2. What happens in a dialogue

Ondřej Dušek & Vojtěch Hudeček & Jan Cuřín

http://ufal.cz(npfl123

25. 2. 2020
How do you “define” dialogue?

Spoken/written conversational (interactive, collaborative) communication between two or more people

• **verbal** + (possibly) non-verbal
 • can be multimodal (language + gestures, pitch, expressions…)

• **collaborative**, social
 • participants aim at communicative goal(s)
 • involves inference about intended meanings

• **practical**, related to actions

• **interactive**, incremental, messy!

Dialogue systems – simpler than that
Describing a dialogue

• Levels of linguistic description
 • phonetics / phonology – sounds
 • morphology – word forms
 • syntax – sentence structure
 • semantics – sentence (propositional) meaning
 • pragmatics – meaning in context, communication goal

• This lecture is (a lot) about pragmatics
 (I don’t remember it well)
Turn-taking (interactivity)

• Speakers **take turns** in a dialogue
 • **turn** = continuous utterance from one speaker

• Normal dialogue – very fluent, fast
 • minimizing **overlaps & gaps**
 • little silence (usually <250ms), little overlap (~5%)
 • (fuzzy) rules, anticipation
 • **cues/markers** for turn boundaries:
 • linguistic (e.g. finished sentence), voice pitch
 • timing (gaps)
 • eye gaze, gestures (…)

• overlaps happen naturally
 • ambiguity in turn-taking rules (e.g. two start speaking at the same time)
 • **barge-in** = speaker starts during another one’s turn
Turn-taking (example)

20 seconds of a semi-formal dialogue (talk show):

S: um uh, you're about to start season [six ,]
J: [yes]
S: you probably already started but [it launches]
J: [yes thank you]
A: (cheering)
J: we're about to start thank you yeah .. we're starting , we- on Sunday yeah ,
we've been eh- we've been prepping some [things]
S: [confidence] is high . feel good ?
J: (scoffs)
S: think you're gonna
[squeeze out the shows this time ? think you're gonna do it ?]
J: *(Laughing)* [you're talking to me like I'm an a-] confidence high ? no !
S: [no]
J: [my confidence] is never high .
S: okay
J: self loathing high . concern astronomic .

Transcription loosely following Roberts (2003)
https://www.kcl.ac.uk/sspp/departments/education/research/research-centres/ldc/knowledge-transfer/data/qualitative.aspx
Speech vs. text

• Natural speech is **very different from written text**
 • ungrammatical
 • restarts, hesitations, corrections
 • overlaps
 • pitch, stress
 • accents, dialect

• See more examples in speech corpora
 • https://kontext.korpus.cz/ (Czech)
 • select the “oral” corpus and search for a random word
Turn taking in dialogue systems

• consecutive turns are typically assumed
 • system waits for user to finish their turn (~250ms non-speech)

• voice activity detection
 • binary classification problem – “is it user’s speech that I’m hearing?”[Y/N]
 • segments the incoming audio (checking every X ms)
 • actually a hard problem
 • nothing ever works in noisy environments

• wake words – making VAD easier
 • listen for a specific phrase, only start listening after it

• some systems allow user’s barge-in
 • may be tied to the wake word
Voice activity detection

• Overlapping windows of ~30ms + binary classifier
• Features – actually similar to speech recognition itself
 • energy (loudness)
 • autocorrelation
 • checking for fundamental voice frequency
 • MFCCs (mel frequency spectrum)
 • deltas (trends over time)
• Onset is easier to detect than end of speech
 • they’re louder, more pronounced
 • hard to detect speech towards the system vs. someone else
 • that’s why wake words are used
 • how long can pauses/hesitations be?
• Postprocessing
 • smoothing out short-term errors
Speech acts (by John L. Austin & John Searle)

• each utterance is an act
 • intentional
 • changing the state of the world
 • changing the knowledge/mood of the listener (at least)
 • influencing the listener’s behavior

