NPFL099 Statistical Dialogue Systems

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

6. 10. 2020
Machine Learning

• ML is basically function approximation
• function: data (features) → labels
 • discrete labels = classification
 • continuous labels = regression
• function shape
 • this is where different algorithms differ
 • neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh…)
• training/learning = adjusting function parameters to minimize error
 • supervised learning = based on data + labels given in advance
 • reinforcement learning = based on exploration & rewards given online
Neural networks

- Can be used for both classification & sequence models
- **Non-linear functions**, composed of basic building blocks
 - stacked into *layers*
- Layers are made of **activation functions**:
 - linear functions
 - nonlinearities – sigmoid, tanh, ReLU
 - softmax – probability estimates:
 \[
 \text{softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^{|x|} \exp(x_j)}
 \]
- Fully differentiable – training by **gradient descent**
 - network output incurs loss/cost
 - gradients **backpropagated** from loss to all parameters (composite function differentiation)

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
Gradient Descent

- supervised training—gradient descent methods
 - minimizing a cost/loss function
 (notion of error – given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum – derivative gives the direction
 - learning rate = how fast we go (needs to be tuned)

- gradient typically computed over mini-batches
 - random bunches of a few training instances
 - not as erratic as using just 1 instance,
 not as slow as computing over whole data
- stochastic gradient descent

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
• differ based on what we’re trying to predict

• **logistic / log loss** ("cross entropy")
 • for classification / softmax – including **word prediction**
 • classes from the whole dictionary
 • pretty stupid for sequences, but works
 • sequence shifted by 1 ⇒ everything wrong

• **squared error loss** – for regression
 • forcing the predicted float value to be close to actual one

• **hinge loss** – for binary classification (SVMs), ranking
 • forcing the correct sign

• many others, variants

https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9
Gradient Descent: Learning Rate

- Learning rate (α) is tricky
 - too high $\alpha = \text{may not find optimum}$
 - too low $\alpha = \text{may take forever}$

- **Learning rate decay**: start high, lower α gradually

- **Momentum**: moving average
 - $m = \beta \cdot m + (1 - \beta) \cdot \Delta$, update by m instead of Δ

- Better options – per-parameter
 - look at how often each single weight gets updated
 - **AdaGrad** – all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide learning rate by $\sqrt{\sum \Delta_t^2}$
 - **Adam** – per-parameter momentum
 - moving averages for Δ & Δ^2: $m = \beta_1 \cdot m + (1 - \beta_1) \Delta$, $v = \beta_2 \cdot v + (1 - \beta_2) \Delta^2$
 - use m instead of Δ, divide learning rate by \sqrt{v}

Word Embeddings

- let the network learn features by itself
 - input is just words (vocabulary is numbered)
- distributed word representation
 - each word = a vector of floats
- part of network parameters – trained
 a) random initialization
 b) pretraining
- the network learns which words are used similarly
 - they end up having close embedding values
 - different embeddings for different tasks

http://ruder.io/word-embeddings-2017/

Pretrained Word Embeddings

- **Word2Vec**
 - Continuous Bag-of-Words
 - predict a word, given $\pm k$ words window
 - disregarding word order within the window
 - Skip-gram: reverse
 - given a word, predict its $\pm k$ word window
 - closer words = higher weight in training

- **GloVe**
 - optimized directly from corpus co-occurrences ($= w_1$ close to w_2)
 - target: $e_1 \cdot e_2 = \log(\#\text{co-occurrences})$
 - number weighted by distance, weighted down for low totals
 - trained by minimizing reconstruction loss on a co-occurrence matrix

(Mikolov et al., 2013)
http://arxiv.org/abs/1301.3781

(Pennington et al., 2014)
http://aclweb.org/anthology/D14-1162

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/
Word Embeddings

• Vocabulary is unlimited, embedding matrix isn’t
 • + the bigger the embedding matrix, the slower your models

• Special out-of-vocabulary token <unk>
 • “default” / older option
 • all words not found in vocabulary are assigned this entry
 • can be trained using some rare words in the data
 • problem for generation – you don’t want these on the output

• Using limited sets
 • characters – very small set
 • works, but makes for very long sequences
 • subwords – decided e.g. by byte-pair encoding
 • start from individual characters
 • iteratively merge most frequent bigram, until you get desired # of subwords
 • sub@@ word – the @@ marks “no space after”

(Sennrich et al., 2016)
https://www.aclweb.org/anthology/P16-1162/
Convolutional Networks

- Designed for computer vision – inspired by human vision
 - works for language in 1D, too!
- Use less parameters than fully connected – *filter/kernel*
- Apply filter repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - \(\Rightarrow \) produce 1 element of output
- **Stride** – how many steps to skip
 - less overlap, reducing output dimension
- **Pooling** – no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
Recurrent Neural Networks

