6. Language Understanding (non-neural)

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz/npfl123

24. 3. 2020
Natural Language Understanding

• **words → meaning**
 • whatever “meaning” is – can be different tasks
 • typically structured, explicit representation

• alternative names/close tasks:
 • *spoken language understanding*
 • *semantic decoding/parsing*

• integral part of dialogue systems, also explored elsewhere
 • stand-alone semantic parsers

• other applications:
 • human-robot interaction
 • question answering
 • machine translation (not so much nowadays)
NLU Challenges

• non-grammaticality

• disfluencies
 • hesitations – pauses, fillers, repetitions
 • fragments
 • self-repairs (~6%!)

• ASR errors

• synonymy

• out-of-domain utterances

find something cheap for kids should be allowed

uhm I want something in the west the west part of town
uhm find something uhm something cheap no I mean moderate
uhm I’m looking for a cheap

I’m looking for a for a chip Chinese rest or rant

Chinese city centre
uhm I’ve been wondering if you could find me
a restaurant that has Chinese food close to
the city centre please

oh yeah I’ve heard about that place my son was there last month
Semantic representations

- **syntax/semantic trees**
 - typical for standalone semantic parsing
 - different variations

- **frames**
 - technically also trees, but not directly connected to words
 - (mostly older) DSs, some standalone parsers

- **graphs (AMR)**
 - more of a toy task, but popular

- **dialogue acts** = intent + slots & values
 - flat – no hierarchy
 - most DSs nowadays

Examples:

- oui l’hôtel don’t le prix ne dépasse pas cent dix euros
- inform(date=Friday, stay=“2 nights”)
NLU basic approaches

For trees/frames/graphs:

- **grammar-based parsing**
 - handwritten/probabilistic grammars & chart parsing algorithms

- **statistical**
 - inducing structure using machine learning
 - grammar is implicit (training treebanks)

For DAs (shallow parsing):

- **classification**
- **sequence labelling**
Grammars vs. shallow parsing

Grammars are:

- more expressive
 - hierarchical structure better captures relations
- harder to maintain
 - sparser
 - harder to build rules by hand
 - statistical parsers need more data
 - training data is harder to get
- more hardware-hungry
 - chart parsing: $O(n^3)$, shallow: $O(n)$ for simplest approaches
- more brittle
 - shallow parsing is typically less sensitive to ASR errors, variation, etc.

Show me flights from Seattle to Boston

(Wang et al., 2005)
Grammars: CFG
(Context-free Grammar)

• Simple recursive grammar
 • **rules**: \(X \rightarrow A \ B \ C \)
 - splitting a phrase into adjacent parts
 • **terminals** = words
 • **non-terminals** = phrases (spanning multiple words)

• parsable using dynamic programming
 • (chart parsing)

• too simple for full natural language
 • but may be OK for a limited domain
 • especially with **probabilistic extensions**

\[
S \rightarrow NP \ VP | N \ VP | N \ V | NP \ V \\
VP \rightarrow V \ NP | V \ N | VP \ PP \\
NP \rightarrow D \ N | NP \ PP | N \ PP \\
PP \rightarrow P \ NP | P \ N
\]

\(N \rightarrow john, girl, car \) noun
\(V \rightarrow saw, walks \) verb
\(P \rightarrow in \) preposition
\(D \rightarrow the, a \) determiner

Alternative rules:
- ambiguous
CFG: Phoenix Parser
(ATIS, 90’s)

- CFG hierarchy based on **semantic frames**
 - Frames → slots / other frames
 - multiple CFGs, one per slot

- Robustness attempts
 - ignore stuff not belonging to any frame

- Chart parsing
 - left to right
 - maximize coverage
 - minimize # of different slots

\[\text{I would like to go to Boston tomorrow from San Francisco}\]
Grammars: CCG
(Combinatory Categorial Grammar)

• Grammar based on lambda calculus
 • syntax-bound semantics: lambda meaning in parallel to syntax phrases

• CCG lambda expressions:
 • logical constant: NYC, BOSTON…
 • variable: \(x, y, z \)…
 • literal: \(\text{city(AUSTIN), located_in(AUSTIN, TEXAS)} \)
 • lambda terms – binding variables: \(\lambda x. \text{city}(x) \sim \text{“}x \text{ is a city} \text{”} \)
 • quantifiers \(\exists \ \forall \), logical operators \(\Lambda \ \lor \ \neg \)

• CCG categories: syntax + lambda
 • simple: NOUN : \(\lambda x. \text{city}(x) \)
 • complex: \(S \backslash NP/NP : \lambda x. f(x) \) (“sentence missing an NP to the left and right”)

• Lexicon: word + syntax + lambda:
 • city \(\vdash \) NOUN: \(\lambda x. \text{city}(x) \), is \(\vdash \) S\backslash NP/NP : \(\lambda x. f(x) \)
Grammars: CCG

