

Dialogue Systems NPFL123 Dialogové systémy

9. Neural Dialogue Management & Natural Language Generation

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

16.4.2019

Deep Reinforcement Learning

ÚFAL ELEGINATION STATES

- Exactly the same as "plain" RL
 - agent & environment, actions & rewards
 - Markov Decision Process
- "deep" = part of the agent is handled by a NN
 - value function (typically Q)
 - policy
- NN = function approximation approach
 - such as REINFORCE / policy gradients
 - NN → complex non-linear functions
- assuming huge state space
 - much fewer weights than possible states
 - update based on one state changes many states

(Sutton & Barto, 2018)

Value Function Approximation

- Searching for approximate V(s) or Q(s,a)
 - exact values are too big to enumerate in a table
 - parametric approximation $V(s; \theta)$ or $Q(s, a; \theta)$
- Regression: Mean squared value error
 - weighted over states' importance
 - useful for gradient descent
 - → ~ any supervised learning approach possible
 - not all work well though
- MC = stochastic gradient descent
- TD is semi-gradient (not true gradient descent)
 - ← using current weights in target estimate
 - we still want TD over MC for speed
 - guaranteed convergence for linear approximations
 - unstable for NNs!

target value

(which we don't have!) \rightarrow using R_t in MC

 \rightarrow using $r_{t+1} + \gamma V(s', \boldsymbol{\theta})$

Deep Q-Networks (Mnih et al., 2013, 2015)

- Q-learning with function approximation
 - Q function represented by a neural net
- Causes of poor convergence in basic Q-learning with NNs:
 - a) SGD is unstable
 - b) correlated samples (data is sequential)
 - TD updates aim at a moving target (using Q in computing updates to Q)
 - d) scale of rewards & Q values unknown \rightarrow numeric instability
- Fixes in DQN:
 - minibatches (updates by averaged n samples, not just one)
 - b) experience replay
 - freezing target Q function
 - d) clipping rewards

cool!

common NN tricks

DQN tricks ~ making it more like supervised learning

• Experience replay – break correlated samples

generate your own 'supervised' training data"

- run through some episodes (dialogues, games...)
- store all tuples (s, a, r', s') in a buffer –
- for training, don't update based on most recent moves use buffer
 - sample minibatches randomly from the buffer
- overwrite buffer as you go, clear buffer on ce in a while
- only possible for off-policy

loss :=
$$\mathbb{E}_{(s,a,r',s')\in \text{buf}}\left[\left(r' + \gamma \max_{a'} Q(s',a';\overline{\boldsymbol{\theta}}) - Q(s,a;\boldsymbol{\theta})\right)^2\right]$$

Target Q function freezing

- fix the version of Q function used in update targets
 - have a copy of your Q network that doesn't get updated every time
- once in a while, copy your current estimate over

DQN algorithm

- initialize θ randomly
- initialize replay memory D (e.g. play for a while using current $Q(\boldsymbol{\theta})$)
- repeat over all episodes:
 - for episode, set initial state s
 - select action a from ϵ -greedy policy based on $Q(\boldsymbol{\theta})$
 - take a, observe reward r' and new state s'
 - store (s, a, r', s') in D
 - $s \leftarrow s'$

once every *k* steps:

- sample a batch B of random (s, a, r', s')'s from D• update $\boldsymbol{\theta}$ using loss $\mathbb{E}_{(s, a, r', s') \in B} \left[\left(r' + \gamma \max_{a'} Q\left(s', a'; \overline{\boldsymbol{\theta}} \right) Q(s, a; \boldsymbol{\theta}) \right)^2 \right]$ "replay" a. k. a. training

rarely $\longrightarrow \bullet$ once every λ steps:

•
$$\overline{\theta} \leftarrow \theta$$

DQN for Atari

input: Atari 2600 screen, downsized to 84x84 (grayscale) 4 last frames

(Mnih et al., 2015)

- 4-layers:
 - 2x CNN
 - 2x fully connected with ReLU activations
- Another trick:
 - output values for all actions at once
 - \sim vector Q(s) instead of Q(s, a)
 - *a* is not fed as a parameter
 - faster computation
- Learns many games at human level
 - with the same network structure
 - no game-specific features

values for all actions (joystick moves) $\hat{q}(s,a_1,\mathbf{w}) \cdots \hat{q}(s,a_m,\mathbf{w})$ â(s,a,**w**) (from David Silver's slides)

https://youtu.be/V1eYniJ0Rnk?t=18

DQN for Dialogue Systems

(Li et al., 2017) https://arxiv.org/abs/1703.01008 https://github.com/MiuLab/TC-Bot