- Many identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = hidden state – fed to the next step
 - additional input – next token features
- Cell types
 - **basic RNN**: linear + tanh
 - problem: vanishing gradients
 - can’t hold long recurrences
 - **GRU, LSTM**: more complex, to make backpropagation work better
 - “gates” to keep old values

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57
Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - **encoder** RNN: encodes the input token-by-token into **hidden states** h_t
 - next step: last hidden state + next token as input
 - **decoder** RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells over vectors of ~ embedding size
- used in MT, dialogue, parsing…
 - more complex structures linearized to sequences

$$s_0 = h_T$$
$$p(y_t | y_1, \ldots y_{t-1}, x) = \text{softmax}(s_t)$$
$$s_t = \text{cell}(y_{t-1}, s_{t-1})$$

$h_0 = 0$
$h_t = \text{cell}(x_t, h_{t-1})$

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- **Attention** = “memory” of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- **Self-attention** – over previous decoder steps
 - increases consistency when generating long sequences

https://skymind.ai/wiki/attention-mechanism-memory-network
Bahdanau & Luong Attention

- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation
- both work well – exact formula not important

Attention weights = alignment model

Bahdanau:
\[
\alpha_{ti} = \text{softmax}(v_\alpha \cdot \text{tanh}(W_\alpha \cdot s_{t-1} + U_\alpha \cdot h_i))
\]

Luong:
\[
\alpha_{ti} = \text{softmax}(h_i^\top \cdot s_t)
\]

Attention value = context vector

same for both – sum encoder hidden states weighted by \(\alpha_{ti}\)

\[
c_t = \sum_{i=1}^{n} \alpha_{ti} h_i
\]
Transformer

(Waswani et al., 2017)
https://arxiv.org/abs/1706.03762

• getting rid of (encoder) recurrences
 • making it faster to train, allowing bigger nets
 • replace everything with attention + feed-forward networks
 • ⇒ needs more layers
 • ⇒ needs to encode positions
• positional encoding
 • adding position-dependent patterns to the input
• attention – dot-product (Luong style)
 • scaled by $\frac{1}{\sqrt{\text{#dims}}}$ (so values don’t get too big)
 • more heads (attentions in parallel)
 – focus on multiple inputs

http://jalammar.github.io/illustrated-transformer/
Contextual Word Embeddings

• Beyond pretrained word embeddings
 • words have different meanings based on context
 • static word embeddings (word2vec/GloVe) don’t reflect that

• ELMo
 • LSTMs trained for language modelling
 • ELMo embeddings = weighted sum of input static embeddings & LSTM outputs
 • the weights are trained for a specific downstream task

• BERT
 • huge Transformer encoder trained for:
 • masked word prediction
 • adjacent sentences detection (does B come right after A?)
 • BERT embeddings
 = any combination of the Transformer layers
Pretrained Language Models (~ Contextual Word Embeddings)

- Basically a newer name/perspective for the same idea
 1. **Pretrain** a model on a huge dataset and some meaningful language-related task
 2. **Fine-tune** for your own task on your (smaller) data
- There are many variants of the pretrained models
 - mostly based on the Transformer architecture
 - pretraining tasks vary and make a difference
- **BERT** + variants: multilingual, **RoBERTa** (optimized)
- **GPT**(-2/-3): Transformer decoder only, next-word prediction
- **BART**: BERT as denoising autoencoder (more below)
- **T5**: generalization, many variants
 - a lot of this is released plug-and-play
 - you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020)

(Liu et al., 2019)
http://arxiv.org/abs/1907.11692

(Radford et al., 2019)
https://openai.com/blog/better-language-models/
(Brown et al., 2020)

(Lewis et al., 2019)

(Raffel et al., 2019)

https://github.com/huggingface/transformers
• overfitting to training data is a problem for NNs
 • too many parameters
• **Dropout** – simple regularization technique
 • more effective than e.g. weight decay (L2)
 • **zero out some neurons/connections** in the network at random
 • technically: multiply by dropout layer
 • 0/1 with some probability (typically 0.5–0.8)
 • at training time only – full network for prediction
 • weights scaled down after training
 • they end up larger than normal because there’s fewer nodes
 • done by libraries automatically
 • may need larger networks to compensate

(Srivastava et al., 2014)
http://jmlr.org/papers/v15/srivastava14a.html
Multi-task Learning

- achieve better generalization by learning more things at once
 - a form of regularization
 - implicit data augmentation
 - biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training – alternating between tasks
 - so the network doesn’t “forget”

(Ruder, 2017)
http://arxiv.org/abs/1706.05098
(Fan et al., 2017)
http://arxiv.org/abs/1706.04326
(Luong et al., 2016)
http://arxiv.org/abs/1511.06114
Reinforcement Learning