- parsing = combining categories (function application)
 - much fewer operations than CFG
 - $\Rightarrow, \langle \Rightarrow$ function application – $B : g + A \backslash B : f \Rightarrow A : f(g)$
 - $\Rightarrow B, \langle B$ function composition – $A/B : f + B/C : g \Rightarrow A/C : \lambda x.f(g(x))$
 - $\langle \Phi$ coordination (2 identical categories $\Rightarrow 1$)
 - \neg category change
 - similar algorithms to CFG
 - statistical parsers available

I want to go from Boston to New York and then from New York to Chicago:

| CCG | NP
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N</td>
<td>$\lambda x. f(x)$</td>
</tr>
<tr>
<td>NP</td>
<td>BOS</td>
</tr>
<tr>
<td>I</td>
<td>NYC</td>
</tr>
</tbody>
</table>

\Rightarrow_B:

$\lambda f, \lambda x. f(x) \land \text{from}(x, \text{BOS}) \land \text{to}(x, \text{NYC})$

$\langle \Phi$:

$\lambda x, \lambda x[1]. f(x) \land \text{from}(x[1], \text{BOS}) \land \text{to}(x[1], \text{NYC}) \land \text{before}(x[1], x[2]) \land \text{to}(x[2], \text{CHI})$

https://yoavartzi.com/tutorial/
NLU as classification

• using DAs – treating them as a set of semantic concepts
 • concepts:
 • intent
 • slot-value pair
 • binary classification: is concept Y contained in utterance X?
 • independent for each concept

• consistency problems
 • no conflicting intents (e.g. affirm + negate)
 • no conflicting values (e.g. kids-allowed=yes + kids-allowed=no)
 • need to be solved externally, e.g. based on classifier confidence
NLU as classification

- **classification:** features \rightarrow labels (classes)
 - here: classes are **binary** (-1/1 or 0/1)
 - **one classifier per concept**
- **features**
 - **binary** – is X present? or **count** – how many X’s are present?
 - words
 - n-grams
 - word pairs/triples (position-independent)
 - regex
 - presence of named entities

I’m looking for something cheap in the city centre.

Dialogue act types:
- negate
- deny
- inform
- select

Slot value pairs:
- food=Italian
- food=Chinese
- area=centre
- area=north
- price=cheap

(from Milica Gašić’s slides)
NER + delexicalization

Approach:

1) **identify** slot values/named entities

2) **delexicalize** = replace them with placeholders (indicating entity type)
 - or add the NE tags as more features for classification

- generally needed for NLU as classification
 - otherwise in-domain data is too sparse
 - this can vastly reduce the number of concepts to classify & classifiers

- NER is a problem on its own
 - but general-domain NER tools may need to be adapted
 - added gazetteers with in-domain names
 - in-domain gazetteers alone may be enough
 - NE supplemented by NE linking/disambiguation (usually not needed in DS)

What is the phone number for Golden Dragon?
What is the phone number for <restaurant-name>?

I’m looking for a Japanese restaurant in Notting Hill.
I’m looking for a <food> restaurant in <area>.
NLU Classifiers

• note that data is usually scarce!

• **handcrafted / rules**
 • simple mapping: word/n-gram/regex match → concept
 • can work really well for a limited domain
 • no training data, no retraining needed (tweaking on the go)

• **logistic regression**

• **SVM** (support vector machine)

• **neural nets**
 • different, “automatic” features (embeddings, see later)
 • only applicable if a lot of data is available
Logistic Regression
(Maximum Entropy Classifier)

- despite the name, it’s a classifier
- very basic, but powerful with the right features
- trained by gradient descent (logistic/cross entropy loss)
- maximum entropy estimate (“most uniform model given data”)

\[p(y|x) = \frac{1}{1 + \exp(-y(\theta \cdot x))} \]

binary, for \(y \in \{-1, +1\} \)

\[p(y|x) = \frac{1}{Z(x)} \exp(\theta \cdot f(x, y)) \]

normalization

generalization: feature functions vector
(some fire for each value of \(y \))

equivalent form
- maximum entropy style
(works for \textbf{multiclass}, too!)
Support-Vector Machines (SVMs)

• separate classes with **maximum margin** (=best generalization)
• decision boundary defined by **support vectors** (closest instances)

There are many possible separation boundaries between classes in feature space.