- a simple DQN can drive a dialogue system's action selection
 - DQN is function approximation works fine for POMDPs
 - no summary space tricks needed here

movie ticket booking: better than rule-based

replay memory initialized using a simple handcrafted policy

Policy Networks

policy gradient theorem guarantees convergence

- Learning policy directly policy network
 - can work better than Q-learning
 - NN: input = state, output = prob. dist. over actions
 - actor-critic: network predicts both π and V/Q
- Training can't use/doesn't need the DQN tricks
 - just REINFORCE with baseline / actor-critic
 - reward baseline = advantage
 - these are on-policy → no experience replay
 - minibatches used anyway
 - extension: parallel training (A3C algorithm)
 - sample in multiple threads, gather gradients
 - better speed, more diverse experience

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Natural Language Generation

- conversion of system action semantics → text (in our case)
- NLG output is well-defined, but input is not:
 - DAs
 - any other semantic formalism
 - database tables
 - raw data streams
 - user model ———— e.g. "user wants short answers"
 - dialogue history ———— e.g. for referring expressions, avoiding repetition

can be any kind of

knowledge representation

- general NLG objective:
 - given input & communication goal
 - create accurate + natural, well-formed, human-like text
- additional NLG desired properties:

 - simplicity
 - adaptability

variation

NPFL123 L9 2019

NLG Use Cases

dialogue systems

very different for task/non-task-oriented/QA systems

standalone

- data-to-text
- short text generation for web & apps
 - weather, sports reports
 - personalized letters

machine translation

- now mostly integrated end-to-end
- formerly not the case

summarization

NLG Subtasks (textbook pipeline)

typically handled by

dialogue manager

in dialogue systems

Inputs

deciding

what to say

deciding

how to say it

• **↓** Content/text/document planning

al

- content selection according to communication goal
- basic structuring & ordering

Content plan

• **♦** Sentence planning/microplanning

- aggregation (facts → sentences)
- lexical choice
- referring expressions

Sentence plan

e.g. restaurant vs. it

◆ Surface realization

- linearization according to grammar
- word order, morphology

Text

organizing content into sentences & merging simple sentences

this is needed for NLG in dialogue systems

NPFL123 L9 2019

12

NLG Implementations

Few systems implement the whole pipeline

- All stages: mostly domain-specific data-to-text, standalone
 - e.g. weather reports
- Dialogue systems: just sentence planning + realization
- Systems focused on content + sentence planning with trivial realization
 - frequent in DS: focus on sentence planning, trivial or off-the-shelf realizer
- Surface realization only
 - requires very detailed input
 - some systems: just ordering words

Pipeline vs. end-to-end approaches

- planning + realization in one go popular for neural approaches
- pipeline: simpler components, might be reusable (especially realizers)
- end-to-end: no error accumulation, no intermediate data structures

NLG Basic Approaches

canned text

- most trivial completely hand-written prompts, no variation
- doesn't scale (good for DTMF phone systems)

templates

- "fill in blanks" approach
- simple, but much more expressive covers most common domains nicely
- can scale if done right, still laborious
- most production dialogue systems

grammars & rules

- grammars: mostly older research systems, realization
- rules: mostly content & sentence planning

machine learning

- modern research systems
- pre-neural attempts often combined with rules/grammar
- RNNs made it work much better

Template-based NLG

- Most common in dialogue systems
 - especially commercial systems
- Simple, straightforward, reliable
 - custom-tailored for the domain
 - complete control of the generated content
- Lacks generality and variation
 - difficult to maintain, expensive to scale up
- Can be enhanced with rules
 - e.g. articles, inflection of the filled-in phrases
 - template coverage/selection rules, e.g.:
 - select most concrete template
 - cover input with as few templates as possible
 - random variation


```
{name1} tagged {name3} and {other-products}.

A title about a user being at a particular place

{name1} označil {name3 # pád:akuzativ = (vidím) koho? co?} a {other-products # pád:akuzativ = (vidím) koho? co?}

+ New translation

(Facebook, 2019)
```

inflection rules

"You want to get there in {arrival_time_rel},",

```
'iconfirm(to_stop={to_stop})&iconfirm(from_stop={from_stop})':
    "Alright, from {from_stop} to {to_stop},",

'iconfirm(to_stop={to_stop})&iconfirm(arrival_time_rel="{arrival_time_rel}")':
    "Alright, to {to_stop} in {arrival_time_rel},",

'iconfirm(arrival_time="{arrival_time}")':
    "You want to be there at {arrival_time},",

'iconfirm(arrival_time_rel="{arrival_time},",
```