• Learning from **weaker supervision**
 • only get feedback once in a while, not for every output
 • good for globally optimizing sequence generation
 • you know if the whole sequence is good
 • you don’t know if step X is good
 • sequence = e.g. sentence, dialogue

• Framing the problem as **states & actions & rewards**
 • “robot moving in space”, but works for dialogue too
 • state = generation so far (sentence, dialogue state)
 • action = one generation output (word, system dialogue act)
 • defining rewards might be an issue

• Training: **maximizing long-term reward**
 • via state/action values (Q function)
 • directly – optimizing policy
Autoencoders

• Using NNs as **generative models**
 • more than just classification – modelling the whole distribution
 • (of e.g. possible texts, images)
 • generate new instances that look similar to training data
 • considered **unsupervised learning**

• **Autoencoder**: input → encoding → input
 • encoding ~ “embedding” in latent space (i.e. some vector)
 • trained by reconstruction loss
 • problem: can’t easily get valid embeddings for generating new outputs
 • parts of embedding space might be unused – will generate weird stuff
 • no easy interpretation of embeddings – no idea what the model will generate
 • still has uses:
 • **denoising autoencoder**: add noise to inputs, train to generate clean outputs
 • multi-task learning, representations for use in downstream tasks
Variational Autoencoders

- Making the encoding latent space more useful
 - using **Gaussians** – continuous space by design
 - encoding input into vectors of means μ & std. deviations σ
 - sampling encodings from $N(\mu, \sigma)$ for generation
 - samples vary a bit even for the same input
 - decoder learns to be more robust
 - model can degenerate into normal AE ($\sigma \to 0$)
 - we need to encourage some σ, smoothness, overlap ($\mu \sim 0$)
 - add **2nd loss: KL divergence** from $N(0,1)$
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs

- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
http://kvfrans.com/variational-autoencoders-explained/
• VAE objective:
 • **reconstruction loss** (maximizing $p(x|z)$ in the decoder), MLE as per usual
 • **latent loss** (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

\[
\mathcal{L} = - \mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]
\]

• This is equivalent to maximizing true $\log p(x)$ with some error
 • i.e. maximizing **evidence lower bound** (ELBO) / variational lower bound:

\[
\mathbb{E}_q[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)]
\]

• Sidestepping sampling – **reparameterization trick**
 • $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ

https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
Conditional Variational Autoencoders

• Direct control over types of things to generate
• Additional conditioning on a given label/type/class c
 • c can be anything (discrete, continuous…)
 • image class: MNIST digit
 • sentiment
 • “is this a good reply?”
 • coherence level
 • just concatenate to input
 • given to both encoder & decoder at training time
• Generation – need to provide c
 • CVAE will generate a sample of type c
 • Latent space is partitioned by c
 • same latent input with different c will give different results
Generative Adversarial Nets

- Training generative models to generate **believable** outputs
 - to do so, they necessarily get a better grasp on the distribution

- Getting loss from a 2nd model:
 - **discriminator** D – “adversary” classifying real vs. generated samples
 - **generator** G – trained to fool the discriminator
 - the best chance to fool the discriminator is to generate likely outputs

- Training iteratively (EM style)
 - generate some outputs
 - classify + update discriminator
 - update generator based on classification
 - this will reach a stable point

(Goodfellow et al, 2014)
Clustering

- Unsupervised, finding similarities in data
- basic algorithms
 - **k-means**: assign into \(k \) clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
 - **Gaussian mixture**: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
 - **hierarchical** (bottom up):
 - start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have \(k \) clusters / distance is too big
 - **hierarchical top-down** (reversed ⬅️)
- distance metrics & features decide what ends up together

https://www.displayr.com/what-is-hierarchical-clustering/
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

https://www.youtube.com/watch?v=9YA2t78Ha68
Summary

• ML as a function mapping in \(\rightarrow \) out
• Neural networks (function shapes)
 • CNNs, RNNs, encoder-decoder (seq2seq), attention, Transformer
 • input representation: embeddings (+ pretrained, + contextual/LMs: BERT et al.)
• Supervised training
 • cost function
 • gradient descent + learning rate tricks
 • dropout
• Reinforcement learning (more to come later)
• Unsupervised learning
 • autoencoders, variational autoencoders
 • generative adversarial nets
 • clustering
Thanks

Contact us:
https://ufaldsg.slack.com/
{odusek,hudecek}@ufal.mff.cuni.cz
Troja N231/N233 (by agreement)

Get the slides here:
http://ufal.cz/npfl099

References/Further:

Neural nets tutorials:
• https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0
• https://minitorch.github.io/index.html
• https://objax.readthedocs.io/en/latest/

Labs in 10 mins
Next Tuesday 9:50am