• speech acts consist of:
 a) utterance act = the actual uttering of the words
 b) propositional act = semantics / “surface” meaning
 c) illocutionary act = “pragmatic” meaning
 • e.g. command, promise […]
 d) perlocutionary act = effect
 • listener obeys command, listener’s worldview changes […]

X to Y: You’re boring!
 a) [jʊr ˈbɔːrɪŋ]
 b) boring(Y)
 c) statement
 d) Y is cross

X to Y: Can I have a sandwich?
 a) [kæn ɪ hæv ə ˈsændwɪʧ]
 b) can_have(X, sandwich)
 c) request
 d) Y gives X a sandwich
Speech acts

Types of speech acts:
- **assertive**: speaker commits to the truth of a proposition
 - statements, declarations, beliefs, reports […]
- **directive**: speaker wants the listener to do something
 - commands, requests, invitations, encouragements
- **commissive**: speaker commits to do something themselves
 - promises, swears, threats, agreements
- **expressive**: speaker expresses their psychological state
 - thanks, congratulations, apologies, welcomes
- **declarative**: performing actions (“performative verbs”)
 - sentencing, baptizing, dismissing

You’re fired!

It’s raining outside.

Stop it!

I’ll come by later.

Thank you!

You’re fired!
Speech acts

• Explicit vs. implicit
 • explicit – using a verb directly corresponding to the act
 • implicit – without the verb

• Direct vs. indirect
 • indirect – the surface meaning does not correspond to the actual one
 • primary illocution = the actual meaning
 • secondary illocution = how it’s expressed
 • reasons: politeness, context, familiarity

explicit: I promise to come by later.
implicit: I’ll come by later.

explicit: I’m inviting you for a dinner.
implicit: Come with me for a dinner!

direct: Please close the window.
indirect: Could you close the window?
even more indirect: I’m cold.

direct: What is the time?
indirect: Have you got a watch?
Conversational Maxims (by Paul Grice)

• based on Grice’s **cooperative principle** (“dialogue is cooperative”)
 • speaker & listener cooperate w. r. t. communication goal
 • speaker wants to inform, listener wants to understand

• 4 Maxims (basic premises/principles/ideals)
 • M. of **quantity** – don’t give too little/too much information
 • M. of **quality** – be truthful
 • M. of **relation** – be relevant
 • M. of **manner** – be clear

• By default, speakers are assumed to adhere to maxims
 • apparently breaking a maxim suggests a different/additional meaning
Conversational Implicatures

• **implicatures** = implied meanings
 - standard – based on the assumption that maxims are obeyed
 - maxim flouting (obvious violation) – additional meanings (sarcasm, irony)

John ate some of the cookies → [otherwise too little/low-quality information] not all of them

A: I’ve run out of gas.
B: There’s a gas station around the corner. → [otherwise irrelevant] the gas station is open

A: Will you come to lunch with us?
B: I have class. → [otherwise irrelevant] B is not coming to lunch

A: How’s John doing in his new job?
B: Good. *He didn’t end up in prison so far.* → [too much information] John is dishonest / the job is shady
Speech acts & maxims & implicatures in dialogue systems

- Learned from data / hand-coded
- Understanding
 - tested on real users → usually knows indirect speech acts
 - implicatures limited – there’s no common sense
 - (other than what’s hand-coded or found in training data)
- Responses
 - mostly strive for clarity – user doesn’t really need to imply

system: The first train from Edinburgh to London leaves at 5:30 from Waverley Station.
user: I don’t want to get up so early. → [fails]
Grounding

- dialogue is cooperative → need to ensure mutual understanding

- **common ground** = shared knowledge, mutual assumptions of dialogue participants
 - not just shared, but *knowingly* shared
 - \(x \in CG(A, B) \):
 - A & B must know \(x \)
 - A must know that B knows \(x \) and vice-versa
 - expanded/updated/refined in an informative conversation

- validated/verified via **grounding signals**
 - speaker **presents** utterance
 - listener **accepts** utterance by providing evidence of understanding
Grounding signals / feedback

• used to notify speaker of (mis)understanding

• positive – understanding/acceptance signals:
 • **visual** – eye gaze, facial expressions, smile […]
 • **backchannels** – particles signalling understanding
 • **explicit feedback** – explicitly stating understanding
 • **implicit feedback** – showing understanding implicitly in the next utterance

 uh-uh, hmm, yeah
 I know, Yes I understand

 U: find me a Chinese restaurant
 S: I found three *Chinese restaurants* close to you […]
 A: Do you know where John is?
 B: John? Haven’t seen him today.