Trainable Sentence Planning: Overgenerate & Rerank

(Walker et al., 2001) https://www.aclweb.org/anthology/N01-1003

- Assuming you have a flexible handcrafted planner
 - underspecified grammar
 - rules with multiple options...
- Generate multiple outputs
- Select the best one
 - train just the selection learning to rank
 - any supervised approach possible
 - a) "top" = 1, "not top" = 0
 - b) loss incurred by relative scores loss = max(0, "not top" "top")

input DA

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)

this takes time!

implicit-confirm(month:9) implicit-confirm(day-number:1)

request(depart-time)

SpoT trainable planner (RankBoost ranking)

Trainable Sentence Planning: Parameter Optimization

- Assuming you have a flexible handcrafted planner
 - + one that has configurable parameters, for e.g.:
 - sentence aggregation
 - fillers
 - lexical choices
- Train the best parameters for your task
 - generate under different settings
 - annotate the outputs with linguistic features
 - learn classifiers: linguistic features → generator settings
 - any supervised learning
 - can predict the settings jointly/independently

PERSONAGE-PE: generation with Big Five personality traits

I see, oh Chimichurri Grill is a latin american place with sort of poor atmosphere. Although it doesn't have rather nasty food, its price is 41 dollars. I suspect it's kind of alright.

Did you say Ce-Cent'anni? I see, I mean, I would consider it because it has friendly staff and tasty food, you know buddy. open=4.25 extra=4.75 ems=5.00 agree=6.25 consc=6.25 open=5.25

extra=2.50

agree=3.50

consc=4.75

ems = 4.50

extraversion
emotional stability
agreeableness
conscientiousness
openness to experience

- Various grammar formalisms
 - production / unification rules in the grammar
- typically general-domain, reusable
- KPML multilingual
 - systemic functional grammar
- FUF/SURGE English
 - functional unification grammar

FUF/SURGE input and output

KPML sentence plan

for A dog is in the park.

(Bateman, 1997)

http://www.academia.edu/download/3459017/bateman97-jnle.pdf

Input Specification (I_1) :

(Elhadad & Robin, 1996) https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

Grammar-based Realizers: OpenCCG

- OpenCCG English
 - combinatory categorial grammar
 - reuse/reverse of CCG parser
 - (reverse) lexical lookup
 - combination according to grammar
 dynamic programming
 - statistical enhancements

OpenCCG input for flight information

NPFL123 L9 2019

```
be [tense=pres info=rh id=n1]

<Arg> flight [num=sg det=the info=th id=f2]

<HasProp> cheapest [kon=+ id=n2]

<Prop> has-rel [id=n3]

<Of> f2

<Airline> Ryanair [kon=+ id=n4]
```

(Moore et al., 2004) http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf


```
@_x(\text{man} \land \langle \text{GENREL} \rangle (e \land \text{see} \land \langle \text{TENSE} \rangle \text{past})
                             \land \langle ACT \rangle (b \land Bob) \land \langle PAT \rangle x))
0: @_x \operatorname{man}, 1: @_x \langle \operatorname{GENREL} \rangle e, 2: @_e \operatorname{see}
                                                                                 OpenCCG input
3: @_e\langle TENSE\rangle past, 4: @_e\langle ACT\rangle b
5: @_e\langle PAT \rangle x, 6: @_b \mathbf{Bob}
     \{2, 3, 4, 5\}\ \{e, b, x\}
     saw \vdash (s_{e,fin} \backslash np_b) / np_x :
      @_e see \land @_e \langle TENSE \rangle past \land @_e \langle ACT \rangle b \land @_e \langle PAT \rangle x
      \{2,4,5\}\ \{e,b,x\}
     see \vdash (s_{e,nonfin} \backslash np_b) / np_x :
                                                                                          OpenCCG
      @_e see \wedge @_e \langle ACT \rangle b \wedge @_e \langle PAT \rangle x
      \{1\}\ \{e, x\}
                                                                                           lexical lookup
     that \vdash (\mathsf{n}_x \backslash \mathsf{n}_x)/(\mathsf{s}_{e,fin} \backslash \mathsf{np}_x) : @_x \langle \mathsf{GENREL} \rangle e
     \{1\}\ \{e, x\}
     that \vdash (n_x \setminus n_x)/(s_{e,fin}/np_x) : @_x \langle GENREL \rangle e
                                                   (White & Baldridge, 2003)
                                                   https://www.aclweb.org/anthology/W03-2316
Bob \vdash s_t/(s_t \backslash np_b) : @_b Bob
to see \vdash (s_{e,inf} \backslash np_b) / np_x:
  @_e see \land @_e \langle ACT \rangle b \land @_e \langle PAT \rangle x
 Bob saw \vdash s_{e,fin}/np_x:
  @_e see \wedge @_e \langle TENSE \rangle past
                                                                                OpenCCG parsing
   \wedge @_e \langle ACT \rangle b \wedge @_e \langle PAT \rangle x \wedge @_b Bob
                                                                             (combinatory rules)
Bob to see \vdash s_{e,inf}/np_x:
  @_e see \land @_e \langle ACT \rangle b \land @_e \langle PAT \rangle x \land @_b Bob
```

