NPFL099 Statistical Dialogue Systems 2. Machine Learning Toolkit

http://ufal.cz/npfl099

Ondřej Dušek & Vojtěch Hudeček

6.10.2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Machine Learning

- ML is basically function approximation
- function: data (features) → labels
 - discrete labels = classification
 - continuous labels = regression
- function shape
 - this is where different algorithms differ
 - neural nets: complex functions, composed of simple building blocks (linear, sigmoid, tanh...)
- training/learning = adjusting function parameters to minimize error
 - **supervised learning** = based on data + labels given in advance
 - reinforcement learning = based on exploration & rewards given online

https://towardsdatascience.com/no-machinelearning-is-not-just-glorified-statistics-26d3952234e3

Neural networks

- Can be used for both classification & sequence models
- Non-linear functions, composed of basic building blocks
 - stacked into layers
- Layers are made of **activation functions**:
 - linear functions
 - nonlinearities sigmoid, tanh, ReLU
 - softmax probability estimates:

softmax(
$$\mathbf{x}$$
)_i = $\frac{\exp(x_i)}{\sum_{j=1}^{|\mathbf{x}|} \exp(x_j)}$

- Fully differentiable training by **gradient descent**
 - network output incurs loss/cost
 - gradients backpropagated from loss to all parameters (composite function differentiation)

https://medium.com/@shrutija don10104776/survey-onactivation-functions-for-deeplearning-9689331ba092

Gradient Descent

- supervised training- gradient descent methods
 - minimizing a cost/loss function

 (notion of error given system output, how far off are we?)
 - calculus: derivative = steepness/slope
 - follow the slope to find the minimum derivative gives the direction
 - **learning rate** = how fast we go (needs to be tuned)
- gradient typically computed over **mini-batches**
 - random bunches of a few training instances
 - not as erratic as using just 1 instance, not as slow as computing over whole data
 - stochastic gradient descent

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

Cost/Loss Functions

- differ based on what we're trying to predict
- logistic / log loss ("cross entropy")
 - for classification / softmax including word prediction
 - classes from the whole dictionary
 - pretty stupid for sequences, but works
 - sequence shifted by $1 \Rightarrow$ everything wrong
- squared error loss for regression
 - forcing the predicted float value to be close to actual one
- hinge loss for binary classification (SVMs), ranking
 - forcing the correct sign
- many others, variants

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ https://medium.com/@risingdeveloper/visualization-of-some-loss-functions-for-deep-learning-with-tensorflow-9f60be9d09f9 https://en.wikipedia.org/wiki/Hinge_loss

Gradient Descent: Learning Rate

- Learning rate (α) is tricky
 - too high α = may not find optimum
 - too low α = may take forever
- Learning rate decay: start high, lower α gradually
- Momentum: moving average

• $m = \beta \cdot m + (1 - \beta) \cdot \Delta$, update by *m* instead of Δ

- Better options per-parameter
 - look at how often each single weight gets updated
 - AdaGrad all history
 - remember sum of total gradients squared: $\sum_t \Delta_t^2$
 - divide learning rate by $\sqrt{(\sum \Delta_t^2)}$
 - Adam per-parameter momentum
 - moving averages for $\Delta \& \Delta^2$: $m = \beta_1 \cdot m + (1 \beta_1)\Delta$, $v = \beta_2 \cdot v + (1 \beta_2)\Delta^2$
 - use *m* instead of Δ , divide learning rate by $\sqrt{(v)}$

http://kaeken.hatenablog.com/entry/2016/11/10/203151

Word Embeddings

- let the network learn features by itself
 - input is just words (vocabulary is numbered)
- distributed word representation
 - each word = a vector of floats
- part of network parameters trained
 - a) random initialization
 - b) pretraining

NPFL099 L2 2020

• the network learns which words are used similarly

- they end up having close embedding values
- different embeddings for different tasks

http://blog.kaggle.com/2016/05/18/home-depot-product-searchrelevance-winners-interview-1st-place-alex-andreas-nurlan/

Pretrained Word Embeddings

Word2Vec

- Continuous Bag-of-Words
 - predict a word, given $\pm k$ words window
 - disregarding word order within the window
- Skip-gram: reverse
 - given a word, predict its $\pm k$ word window
 - closer words = higher weight in training

• GloVe

- optimized directly from corpus co-occurrences (= w_1 close to w_2)
- target: $e_1 \cdot e_2 = \log(\#co\text{-}occurrences})$
 - number weighted by distance, weighted down for low totals
- trained by minimizing reconstruction loss on a co-occurrence matrix

