BERT + variants: multilingual, RoBERTa (optimized)

• GPT(-2/-3): Transformer decoder only, next-word prediction

• BART: BERT as denoising autoencoder (more below)

• T5: generalization, many variants

• a lot of this is released plug-and-play
• you only need to finetune (and sometimes, not even that)

17NPFL099 L2 2020

(Liu et al., 2019) http://arxiv.org/abs/1907.11692

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

https://github.com/huggingface/transformers

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

(Lewis et al., 2019) http://arxiv.org/abs/1910.13461

(Radford et al., 2019)
https://openai.com/blog/better-language-models/

(Brown et al., 2020)
http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert
http://arxiv.org/abs/2002.12327
https://github.com/huggingface/transformers
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.13461
https://openai.com/blog/better-language-models/
http://arxiv.org/abs/2005.14165

Dropout

• overfitting to training data is a problem for NNs
• too many parameters

• Dropout – simple regularization technique
• more effective than e.g. weight decay (L2)

• zero out some neurons/connections
in the network at random

• technically: multiply by dropout layer
• 0/1 with some probability (typically 0.5–0.8)

• at training time only – full network for prediction

• weights scaled down after training
• they end up larger than normal because there’s fewer nodes

• done by libraries automatically

• may need larger networks to compensate

NPFL099 L2 2020

(Srivastava et al., 2014)
http://jmlr.org/papers/v15/srivastava14a.html

dropout
layer

o
ri

g
in

a
l i

n
p

u
ts

dropped-out
inputs

http://jmlr.org/papers/v15/srivastava14a.html

e.g. L2 on distance

Multi-task Learning

• achieve better generalization by learning more things at once
• a form of regularization

• implicit data augmentation

• biasing/focusing the model
• e.g. by explicitly training for an important subtask

• parts of network shared, parts task-specific
• hard sharing = parameters truly shared (most common)

• soft sharing = regularization by parameter distance

• different approaches w. r. t. what to share

• training – alternating between tasks
• so the network doesn’t “forget”

NPFL099 L2 2020

(Ruder, 2017)
http://arxiv.org/abs/1706.05098
(Fan et al., 2017)
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.04326
http://arxiv.org/abs/1511.06114

Reinforcement Learning

• Learning from weaker supervision
• only get feedback once in a while, not for every output

• good for globally optimizing sequence generation
• you know if the whole sequence is good

• you don’t know if step X is good

• sequence = e.g. sentence, dialogue

• Framing the problem as states & actions & rewards
• “robot moving in space”, but works for dialogue too

• state = generation so far (sentence, dialogue state)

• action = one generation output (word, system dialogue act)

• defining rewards might be an issue

• Training: maximizing long-term reward
• via state/action values (Q function)

• directly – optimizing policy
20

(Sutton & Barto, 2018)

your model

some definition
of rewards

Autoencoders

• Using NNs as generative models
• more than just classification – modelling the whole distribution

• (of e.g. possible texts, images)

• generate new instances that look similar to training data

• considered unsupervised learning

• Autoencoder: input → encoding → input
• encoding ~ “embedding” in latent space

(i.e. some vector)

• trained by reconstruction loss

• problem: can’t easily get valid embeddings for generating new outputs
• parts of embedding space might be unused – will generate weird stuff

• no easy interpretation of embeddings – no idea what the model will generate

• still has uses:
• denoising autoencoder: add noise to inputs, train to generate clean outputs

• multi-task learning, representations for use in downstream tasks
21

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

MNIST digits autoencoder
latent space

ones

sevens

no idea what
the output will
be from here

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Autoencoders

• Making the encoding latent space more useful
• using Gaussians – continuous space by design

• encoding input into vectors of means 𝜇 & std. deviations 𝜎

• sampling encodings from 𝑁 𝜇, 𝜎 for generation
• samples vary a bit even for the same input

• decoder learns to be more robust

• model can degenerate into normal AE (𝜎 → 0)
• we need to encourage some σ, smoothness, overlap (μ ∼ 0)

• add 2nd loss: KL divergence from 𝑁(0,1)

• VAE learns a trade-off between
using unit Gaussians & reconstructing inputs

• Problem: still not too much control of the embeddings
• we can only guess what kind of output the model will generate

22NPFL099 L2 2020

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/

VAE details

• VAE objective:
• reconstruction loss (maximizing 𝑝(𝑥|𝑧) in the decoder), MLE as per usual