man that Bob saw $\vdash n_x$:

 $@_x$ man $\wedge @_x \langle GENREL \rangle e$ $\wedge @_e$ see $\wedge @_e \langle TENSE \rangle$ past

 $\wedge @_e \langle ACT \rangle b \wedge @_e \langle PAT \rangle x \wedge @_b Bob$

Procedural realizer: SimpleNLG

- A simple Java API
 - "do-it-yourself" style only cares about the grammar
 - input needs to be specified precisely.
 - building up ~syntactic structure
 - final linearization
- built for English
 - large coverage lexicon included
 - ports to multiple languages available

SimpleNLG generation procedure

```
Lexicon lexicon = new XMLLexicon("my-lexicon.xml");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);

SPhraseSpec p = nlgFactory.createClause();

p.setSubject("Mary");
p.setVerb("chase");
p.setObject("the monkey");

p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.
```

Grammar/Procedural Realizer: RealPro

(Lavoie & Rambow, 1997) http://dl.acm.org/citation.cfm?id=974596

- Also procedural, but built on a grammar formalism
 - Meaning-Text Theory
- Pipeline, working through different levels of meaning description
 - deep syntax / semantics
 - surface syntax
 - morphology

RealPro input (textual/graphical representation)

RealPro pipeline

Grammar/Procedural Realizer: TectoMT/Treex

- Similar to RealPro
 - based on Functional Generative Description (a.k.a. tectogrammatics)
 - deep syntax → surface syntax → morphology and linearization
 - English, Czech, Dutch, Spanish, Basque
- Simple Perl program:
 - copy deep syntax
 - fix morphology agreement
 - add prepositions, conjunctions & articles
 - add auxiliary verbs
 - inflect words
 - add punctuation & capitalization

a-tree

zone=en step2

PRED v:fin

Trainable Realizers

Overgenerate & Rerank

this means

may be smaller

- same approach as for sentence planning
- assuming a flexible handcrafted realizer (e.g., OpenCCG)
- the grammar → underspecified input → more outputs possible
 - generate more & use statistical reranker, based on:
 - n-gram language models

 NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
 HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103
 - Tree language models FERGUS (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
 - expected text-to-speech output quality (Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140
 - personality traits & alignment/entrainment CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405
 - more variance, but at computational cost

Grammar/Procedural-based

StuMaBa (Bohnet et al., 2010) https://www.aclweb.org/anthology/C10-1012

same as RealPro or TectoMT, but predict each step using a classifier

Non-neural End-to-End NLG: Language Models

hierarchy of n-gram models

slot level (which slot follows which)
 & word level (words in the phrase for current slot)

• limited history, no long-range dependencies

- beam & reranking (sanity checks)
- hierarchy of maximum entropy models
 - unlimited history
 - conditioned also on higher-level decisions
- factored language models
 - conditioned on various features
 - global search for best sequence

CRF style (not completely)

Model

MEMM

style

(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049 (Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011

BAGEL (Mairesse et al., 2010; Mairesse & Young, 2014) https://www.aclweb.org/anthology/P10-1157 https://www.aclweb.org/anthology/J14-4003

Record choice

Field choice

| Word choice

Non-neural End-to-End NLG: **NLG as Parsing**

(Belz, 2008) https://core.ac.uk/download/ pdf/5222614.pdf $Gusts(Nv_1, N_2, n) \rightarrow GustCore(Nv_1, N_2)$ $Gusts(Nv_1, N_2, ST) \rightarrow GustCore(Nv_1, N_2)$ GustPostMod(ST) $GustCore(Nv, n) \rightarrow GustTrans\ Num(Nv)$