OUTPUT

(Mikolov et al., 2013)

INPU'

PROJECTION

(Pennington et al., 2014) http://aclweb.org/anthology/D14-1162

https://geekyisawesome.blogspot.com/2017/03/word-embeddings-how-word2vec-and-glove.html https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-difference-between-word2vec-and-glove/ w(t-2)

w(t-1)

w(t+1

softmax

Word Embeddings

- Vocabulary is unlimited, embedding matrix isn't
 - + the bigger the embedding matrix, the slower your models
- Special out-of-vocabulary token <unk>
 - "default" / older option
 - all words not found in vocabulary are assigned this entry
 - can be trained using some rare words in the data
 - problem for generation you don't want these on the output
- Using limited sets
 - characters very small set
 - works, but makes for very long sequences
 - **subwords** decided e.g. by byte-pair encoding
 - start from individual characters
 - iteratively merge most frequent bigram, until you get desired # of subwords
 - *sub@@ word* the *@@* marks "no space after"

(Sennrich et al., 2016) <u>https://www.aclweb.org/anthology/P16-1162/</u>

Convolutional Networks

- Designed for computer vision inspired by human vision
 - works for language in 1D, too!
- Use less parameters than fully connected
 filter/kernel
- Apply filter repeatedly over the input
 - element-wise multiply window of input x filter
 - sum + apply non-linearity (ReLU) to result
 - => produce 1 element of output
- Stride how many steps to skip
 - less overlap, reducing output dimension
- **Pooling** no filter, pre-set operation
 - maximum/average on each window
 - typical CNN architecture alternates convolution & pooling

Poo

 $\underline{https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2}$

Conv

Poc

FC Softmax

Recurrent Neural Networks

- Many identical layers with shared parameters (cells)
 - ~ the same layer is applied multiple times, taking its own outputs as input
 - ~ same number of layers as there are tokens
 - output = hidden state fed to the next step
 - additional input next token features
- Cell types
 - **basic RNN**: linear + tanh
 - problem: vanishing gradients
 - can't hold long recurrences
 - **GRU, LSTM**: more complex, to make backpropagation work better
 - "gates" to keep old values

Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input _____
 - decoder RNN: constructs the output token-by-token
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax.
 - next step: last hidden state + last generated token as input
 - LSTM/GRU cells over vectors of ~ embedding size
 - used in MT, dialogue, parsing...
 - more complex structures linearized to sequences

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

 $h_0 = \mathbf{0}$ $h_t = \operatorname{cell}(x_t, h_{t-1})$

 $s_0 = h_T$ $p(y_t | y_1, \dots y_{t-1}, \mathbf{x}) = \text{softmax}(s_t)$ $s_t = \text{cell}(y_{t-1}, s_{t-1})$

Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- Self-attention over previous decoder steps
 - increases consistency when generating long sequences

https://skymind.ai/wiki/attention-mechanism-memory-network

Attention Mechanism

Bahdanau & Luong Attention

- different combination with decoder state
 - Bahdanau: use on input to decoder cell
 - Luong: modify final decoder state
- different weights computation
- both work well exact formula not important

attention weights = alignment modeldecoder stateBahdanau:trained parameters $\alpha_{ti} = \operatorname{softmax}(v_{\alpha} \cdot \tanh(W_{\alpha} \cdot s_{t-1} + U_{\alpha} \cdot h_{t}))$ encoder hidden stateLuong: $\alpha_{ti} = \operatorname{softmax}(h_{i}^{\top} \cdot s_{t}))$ decoder stateencoder hidden stateencoder hidden stateattention value = context vector
same for both - sum encoder hidden states $c_{t} = \sum_{i=1}^{n} \alpha_{ti} h_{i}$

weighted by α_{ti}

Transformer

(Waswani et al., 2017) https://arxiv.org/abs/1706.03762

DOS

2.dim

- getting rid of (encoder) recurrences
 - making it faster to train, allowing bigger nets
 - replace everything with attention
 + feed-forward networks
 - ⇒ needs more layers
 - \Rightarrow needs to encode positions
- positional encoding .
 - adding position-dependent patterns to the input
- attention dot-product (Luong style)
 - scaled by $\frac{1}{\sqrt{\#dims}}$ (so values don't get too big)
 - more heads (attentions in parallel)
 - focus on multiple inputs

Contextual Word Embeddings

- Beyond pretrained word embeddings
 - words have different meanings based on context
 - static word embeddings (word2vec/GloVe) don't reflect that

• ELMo

- LSTMs trained for language modelling
- ELMo embeddings = weighted sum of input static embeddings & LSTM outputs
 - the weights are trained for a specific downstream task