• latent loss (KL-divergence from ideal 𝑝 𝑧 ~𝒩(0,1) in the encoder)

• This is equivalent to maximizing true log 𝑝(𝑥) with some error
• i.e. maximizing evidence lower bound (ELBO) / variational lower bound:

• Sidestepping sampling – reparameterization trick
• 𝑧~𝜇 + 𝜎 ⋅ 𝒩 0,1 , then differentiate w. r. t. 𝜇 and 𝜎

23NPFL099 L2 2020

ℒ = − 𝔼𝑞 log 𝑝 𝑥 𝑧 + 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧)

𝔼𝑞 log 𝑝(𝑥|𝑧) − 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧) = log 𝑝(𝑥) − 𝐾𝐿 𝑞 𝑧 𝑥 ||𝑝(𝑧|𝑥)

ELBO“evidence”
(i.e. data)

error incurred
by using 𝑞

instead of true
distribution 𝑝

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/

Conditional Variational Autoencoders

• Direct control over types of things to generate

• Additional conditioning on a given label/type/class 𝑐
• 𝑐 can be anything (discrete, continuous…)

• image class: MNIST digit

• sentiment

• “is this a good reply?”

• coherence level

• just concatenate to input

• given to both encoder & decoder at training time

• Generation – need to provide 𝑐
• CVAE will generate a sample of type 𝑐

• Latent space is partitioned by 𝑐
• same latent input with different 𝑐 will give different results

24NPFL099 L2 2020 https://ijdykeman.github.io/ml/2016/12/21/cvae.html

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Generative Adversarial Nets

• Training generative models to generate believable outputs
• to do so, they necessarily get a better grasp on the distribution

• Getting loss from a 2nd model:
• discriminator 𝑫 – “adversary” classifying real vs. generated samples

• generator 𝑮 – trained to fool the discriminator
• the best chance to fool the discriminator is to generate likely outputs

• Training iteratively (EM style)
• generate some outputs

• classify + update discriminator

• update generator
based on classification

• this will reach a stable point

25NPFL099 L2 2020

training progress

stable
point

true distro

generator
output
distro

input latent space

discriminator
classification

(Goodfellow et al, 2014)
http://papers.nips.cc/paper/
5423-generative-adversarial-
nets.pdf

discriminator
updated

generator
updated

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Clustering

• Unsupervised, finding similarities in data

• basic algorithms
• k-means: assign into 𝑘 clusters randomly, iterate:

• compute means (centroids)

• reassign to nearest centroid

• Gaussian mixture: similar, but soft & variance
• clusters = multivariate Gaussian distributions

• estimating probabilities of belonging to each cluster

• cluster mean/variance based on data weighted by probabilities

• hierarchical (bottom up):
start with one cluster per instance, iterate:
• merge 2 closest clusters

• end when you have 𝑘 clusters / distance is too big

• hierarchical top-down (reversed ⬏)

• distance metrics & features decide what ends up together
26

1.

2.
3.

4.

https://www.youtube.com/watch?v=9YA2t78Ha68

https://en.wikipedia.org/wiki/K-means_clustering
https://www.displayr.com/what-is-hierarchical-clustering/
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

https://www.youtube.com/watch?v=9YA2t78Ha68
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

Summary

• ML as a function mapping in → out

• Neural networks (function shapes)
• CNNs, RNNs, encoder-decoder (seq2seq), attention, Transformer

• input representation: embeddings (+ pretrained, + contextual/LMs: BERT et al.)

• Supervised training
• cost function

• gradient descent + learning rate tricks

• dropout

• Reinforcement learning (more to come later)

• Unsupervised learning
• autoencoders, variational autoencoders

• generative adversarial nets

• clustering
27

Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Troja N231/N233 (by agreement)

Get the slides here:

http://ufal.cz/npfl099

References/Further:
Goodfellow et al. (2016): Deep Learning, MIT Press (http://www.deeplearningbook.org)
Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language

(http://arxiv.org/abs/1812.06834)
Milan Straka’s Deep Learning slides: http://ufal.mff.cuni.cz/courses/npfl114/1819-summer

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/

28NPFL099 L2 2020

Labs in 10 mins
Next Tuesday 9:50am

https://ufaldsg.slack.com/
http://ufal.cz/npfl099
http://www.deeplearningbook.org/
http://arxiv.org/abs/1812.06834
http://ufal.mff.cuni.cz/courses/npfl114/1819-summer
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
https://minitorch.github.io/index.html
https://objax.readthedocs.io/en/latest/

