
Dialogue Systems
NPFL123 Dialogové systémy

9. Neural Dialogue Management
& Natural Language Generation

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

16. 4. 2019



Deep Reinforcement Learning
• Exactly the same as “plain” RL

• agent & environment, actions & rewards

• Markov Decision Process

• “deep” = part of the agent is handled by a NN
• value function (typically 𝑄)

• policy

• NN = function approximation approach
• such as REINFORCE / policy gradients

• NN → complex non-linear functions

• assuming huge state space
• much fewer weights than possible states

• update based on one state changes many states
2NPFL123 L9 2019

(Sutton & Barto, 2018)



Value Function Approximation
• Searching for approximate 𝑉(𝑠) or 𝑄 𝑠, 𝑎

• exact values are too big to enumerate in a table
• parametric approximation 𝑉 𝑠; 𝜽 or 𝑄(𝑠, 𝑎; 𝜽)

• Regression: Mean squared value error
• weighted over states’ importance
• useful for gradient descent
• → ~ any supervised learning approach possible

• not all work well though

• MC = stochastic gradient descent

• TD is semi-gradient (not true gradient descent)
• ← using current weights in target estimate
• we still want TD over MC for speed
• guaranteed convergence for linear approximations
• unstable for NNs!

3NPFL123 L9 2019

VE(𝜽) ≔෍

𝑠∈𝒮

𝜇 𝑠 𝑉𝜋 𝑠 − 𝑉 𝑠, 𝜽
2

states’ importance weight
(probability distribution)

target value
(which we don’t have!)

→ using 𝑅𝑡 in MC 
→ using 𝑟𝑡+1 + 𝛾𝑉(𝑠′, 𝜽)

our estimate



Deep Q-Networks

• Q-learning with function approximation
• 𝑄 function represented by a neural net

• Causes of poor convergence in basic Q-learning with NNs:
a) SGD is unstable
b) correlated samples (data is sequential)
c) TD updates aim at a moving target (using 𝑄 in computing updates to 𝑄)
d) scale of rewards & 𝑄 values unknown → numeric instability

• Fixes in DQN:
a) minibatches (updates by averaged 𝑛 samples, not just one)
b) experience replay
c) freezing target Q function
d) clipping rewards

4NPFL123 L9 2019

cool!

common NN tricks

(Mnih et al., 2013, 2015)



DQN tricks
• Experience replay – break correlated samples

• run through some episodes (dialogues, games…)

• store all tuples (𝑠, 𝑎, 𝑟′, 𝑠′) in a buffer

• for training, don’t update based on most recent moves – use buffer
• sample minibatches randomly from the buffer

• overwrite buffer as you go, clear buffer once in a while

• only possible for off-policy

• Target Q function freezing
• fix the version of Q function used in update targets

• have a copy of your Q network that doesn’t get updated every time

• once in a while, copy your current estimate over 
NPFL123 L9 2019

loss ≔ 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈buf 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

~ making it more like supervised learning

“generate your own 
‘supervised’ training data”

“have a fixed target, 
like in supervised learning”



DQN algorithm

6NPFL123 L9 2019

• initialize 𝜽 randomly 
• initialize replay memory 𝐷 (e.g. play for a while using current 𝑄(𝜽))
• repeat over all episodes:

• for episode, set initial state s 
• select action 𝑎 from 𝜖-greedy policy based on 𝑄(𝜽)
• take 𝑎, observe reward 𝑟′ and new state 𝑠′

• store 𝑠, 𝑎, 𝑟′, 𝑠′ in 𝐷
• 𝑠 ← 𝑠′

• once every 𝑘 steps:
• sample a batch 𝐵 of random (𝑠, 𝑎, 𝑟′, 𝑠′)’s from 𝐷

• update 𝜽 using loss 𝔼 𝑠,𝑎,𝑟′,𝑠′ ∈𝐵 𝑟′ + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; ഥ𝜽 − 𝑄(𝑠, 𝑎; 𝜽)
2