• BERT

- huge Transformer encoder trained for:
 - masked word prediction
 - adjacent sentences detection (does B come right after A?)
- BERT embeddings
 - = any combination of the Transformer layers

http://jalammar.github.io/illustrated-bert/

Pretrained Language Models (~ Contextual Word Embeddings)

- Basically a newer name/perspective for the same idea
 - **1. Pretrain** a model on a huge dataset and some meaningful language-related task
 - 2. Fine-tune for your own task on your (smaller) data
- There are many variants of the pretrained models
 - mostly based on the Transformer architecture
 - pretraining tasks vary and make a difference
- **BERT** + variants: multilingual, **RoBERTa** (optimized)
- **GPT**(-2/-3): Transformer decoder only, next-word prediction
- BART: BERT as denoising autoencoder (more below) (Lewis et al., 2019) http://arxiv.org/abs/1910.13461
- T5: generalization, many variants (Raffel et al., 2019) http://arxiv.org/abs/1910.10683
- a lot of this is released plug-and-play
 - you only need to finetune (and sometimes, not even that)

(Devlin et al., 2019) https://www.aclweb.org/anthology/N19-1423 https://github.com/google-research/bert

(Rogers et al., 2020) http://arxiv.org/abs/2002.12327

(Liu et al., 2019) <u>http://arxiv.org/abs/1907.11692</u>

(Radford et al., 2019) https://openai.com/blog/better-language-models/

> (Brown et al., 2020) http://arxiv.org/abs/2005.14165

https://github.com/huggingface/transformers

Dropout

- overfitting to training data is a problem for NNs
 - too many parameters
- **Dropout** simple regularization technique
 - more effective than e.g. weight decay (L2)
 - zero out some neurons/connections in the network at random
 - technically: multiply by dropout layer
 - 0/1 with some probability (typically 0.5–0.8)
 - at training time only full network for prediction
 - weights scaled down after training
 - they end up larger than normal because there's fewer nodes
 - done by libraries automatically
 - may need larger networks to compensate

Multi-task Learning

(Ruder, 2017) <u>http://arxiv.org/abs/1706.05098</u> (Fan et al., 2017) <u>http://arxiv.org/abs/1706.04326</u> (Luong et al., 2016) <u>http://arxiv.org/abs/1511.06114</u>

- achieve better generalization by learning more things at once
 - a form of regularization
 - implicit data augmentation
 - biasing/focusing the model
 - e.g. by explicitly training for an important subtask
- parts of network shared, parts task-specific
 - hard sharing = parameters truly shared (most common)
 - soft sharing = regularization by parameter distance
 - different approaches w. r. t. what to share
- training alternating between tasks
 - so the network doesn't "forget"

Reinforcement Learning

- Learning from weaker supervision
 - only get feedback once in a while, not for every output
 - good for globally optimizing sequence generation
 - you know if the whole sequence is good
 - you don't know if step X is good
 - sequence = e.g. sentence, dialogue
- Framing the problem as states & actions & rewards
 - "robot moving in space", but works for dialogue too
 - state = generation so far (sentence, dialogue state)
 - action = one generation output (word, system dialogue act)
 - defining rewards might be an issue
- Training: maximizing long-term reward
 - via state/action values (Q function)
 - directly optimizing policy

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

MNIST digits autoencoder latent space

► Encoder ► Encoding ► Decoder

no idea what

the output will be from here

ones

Autoencoders

- Using NNs as generative models
 - more than just classification modelling the whole distribution
 - (of e.g. possible texts, images)
 - generate new instances that look similar to training data
 - considered unsupervised learning
- **Autoencoder**: input \rightarrow encoding \rightarrow input
 - encoding ~ "embedding" in latent space (i.e. some vector)
 - trained by reconstruction loss
 - problem: can't easily get valid embeddings for generating new outputs
 - parts of embedding space might be unused will generate weird stuff
 - no easy interpretation of embeddings no idea what the model will generate
 - still has uses:
 - **denoising autoencoder**: add noise to inputs, train to generate clean outputs
 - multi-task learning, representations for use in downstream tasks

Variational Autoencoders

- Making the encoding latent space more useful
 - using Gaussians continuous space by design
 - encoding input into vectors of means μ & std. deviations σ