- boundary farthest away from both classes = maximum margin
- instances closest to the boundary = support vectors
- removing a support vector changes the boundary

(from Aikaterini Tzompanaki's slides)
SVMs

- Decision boundary: $\mathbf{\theta} \cdot \mathbf{x}^{\text{bound}} = 0$
- Support vectors: $\mathbf{\theta} \cdot \mathbf{x}^{sv} = y^{sv}$ ($y^{sv} \in \{-1, +1\}$)
- Maximum margin: $\max \frac{2}{||\mathbf{\theta}||} \sim \min \frac{1}{2} ||\mathbf{\theta}||^2$ with correct classification

 - constrained optimization – quadratic programming (Lagrange multipliers)

- SVM Score: $g(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x} = \sum_{i=1}^{S} y_i \alpha_i \mathbf{x}_i \cdot \mathbf{x}$
- classification:
 - $y = \text{sign}(g(\mathbf{x}))$
- probability: Platt scaling
 - logistic regression with $g(\mathbf{x})$ as feature

why margin is $\frac{2}{||\mathbf{\theta}||}$: https://math.stackexchange.com/questions/1305925/
SVM vs. Logistic Regression

• **soft-margin SVM** – for non-separable cases
 • non-separable = no perfect decision boundary
 • “soft” = weighing correct classification *(hinge loss)* & margin size
 • model: \(\min_{\theta} \lambda ||\theta||^2 + \sum_i \max\{0, 1 - y_i \theta \cdot x_i\} \)

• **regularized logistic regression** – for better generalization
 • preventing overfitting to training data – trying to keep parameter values low
 • logistic loss
 • model: \(\min_{\theta} \lambda ||\theta||^2 + \sum_i \log(1 + \exp(1 - y_i \theta \cdot x_i)) \)

• the main difference is the loss
 • hinge loss should be marginally better for classification, but it depends
Classification example

features (x)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>want</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
</tr>
<tr>
<td>go</td>
<td>1</td>
</tr>
<tr>
<td>from</td>
<td>2</td>
</tr>
<tr>
<td><airport-1></td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>him</td>
<td>0</td>
</tr>
<tr>
<td>price</td>
<td>0</td>
</tr>
<tr>
<td>tell</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>I want</td>
<td>1</td>
</tr>
<tr>
<td>want to</td>
<td>1</td>
</tr>
<tr>
<td>to go</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>from <airport-1></td>
<td>1</td>
</tr>
</tbody>
</table>

weights:

- intent=search_flights
- intent=request_price
- from_airport=<airport-1>

weights define different classifiers

ASR: *I want to go from Newark to London City next Friday*

Delex: *I want to go from <airport-1> to <airport-2> next <day-1>*

SVM: $\theta_{FA1} \cdot x = +3.4347 \rightarrow$ found from_airport=Newark

LR: $\text{sigmoid}(\theta_{FA1} \cdot x) = 0.883 \rightarrow$ found from_airport=Newark (conf. = 0.883)
Slot filling as sequence tagging

- get slot values directly – “automatic” delexicalization
 - each word classified
 - classes = slots & IOB format (inside-outside-beginning)
 - slot values taken from the text (where a slot is tagged)
 - NER-like approach

- rules + classifiers kinda still work
 a) keywords/regexes found at specific position
 b) apply classifier to each word in the sentence left-to-right
 - problem: overall consistency
 - slots found elsewhere in the sentence might influence what’s classified now

- solution: structured/sequence prediction
Maximum Entropy Markov Model (MEMM)

- Looking at past classifications when making next ones
 - LR + a simple addition to the feature set
- Whole history would be too sparse/complex
 \[\rightarrow \textbf{Markov assumption}: \] only the most recent matters
 - 1st order MM: just the last one (\[\leftarrow\text{this is what we show here}\])
 - \(n\)th order MM: \(n\) most recent ones
- still not modelling the sequence globally

\[
p(y|x) = \prod_{t=1}^{T} \frac{1}{Z(y_{t-1}, x)} \exp(\theta \cdot f(y_t, y_{t-1}, x))
\]

- \(p(y|x)\) for the whole sequence
- time steps – independent except for \(y_{t-1}\)
- \(y_{t-1}\) is the main addition compared to LR
- looking at the whole input
Hidden Markov Model (HMM)

- Modelling the **sequence as a whole**
- Very basic model:
 - “tag depends on word + previous tag”
- Markov assumption, again
- “Hidden” – reverse viewpoint:
 - “tags are hidden, but they influence the words on the surface”
- Inference – Viterbi algorithm
 - we can get the **globally best tagging**

HMM is a **generative model** – models **joint distribution** $p(y, x)$, not just conditional $p(y|x)$

$$p(y, x) = \prod_{t=1}^{T} p(y_t|y_{t-1})p(x_t|y_t)$$

for the whole sequence

transition probability prev. tag \rightarrow tag

observation probability tag \rightarrow word
Hidden Markov Model

• Rewrite so it looks more like MEMM + get conditional probability

Just indicators (binary features)

$$p(y, x) = \prod_{t=1}^{T} \exp\left(\sum_{i,j \in S} \theta_{ij} 1_{y_t=i} 1_{y_{t-1}=j} + \sum_{i \in S} \sum_{o \in O} \mu_{oi} 1_{y_t=i} 1_{x_t=o} \right)$$

Transition

Observation

Hide the actual probabilities as weights (in logarithm)

Subsume transition & observation under feature functions, θ_k is θ_{ij} & μ_{oi}

Just the current word

Conditional probability:

$$p(y|x) = \frac{p(y, x)}{\sum_{y'} p(y', x)} = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp\left(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp(\theta \cdot f(y_t, y_{t-1}, x_t))$$

Normalization is global

Vector notation
HMM vs. MEMM

• MEMM:
 • any feature functions, as in LR
 • local normalization – does not model whole sequences, just locally
 • label bias problem
 • training: you know the correct labels
 • inference: one error can lead to a series of errors

• HMM:
 • global normalization for $p(y|x)$ over all y’s
 • modelling sequences as a whole
 • very boring & limited feature functions

• how about best of both?
Linear-Chain
Conditional Random Field (CRF)

- HMM + more complex feature functions
- MEMM + global sequence modelling

\[p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp(\theta \cdot f(y_t, y_{t-1}, x)) \]

- state-of-the-art for many sequence tagging tasks (incl. NLU)
 - until NNs took over
 - used also in conjunction with NNs
- global normalization makes it slow to train
Sequence tagging example

ASR:
I want to go from from Newark
to London City next Friday

Previous tags:
0 0 0 0 0 B-from_airport 0

current position:
what’s the class for London?

features (x):

<table>
<thead>
<tr>
<th>in_sent=</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newarke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>want</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>go</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>him</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>I want</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>want to</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to go</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

features (x):

cur=London	1	prev_tag=O	1
cur=him	0	prev_tag=B-price	0
cur=to	1		
prev=to	1		
prev=want	0		
prev=price	0		
cur=to London	1		
prev=Newark to	1		

HMM considers only these

MEMM: looks at London, ignores that it also needs to tag City later
→ likely to tag as B-to_city

CRF: also considers future tags, more likely to tag London City
as B-to_airport I-to_airport
Handling ASR noise

• ASR produces multiple hypotheses
• Combine & get resulting NLU hypotheses
 • NLU: $p(DA|text)$
 • ASR: $p(text|audio)$
 • we want $p(DA|audio)$
• Easiest: **sum it up**

$$p(DA|audio) = \sum_{texts} P(DA|text)P(text|audio)$$

0.33 – I am looking for a bar
0.26 – I am looking for the bar
0.11 – I am looking for a car
0.09 – I am looking for the car
0.59 – inform(task=find, venue=bar)
0.20 – null()

(from Filip Jurčiček’s slides)
Handling ASR noise

• Alternative: **use confusion networks**
 • per-word ASR confidence
 • Word features weighed by word confidence

0.33 — I am looking for a bar
0.26 — I am looking for the bar
0.11 — I am looking for a car
0.09 — I am looking for the car

~equivalent confusion network

features:

- I 0.9
- hi 0.02
- am 0.9
- looking 1
- for 1
- ...
- I am 0.81
- my am 0.063
- am looking 0.9
- a bar 0.3
- a car 0.24
- ...

should be normalized by n-gram length

(from Filip Jurčiček’s slides)
Context

• user response can depend on last system action
 • fragments/short replies are ambiguous without context
• add last system DA/text into input features
 • helps disambiguate
• careful – user may not play nice!
 • system needs to be trained with both alternatives in mind

U: I’m looking for flights from JFK.
S: Where would you like to go?
U: Atlanta.

inform(??=Atlanta)
inform(from=Atlanta)

x U: Actually I’d rather fly from Newark.
Summary

• NLU can be tricky
 • bad grammar, fragments, synonymy, ASR errors …

• Grammars, frames, graph representation
 • rule-based or statistical structure induction
 • more expressive, but harder – not so much in limited-domain systems

• Shallow parsing
 • dialogue acts: intent + slots & labels
 • rules – keyword spotting, regex
 • classification (LR, SVM)
 • sequence tagging (MEMM, HMM, CRF)

• Next time: neural NLU & dialogue state tracking

(Sutton & McCallum, 2010)
https://arxiv.org/abs/1011.4088
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
Slack

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Raymond Mooney’s slides (University of Texas Austin): https://www.cs.utexas.edu/~mooney/ir-course/
• Hao Fang’s slides (University of Washington): https://hao-fang.github.io/ee596_spr2018/syllabus.html
• Aikaterini Tzompanaki’s slides (University of Cergy-Pontoise): https://perso-etis.ensea.fr/tzompanaki/teaching.html
• Pierre Lison’s slides (University of Oslo): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/
• Andrew McCallum’s slides (U. of Massatchusets Amherst): https://people.cs.umass.edu/~mccallum/courses/inlp2007/