• once every 𝜆 steps:
• ഥ𝜽 ← 𝜽

often

rarely

storing experience

“replay”
a. k. a. training



DQN for Atari

• 4-layers:
• 2x CNN 

• 2x fully connected with ReLU activations

• Another trick:
• output values for all actions at once

• ~ vector 𝑸(𝑠) instead of 𝑄 𝑠, 𝑎

• 𝑎 is not fed as a parameter

• faster computation

• Learns many games at human level
• with the same network structure

• no game-specific features

7NPFL123 L9 2019

input: Atari 2600 screen,
downsized to 84x84 (grayscale)

4 last frames

values for all actions
(joystick moves)

(Mnih et al., 2015)

(from David Silver’s slides)

https://youtu.be/V1eYniJ0Rnk?t=18

https://youtu.be/V1eYniJ0Rnk?t=18


DQN for Dialogue Systems
• a simple DQN can drive a dialogue system’s action selection

• DQN is function approximation – works fine for POMDPs

• no summary space tricks needed here

8NPFL123 L9 2019

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

(Li et al., 2017)
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

rule-based simulator 
with agenda

running on DA level

error model controller
(simulating ASR/NLU noise)

DQN – feed-forward,
1 hidden ReLU layer replay memory 

initialized using a 
simple handcrafted policy

movie ticket booking:
better than rule-based

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot


Policy Networks

• Learning policy directly – policy network
• can work better than Q-learning

• NN: input = state, output = prob. dist. over actions

• actor-critic: network predicts both 𝜋 and 𝑉/𝑄

• Training can’t use/doesn’t need the DQN tricks
• just REINFORCE with baseline / actor-critic

• reward – baseline = advantage

• these are on-policy → no experience replay
• minibatches used anyway

• extension: parallel training (A3C algorithm)
• sample in multiple threads, gather gradients

• better speed, more diverse experience

9NPFL123 L9 2019

https://medium.com/emergent-future/simple-
reinforcement-learning-with-tensorflow-part-8-
asynchronous-actor-critic-agents-a3c-
c88f72a5e9f2

policy gradient theorem
guarantees convergence

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2


Natural Language Generation
• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective: 
• given input & communication goal
• create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

10NPFL123 L9 2019

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition



NLG Use Cases

• dialogue systems
• very different for task/non-task-oriented/QA systems

• standalone
• data-to-text

• short text generation for web & apps
• weather, sports reports

• personalized letters

• machine translation
• now mostly integrated end-to-end

• formerly not the case

• summarization

11NPFL123 L9 2019



NLG Subtasks (textbook pipeline)
Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

Text
12NPFL123 L9 2019

organizing content into sentences
& merging simple sentences

this is needed for NLG 
in dialogue systems

typically handled by 
dialogue manager

in dialogue systemsdeciding 
what to say

deciding 
how to say it

e.g. restaurant vs. it



NLG Implementations
• Few systems implement the whole pipeline

• All stages: mostly domain-specific data-to-text, standalone
• e.g. weather reports

• Dialogue systems: just sentence planning + realization

• Systems focused on content + sentence planning with trivial realization
• frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer

• Surface realization only
• requires very detailed input

• some systems: just ordering words

• Pipeline vs. end-to-end approaches
• planning + realization in one go – popular for neural approaches

• pipeline: simpler components, might be reusable (especially realizers)

• end-to-end: no error accumulation, no intermediate data structures 

13NPFL123 L9 2019



NLG Basic Approaches
• canned text

• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• RNNs made it work much better

14NPFL123 L9 2019



Template-based NLG
• Most common in dialogue systems

• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

15NPFL123 L9 2019

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex


Trainable Sentence Planning: 

Overgenerate & Rerank

• Assuming you have a flexible handcrafted planner
• underspecified grammar

• rules with multiple options…

• Generate multiple outputs

• Select the best one
• train just the selection – learning to rank

• any supervised approach possible
a) “top” = 1, “not top” = 0

b) loss incurred by relative scores 
loss = max(0, “not top” – “top”)

16NPFL123 L9 2019

SpoT trainable planner
(RankBoost ranking)

H
u

m
a

n

R
a

n
kB

o
o

st

input DA

(Walker et al., 2001)
https://www.aclweb.org/anthology/N01-1003

this takes time!

https://www.aclweb.org/anthology/N01-1003


Trainable Sentence Planning:

Parameter Optimization

• Assuming you have a flexible handcrafted planner
• + one that has configurable parameters, for e.g.:

• sentence aggregation

• fillers

• lexical choices

• Train the best parameters for your task
• generate under different settings

• annotate the outputs with linguistic features

• learn classifiers: linguistic features → generator settings
• any supervised learning

• can predict the settings jointly/independently

17NPFL123 L9 2019

PERSONAGE-PE:
generation with 

Big Five personality traits

extraversion
emotional stability
agreeableness
conscientiousness
openness to experience

(Mairesse & Walker, 2008; 2011)
https://www.aclweb.org/anthology/P08-1020
https://www.aclweb.org/anthology/J11-3002

https://www.aclweb.org/anthology/P08-1020
https://www.aclweb.org/anthology/J11-3002


Grammar-based realizers

• Various grammar formalisms
• production / unification rules in the grammar

• typically general-domain, reusable

• KPML – multilingual
• systemic functional grammar

• FUF/SURGE – English
• functional unification grammar

18NPFL123 L9 2019

KPML sentence plan
for A dog is in the park.

(Bateman, 1997)
http://www.academia.edu/download/3459017/bateman97-jnle.pdf

FUF/SURGE input and output

(Elhadad & Robin, 1996)
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

http://www.academia.edu/download/3459017/bateman97-jnle.pdf
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download


Grammar-based Realizers: 

OpenCCG

• OpenCCG – English
• combinatory categorial grammar

• reuse/reverse of CCG parser
• (reverse) lexical lookup

• combination according to grammar
– dynamic programming

• statistical enhancements

19NPFL123 L9 2019

(Moore et al., 2004)
http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

OpenCCG input for flight information

OpenCCG input

OpenCCG
lexical lookup

OpenCCG parsing
(combinatory rules)

(White & Baldridge, 2003)
https://www.aclweb.org/anthology/W03-2316

http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf
https://www.aclweb.org/anthology/W03-2316


Procedural realizer: SimpleNLG

• A simple Java API
• “do-it-yourself” style – only cares about the grammar

• input needs to be specified precisely

• building up ~syntactic structure

• final linearization

• built for English
• large coverage lexicon included

• ports to multiple languages available

20NPFL123 L9 2019

(Gatt & Reiter, 2009)
https://www.aclweb.org/anthology/W09-0613

SimpleNLG
generation procedure

https://www.aclweb.org/anthology/W09-0613


Grammar/Procedural Realizer: 

RealPro

• Also procedural, but built on a grammar formalism
• Meaning-Text Theory

• Pipeline, working through different levels of meaning description
• deep syntax / semantics

• surface syntax

• morphology

21NPFL123 L9 2019

for Do these boys see Mary?
for This boy sees Mary

RealPro input (textual/graphical representation)

(Lavoie & Rambow, 1997)
http://dl.acm.org/citation.cfm?id=974596

RealPro
pipeline

http://dl.acm.org/citation.cfm?id=974596


Grammar/Procedural Realizer: 

TectoMT/Treex
• Similar to RealPro

• based on Functional Generative Description
(a.k.a. tectogrammatics)

• deep syntax → surface syntax → morphology and linearization

• English, Czech, Dutch, Spanish, Basque

• Simple Perl program:
• copy deep syntax

• fix morphology agreement

• add prepositions, conjunctions & articles

• add auxiliary verbs

• inflect words

• add punctuation & capitalization

22NPFL123 L9 2019
(Popel & Žabokrtský 2010; Dušek et al., 2015) 
https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009

https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009


Trainable Realizers
• Overgenerate & Rerank

• same approach as for sentence planning

• assuming a flexible handcrafted realizer (e.g., OpenCCG)

• underspecified input → more outputs possible

• generate more & use statistical reranker, based on:
• n-gram language models

• Tree language models

• expected text-to-speech output quality

• personality traits & alignment/entrainment

• more variance, but at computational cost

• Grammar/Procedural-based
• same as RealPro or TectoMT, but predict each step using a classifier

23NPFL123 L9 2019

StuMaBa (Bohnet et al., 2010)
https://www.aclweb.org/anthology/C10-1012

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103

FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007

(Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140

CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

this means
the grammar

may be smaller

https://www.aclweb.org/anthology/C10-1012
https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/W02-2103
https://aclweb.org/anthology/C00-1007
https://www.aclweb.org/anthology/P06-1140
https://www.aclweb.org/anthology/W06-1405


Non-neural End-to-End NLG: 

Language Models
• hierarchy of n-gram models 

• slot level (which slot follows which) 
& word level (words in the phrase for current slot)

• limited history, no long-range dependencies

• beam & reranking (sanity checks)

• hierarchy of maximum entropy models
• unlimited history

• conditioned also on higher-level decisions

• factored language models
• conditioned on various features

• global search for best sequence

NPFL123 L9 2019

MEMM
style

(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049
(Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011

BAGEL (Mairesse et al., 2010; Mairesse & Young, 2014)
https://www.aclweb.org/anthology/P10-1157 https://www.aclweb.org/anthology/J14-4003

(Oh & Rudnicky, 2002)
https://doi.org/10.1016/
S0885-2308(02)00012-8

CRF style
(not completely)

Markov
Model

https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P10-1157
https://www.aclweb.org/anthology/J14-4003
https://doi.org/10.1016/S0885-2308(02)00012-8


Non-neural End-to-End NLG:

NLG as Parsing
• Probabilistic CFG

• base handcrafted generator

• rules chosen based 
on corpus probability

• PCFG with generic rules
• domain independent 

(~DA → slots → values)

• approx. search for best derivation
– bottom-up n-best

• Synchronous CFGs – aligned MR & text CFGs
• “translation” with hierarchical phrase models

• parsing MR & synchronously generating text

25

(Konstas & Lapata, 2012)
https://www.aclweb.org/anthology/P12-1039

(Belz, 2008)
https://core.ac.uk/download/
pdf/5222614.pdf

WASP-1 (Wong & Mooney, 2007)
https://www.aclweb.org/anthology/N07-1022

https://www.aclweb.org/anthology/P12-1039
https://core.ac.uk/download/pdf/5222614.pdf
https://www.aclweb.org/anthology/N07-1022


Neural End-to-End NLG: 

RNNLG
• Unlike previous, doesn’t need alignments

• no need to know which word/phrase 
corresponds to which slot

• Using RNNs, generating word-by-word
• neural language models conditioned on DA

• generating delexicalized texts

• input DA represented as binary vector

• Enhanced LSTM cells (SC-LSTM)
• special part of the cell (gate)

to control slot mentions
26NPFL123 L9 2019

delexicalized (~generated templates)

after lexicalization (templates filled in)

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

dialogue act 
binary representation

dialogue act 
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232


Seq2seq NLG (TGen)
• Seq2seq with attention

• encoder – triples <DA type, slot, value>

• decodes words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

27NPFL123 L9 2019

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

https://aclweb.org/anthology/P16-2008


Problems with neural NLG
• Checking the semantics

• neural models tend to forget / make up irrelevant stuff

• reranking currently best, but not perfect

• Delexicalization needed (at least some slots)
• otherwise the data would be too sparse

• alternative: copy mechanisms

• Diversity & complexity of outputs
• still can’t match humans

• needs specific tricks to improve this

• Still more hassle than writing up templates

28NPFL123 L9 2019

(Dušek et al., 2019)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)

http://arxiv.org/abs/1901.07931


Summary
• Deep Reinforcement Learning

• same as plain RL – agent + states, actions, rewards – just 𝑄 or 𝜋 is a NN

• function approximation for 𝑄 – mean squared value error

• Deep Q Networks – Q learning where 𝑄 is a NN + tricks
• experience replay, target function freezing

• Policy networks – policy gradients where 𝜋 is a NN

• Natural Language Generation
• steps: content planning, sentence planning, surface realization

• not all systems implement everything (content planning is DM’s job in DS)

• pipeline vs. end-to-end

• approaches: templates, grammars, statistical

• templates work great

• state-of-the-art = seq2seq with reranking
29NPFL123 L9 2019



Thanks
Contact me:

odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Deep RL for NLP tutorial
• Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602
• Mnih et al. (2015): Human-level control through deep reinforcement learning: 

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation 

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

30NPFL123 L9 2019

Labs tomorrow 
9:00 SU1

mailto:odusek@ufal.mff.cuni.cz
http://ufal.cz/npfl123
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