Input

Dense - 500

Dense - 120

Sample - 30

Dense - 120

Dense - 500

what can happen without regularisation

Output

want to obtain with regularisati

Difference

Half-dassical, half-rock

Classical music sample vector

- sampling encodings from $N(\mu, \sigma)$ for generation \Box
 - samples vary a bit even for the same input
 - decoder learns to be more robust
- model can degenerate into normal AE ($\sigma \rightarrow 0$)
 - we need to encourage some $\sigma,$ smoothness, overlap $(\mu \sim 0)$
 - add **2nd loss: KL divergence** from *N*(0,1)
 - VAE learns a trade-off between using unit Gaussians & reconstructing inputs
- Problem: still not too much control of the embeddings
 - we can only guess what kind of output the model will generate

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 http://kvfrans.com/variational-autoencoders-explained/

VAE details

- VAE objective:
 - reconstruction loss (maximizing p(x|z) in the decoder), MLE as per usual
 - latent loss (KL-divergence from ideal $p(z) \sim \mathcal{N}(0,1)$ in the encoder)

 $\mathcal{L} = -\mathbb{E}_q[\log p(x|z)] + KL[q(z|x)||p(z)]$

- This is equivalent to maximizing true $\log p(x)$ with some error
 - i.e. maximizing **evidence lower bound** (ELBO) / variational lower bound:

$$\mathbb{E}_{q}[\log p(x|z)] - KL[q(z|x)||p(z)] = \log p(x) - KL[q(z|x)||p(z|x)]$$

"evidence"
(i.e. data)
error incurred
by using q
instead of true
distribution p

- Sidestepping sampling **reparameterization trick**
 - $z \sim \mu + \sigma \cdot \mathcal{N}(0,1)$, then differentiate w. r. t. μ and σ

Conditional Variational Autoencoders

- Direct control over types of things to generate
- Additional conditioning on a given label/type/class *c*
 - *c* can be anything (discrete, continuous...)
 - image class: MNIST digit
 - sentiment
 - "is this a good reply?"
 - coherence level
 - just concatenate to input
 - given to both encoder & decoder at training time
- Generation need to provide *c*
 - CVAE will generate a sample of type *c*
 - Latent space is partitioned by *c*
 - same latent input with different *c* will give different results

Generative Adversarial Nets

- Training generative models to generate **believable** outputs
 - to do so, they necessarily get a better grasp on the distribution
- Getting loss from a 2nd model:
 - **discriminator D** "adversary" classifying real vs. generated samples
 - generator G trained to fool the discriminator
 - the best chance to fool the discriminator is to generate likely outputs
- Training iteratively (EM style)
 - generate some outputs
 - classify + update discriminator
 - update generator based on classification
 - this will reach a stable point

(Goodfellow et al, 2014)

Clustering

- Unsupervised, finding similarities in data
- basic algorithms
 - **k-means**: assign into *k* clusters randomly, iterate:
 - compute means (centroids)
 - reassign to nearest centroid
 - Gaussian mixture: similar, but soft & variance
 - clusters = multivariate Gaussian distributions
 - estimating probabilities of belonging to each cluster
 - cluster mean/variance based on data weighted by probabilities
 - **hierarchical** (bottom up): start with one cluster per instance, iterate:
 - merge 2 closest clusters
 - end when you have k clusters / distance is too big
 - hierarchical top-down (reversed →)
- distance metrics & features decide what ends up together

https://www.youtube.com/watch?v=9YA2t78Ha68

Summary

- ML as a function mapping in \rightarrow out
- Neural networks (function shapes)
 - CNNs, RNNs, encoder-decoder (seq2seq), attention, Transformer
 - input representation: embeddings (+ pretrained, + contextual/LMs: BERT et al.)
- Supervised training
 - cost function
 - gradient descent + learning rate tricks
 - dropout
- Reinforcement learning (more to come later)
- Unsupervised learning
 - autoencoders, variational autoencoders
 - generative adversarial nets
 - clustering

Thanks

Contact us:

<u>https://ufaldsg.slack.com/</u> {odusek,hudecek}@ufal.mff.cuni.cz Troja N231/N233 (by agreement) Labs in 10 mins Next Tuesday 9:50am

Get the slides here:

http://ufal.cz/npfl099

References/Further:

Goodfellow et al. (2016): Deep Learning, MIT Press (<u>http://www.deeplearningbook.org</u>) Kim et al. (2018): Tutorial on Deep Latent Variable Models of Natural Language (<u>http://arxiv.org/abs/1812.06834</u>)

Milan Straka's Deep Learning slides: <u>http://ufal.mff.cuni.cz/courses/npfl114/1819-summer</u> Neural nets tutorials:

- <u>https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0</u>
- https://minitorch.github.io/index.html
- <u>https://objax.readthedocs.io/en/latest/</u>