• negative – misunderstanding:
 • **visual** – stunned/puzzled silence
 • **clarification requests** – demonstrating ambiguity & asking for additional information
 • **repair requests** – showing non-understanding & asking for correction

 A: Do you know where John is?
 B: Do you mean John Smith or John Doe?

Oh, so you’re not flying to London? Where are you going then?
T: [...] And the ideology is also very against mixed-race couples. So that was also a target. Whenever we saw mixed-race couples, we attacked them.

E: Was there ever a moment back there where you felt a tiny bit bad about it?

T: No.

E: **No? So you were** absolutely convinced that you're doing the right thing...

T: Yeah, for quite some time *(nods)*, **yeah**.

E: ... for the sake of the white race and et cetera?

E: No doubt at all?

T: Well I got **doubt** eventually, roughly a year before I left the movement [...]
Grounding in dialogue systems

- Crucial for successful dialogue
 - e.g. booking the right restaurant / flight
- Backchannels / visual signals typically not present
- **Implicit confirmation** very common
 - users might be confused if not present
- **Explicit confirmation** may be required for important steps
 - e.g. confirming a reservation / bank transfer
- **Clarification & repair requests** very common
 - when input is ambiguous or conflicts with previously said
- Part of dialogue management
 - uses NLU confidence in deciding to use the signals
Deixis

• **deixis** = “pointing” – relating between language & context/world
 • this is very important in dialogue
 • dialogue is typically set/situated in a specific context

• **deictic expressions** = words/grammar expressing deixis
 • their meaning depends on the context
 • who is talking, when, where
 • pronouns *I, you, him, this*
 • verbs: tense & person markers *goes* [3rd ps. sg.], *went* [past]
 • adverbs *here, now, yesterday*
 • other (lexical meaning) *come / go* [=here/away],
 • non-verbal (gestures, gaze…)

NPFL123 L2 2020
Deixis

• (typically) egocentric: I – here – now is the center (origo)

• main types of deixis:
 • personal – I/me/you/she…
 • temporal (time) – now, yesterday, later, on Monday…
 • local (space) – here, there…

• other:
 • social (politeness)
 • formal/informal address (Cz. ty/vy, Ger. du/Sie), honorifics in Asian languages
 • discourse/textual
 • referring to words/portions of texts – next chapter, how do you spell that?

https://en.wikipedia.org/wiki/Deixis
https://glossary.sil.org/term/discourse-deixis
Anaphora/Coreference

• expression referring to something mentioned in context
 • anaphora = referring back
 • cataphora = referring forward
• avoiding repetition, faster expression
• can refer to basically anything
 • objects/persons/events
 • qualities
 • actions/full sentences/portions of text
• used frequently in dialogue
• may be ambiguous

Susan dropped the plate. It shattered.

His friends describe John as smart and hard-working.

Her dress is green. So is mine.

I don’t like it as much as he does.

Bill stands next to John. He is tall.
Bill tickled John. He squirmed.

(Smaby, 1978)
Deixis & anaphora in dialogue systems

• systems typically assume a **single user**
 • this makes personal deixis much easier

• most systems are aware of time, location is more complicated
 • pronouns are often avoided – clearer, although less natural

• coreference resolution – separate problem
 • a whole area of research, specific resolution systems developed
 • some dialogue systems don’t include it, some do, sophistication varies
Prediction

• Dialogue is a **social interaction**
 • people view dialogue partners as goal-directed, intentional agents
 • they analyze their partners’ goals/agenda

• Brain does not listen passively
 • projects hypotheses/interpretations on-the-fly

• **prediction** is crucial for human cognition
 • people predict what their partner will (or possibly can) say/do
 • continuously, incrementally
 • unconsciously, very rapidly
 • guides the cognition

• this is (part of) why we understand in adverse conditions
 • noisy environment, distance
Entropy (Claude Shannon)

- Information theory: dialogue is information transfer
 - communication channel – speaker to listener (in the given situation)
 - entropy – expected value of information conveyed (in bits)

\[
H(\text{text}) = - \sum_{\text{word} \in \text{text}} \frac{\text{freq(word)}}{\text{len(text)}} \log_2 \left(\frac{\text{freq(word)}}{\text{len(text)}} \right)
\]

- Plays well with the social interaction perspective
 - people tend to use all available channel capacity
 - limiting factors: noise, listener’s hearing ability, mental capacity
 - people tend to spread information evenly
 - words carrying more information are emphasized

\(XXX\) – entropy 0
\(WXYZ\) – entropy 2
Conditional entropy

• how hard it is to guess the next word in the sentence?
 • given preceding context (n-gram)
 • related to Shannon entropy, but may differ
 • typically much lower than Shannon entropy
 • better estimate of prediction difficulty
 • although humans work with “unlimited” preceding context
 and reevaluate using following context

\[
H_{\text{cond}}(\text{text}) = - \sum_{(c,w) \in \text{text}} \frac{\text{freq}(c, w)}{\text{len}(\text{text})} \log_2 \left(\frac{\text{freq}(c, w)}{\text{freq}(c)} \right)
\]

- \(\text{freq}(c, w)\): # of times word \(w\) occurs after context \(c\)
- \(\text{freq}(c)\): total # of times context \(c\) occurs, with or without word \(w\)
- \(\text{len}(\text{text})\): means # of n-grams here (not just words)
Prediction in dialogue systems

- Used a lot in speech recognition
 - **language models** – based on information theory
 - statistical, trained on a text corpus (bunch of texts)
 - predicting likely next word given context
 - weighted against acoustic information
- Not as good as humans
 - may not reflect current situation (noise etc.)
 - (often) does not adapt to the speaker
- Less use in other DS components
Alignment/entrainment

• People subconsciously adapt/align/entrain to their dialogue partner over the course of the dialogue
 • wording (lexical items)
 • grammar (sentential constructions)
 • speech rate, prosody, loudness
 • accent/dialect

pram → stroller [BrE speaker]
lorry → truck [talking to AmE speaker]

• This helps a successful dialogue
 • also helps social bonding, feels natural

S: […] Confidence is high, feel good? […]
J: Confidence high? No!
S: No.
J: My confidence is never high.
S: Okay.
J: Self loathing high, concern astronomic.

(Oppenheim & Jones, 2018)
http://oppenheim-lab.bangor.ac.uk/pubs/OppenheimJones_2018_COM_Americanisms_poster.pdf
Alignment in dialogue systems

- Systems typically don’t align
 - NLG is rigid
 - templates
 - machine learning trained without context
 - experiments: makes dialogue more natural

- People align to dialogue systems
 - same as when talking to people

<table>
<thead>
<tr>
<th>Words</th>
<th>D1 Freq. (% rel. Freq)</th>
<th>D2 freq (% rel. Freq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: next</td>
<td>13204 (99.9%)</td>
<td>492 (82.9%)</td>
</tr>
<tr>
<td>V2: following</td>
<td>3 (0.1%)</td>
<td>101 (17.1%)</td>
</tr>
<tr>
<td>V1: previous</td>
<td>3066 (100%)</td>
<td>78 (44.8%)</td>
</tr>
<tr>
<td>V2: preceding</td>
<td>0 (0%)</td>
<td>96 (55.2%)</td>
</tr>
<tr>
<td>V1: now</td>
<td>6241 (99.8%)</td>
<td>237 (80.1%)</td>
</tr>
<tr>
<td>V2: immediately</td>
<td>10 (0.2%)</td>
<td>59 (19.9%)</td>
</tr>
<tr>
<td>V1: leaving</td>
<td>4843 (98.4%)</td>
<td>165 (70.8%)</td>
</tr>
<tr>
<td>V2: departing</td>
<td>81 (1.6%)</td>
<td>68 (29.2%)</td>
</tr>
<tr>
<td>V1: route/schedule</td>
<td>2189 (99.9%)</td>
<td>174 (94.5%)</td>
</tr>
<tr>
<td>V2: itinerary</td>
<td>2 (0.1%)</td>
<td>10 (5.5%)</td>
</tr>
<tr>
<td>V1: okay/correct</td>
<td>1371 (49.3%)</td>
<td>48 (27.7%)</td>
</tr>
<tr>
<td>V2: right</td>
<td>1409 (50.7%)</td>
<td>125 (72.3%)</td>
</tr>
<tr>
<td>V1: help</td>
<td>2189 (99.9%)</td>
<td>17 (65.3%)</td>
</tr>
<tr>
<td>V2: assistance</td>
<td>1 (0.1%)</td>
<td>9 (34.7%)</td>
</tr>
<tr>
<td>V1: query</td>
<td>6256 (99.9%)</td>
<td>70 (20.4%)</td>
</tr>
<tr>
<td>V2: request</td>
<td>3 (0.1%)</td>
<td>272 (79.6%)</td>
</tr>
</tbody>
</table>

D1 = V1 was in system prompts
D2 = V2 was in system prompts
(freqencies in user utterances)

(Dušek & Jurčíček, 2016)
http://www.aclweb.org/anthology/W16-3622

(Parent & Eskenazi, 2010)
https://www.isca-speech.org/archive/interspeech_2010/i10_3018.html
Politeness

- Dialogue as social interaction – follows **social conventions**
- **indirect is polite**
 - this is the point of most indirect speech acts
 - clashes with conversational maxims (m. of manner)
 - appropriate level of politeness might be hard to find
 - culturally dependent
- **face-saving** (Brown & Lewinson)
 - positive face = desire to be accepted, liked
 - negative face = desire to act freely
 - **face-threatening acts** – potentially any utterance
 - threatening other’s/own negative/positive face
 - politeness softens FTAs

<table>
<thead>
<tr>
<th>threat to</th>
<th>positive face</th>
<th>negative face</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>apology, self-humiliation</td>
<td>accepting order / advice, thanks</td>
</tr>
<tr>
<td>other</td>
<td>criticism, blaming</td>
<td>order, advice, suggestion, warning</td>
</tr>
</tbody>
</table>
Politeness in dialogue systems

• Typically **handcrafted** by system design
 • does not adapt to situation very much
 • typically not much indirect speech, but trying to stay polite

• Learning from data can be tricky
 • **check your data** for offensive speech!
 • not just swearwords – problems can be hard to find

I already have a woman to sleep with.

(Experimental chatbot we trained at Heriot-Watt using Reddit data)
Summary

• Dialogue is messy
 • turn overlaps, barge-ins, weird grammar […]

• Dialogue utterances are acts
 • illocution = pragmatic meaning

• Dialogue needs understanding
 • grounding = mutual understanding management
 • backchannels, confirmations, clarification, repairs

• Dialogue takes place in context
 • lot of pointing – deixis

• Dialogue is cooperative, social process
 • conversational maxims ~ “play nice”
 • all while following social conventions (politeness)
 • people predict & adapt to each other

• Next week: where & how to get data, how to evaluate dialogue systems
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
or on Slack

Get the slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:
Apart from materials referred directly, these slides are based on:

• Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
• Ralf Klabunde’s lectures and slides (Ruhr-Universität Bochum): https://www.linguistics.ruhr-uni-bochum.de/~klabunde/lehre.htm
• Arash Eshghi & Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
• Gina-Anne Levow’s slides (University of Washington): https://courses.washington.edu/ling575/
• Eika Razi’s slides: https://www.slideshare.net/eikarazi/anaphora-and-deixis
• Wikipedia: Anaphora (linguistics) Conversation Cooperative Principle Coreference Deixis Grounding in communication Implicature Speech act Sprechakttheorie

No labs today (next week)