 $\begin{aligned} & \textit{GustCore}(Nv, n) \rightarrow \textit{GustTrans} \ \textit{Num}(Nv) \\ & \textit{GustCore}(Nv_1, Nv_2) \rightarrow \textit{GustTrans} \ \textit{Num}(Nv_1) - \textit{Num}(Nv_2) \end{aligned}$

 $GustTrans \rightarrow gusts$ $GustPostMod(s) \rightarrow in any showers$ $GustTrans \rightarrow gusts$ to $GustPostMod(s) \rightarrow in or near showers$ $GustPostMod(s) \rightarrow in showers$

 $GustTrans \rightarrow risk$ gusts to $GustPostMod(t) \rightarrow in$ any thunderstorm $GustTrans \rightarrow with$ gusts

<from to> | flight

 $<2 \mid from>$

(d)Number of Words per Field (local)

RULE → (CONDITION DIRECTIVE)

 $TEAM \rightarrow our$

 $UNUM \rightarrow 4$

CONDITION → (bowner TEAM {UNUM})

- Probabilistic CFG
 - base handcrafted generator
 - rules chosen based on corpus probability
- PCFG with generic rules
 - domain independent (~DA → slots → values)
 - approx. search for best derivation
 bottom-up n-best
- Synchronous CFGs aligned MR & text CFGs
 - "translation" with hierarchical phrase models
 - parsing MR & synchronously generating text

player

 $\langle R(srch_1.t) \rightarrow FS(fl_1.t,st) | R(fl_1.t) \rangle$ $\langle show me the \rangle$, $\langle show me flights \rangle$, etc.

(Konstas & Lapata, 2012)

https://www.aclweb.org/anthology/P12-1039

WASP-1 (Wong & Mooney, 2007) https://www.aclweb.org/anthology/N07-1022

Neural End-to-End NLG: RNNLG (Wen et al, 20 http://aclwel

(Wen et al, 2015; 2016) http://aclweb.org/anthology/D15-1199 http://arxiv.org/abs/1603.01232

- Unlike previous, doesn't need alignments
 - no need to know which word/phrase corresponds to which slot

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

- Using RNNs, generating word-by-word
 - neural language models conditioned on DA
 - generating delexicalized texts
- input DA represented as binary vector
- Enhanced LSTM cells (SC-LSTM)
 - special part of the cell (gate)
 to control slot mentions

decoder

Seq2seq NLG (TGen)

encoder

 Seq2seq with attention penalty: distance checking against from input DA • encoder – triples <DA type, slot, value> input DA decodes words (possibly delexicalized) DA classifier Beam search & reranking output beam DA classification of outputs checking against input DA inform(name=X-name,eattype=restaurant) X-name is bar <STOP> X-name is restaurant centre <STOP> X-name restaurant in attention model The X-name restaurant. <STOP> Istm inform name X-name inform eattype restaurant <GO>X-name restaurant 27 NPFL123 L9 2019

Problems with neural NLG

(Dušek et al., 2019) http://arxiv.org/abs/1901.07931

- Checking the semantics
 - neural models tend to forget / make up irrelevant stuff
 - reranking currently best, but not perfect
- Delexicalization needed (at least some slots)
 - otherwise the data would be too sparse
 - alternative: copy mechanisms
- Diversity & complexity of outputs
 - still can't match humans
 - needs specific tricks to improve this
- Still more hassle than writing up templates

open sets, verbatim on the output (e.g., restaurant/area names)

Summary

Deep Reinforcement Learning

- same as plain RL agent + states, actions, rewards just Q or π is a NN
- function approximation for Q mean squared value error
- **Deep Q Networks** Q learning where *Q* is a NN + tricks
 - experience replay, target function freezing
- **Policy networks** policy gradients where π is a NN

Natural Language Generation

- steps: content planning, sentence planning, surface realization
 - not all systems implement everything (content planning is DM's job in DS)
 - pipeline vs. end-to-end
- approaches: templates, grammars, statistical
- templates work great
- state-of-the-art = seq2seq with reranking

Thanks

Contact me:

odusek@ufal.mff.cuni.cz room 424 (but email me first)

Labs tomorrow 9:00 SU1

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:

- Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
- Karpathy (2016): Deep Reinforcement Learning Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
- David Silver's course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
- Milan Straka's course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
- Deep RL for NLP tutorial
- Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602
- Mnih et al. (2015): Human-level control through deep reinforcement learning: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
- Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation http://arxiv.org/abs/1703.09902
- My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf