Dialogue Systems
NPFL123 Dialogové systémy

9. Neural Dialogue Management
& Natural Language Generation

Ondrej Dusek & Ondrej Platek & Jan Cufin
ufal.cz/npfl123
16. 4. 2019

Deep Reinforcement Learning FX
 Exactly the same as “plain” RL "| Agent
* agent & environment, actions & rewards o P - pid
* Markov Decision Process s L Envir‘onment]47
* “deep” = part of the agent is handled by a NN Suton &Barto, 2019
» value function (typically Q)
* policy

* NN = function approximation approach
* such as REINFORCE / policy gradients
* NN - complex non-linear functions

* assuming huge state space
* much fewer weights than possible states
» update based on one state changes many states

NPFL123 192019 2

Value Function Approximation

* Searching for approximate V' (s) or Q(s,a)
 exact values are too big to enumerate in a table

e parametric approximation V(s; 8) or Q(s, a; 9) our estimate

. < . states’ importance weight
Regre;smn. Mean squ.ared value error (probability distribution]
» weighted over states’ importance
* useful for gradient descent L l v,
* >~ any supervised learning approach possible VE(O) = z u(s)(V(s) —V(s,)
* notall work well though SES T
* MC = stochastic gradient descent target value
. . . . which we don’t have!
 TD is semi-gradient (not true gradient descent) (5 using R, in MC)
* < using current weights in target estimate > >using e, + YV (s’,0)

« we still want TD over MC for speed
 guaranteed convergence for linear approximations
* unstable for NNs!

NPFL123 192019 3

D ee p Q- N etWO rks (Mnih et al., 2013, 2015)

* Q-learning with function approximation
 Q function represented by a neural net

* Causes of poor convergence in basic Q-learning with NNs:
a) SGDisunstable
b) correlated samples (data is sequential)
c) TD updates aim at a moving target (using Q in computing updates to Q)
d) scale of rewards & Q values unknown - numeric instability

* Fixesin DQN:
a) minibatches (updates by averaged n samples, not just one)
b) experience replay
c) freezing targetQ function} cool!

d) clipping rewards
D — common NN tricks

NPFL123 192019 4

« Experience replay - break correlated samples “generate your own
* run through some episodes (dialogues, games...) supervised'training data”
store all tuples (s, a,r’,s") in a buffer ——

for training, don’t update based on most recent moves - use buffer
* sample minibatches randomly from the buffer

overwrite buffer as you go, clear buffer once in a while
only possible for off-policy

v 2
loss := [E(s,a,r',s')ebuf [(T’ Tv rrﬁx Q(s',a’; q) —Q(s,a; 9))]
* Target Q function freezing

» fix the version of Q function used in update targets
* have a copy of your Q network that doesn’t get updated every time

* oncein awhile, co our current estimate over
» COPYY “——_ “have afixed target,

NPFL123 192019
like in supervised learning”

DQN algorithm

* initialize @ randomly
* initialize replay memory D (e.g. play for a while using current Q(9))
* repeatover all episodes:
» forepisode, setinitial state s
* select action a from e-greedy policy based on Q(0) . .
« take a, observe reward r’ and new state s’ - storing experience
e store(s,a,r’,s")inD
* G « S, _
* onceevery k steps:
« sample a batch B of random (s,a,r’,s")’s from D “replay”

_ 2] a.k.a.training
* update 8 usingloss E(, ;.7 s1)ep [(r’ +y max Q(s',a’;0) —Q(s, a; 0))]

—

—

often —

rarely —>+ once every A steps:
c 0<0

NPFL123 192019 6

input: Atari 2600 screen,

D Q N fo r Ata ri downsized to 84x84 (grayscale)

4 last frames

(Mnih et al., 2015)

Convolution Convelution Fully connected Fully connected
- - - -

* 4-layers:

!
« 2x CNN . Y
 2x fully connected with ReLU activations Z o o *
* Another trick: . §
 output values for all actions at once - . .
« ~vector Q(s) instead of Q(s, a) 2
* aisnotfed as a parameter
* faster computation values for all actions
* Learns many games at human level doaw oaw) v dean) (joystick moves)
* with the same network structure T T
* no game-specific features /\w/\ - /\/\
R https://youtu.be/V1eYniJORnk?t=18 I I I e 7

https://youtu.be/V1eYniJ0Rnk?t=18

(Lietal., 2017)

DQN for Dialogue Systems :iimumi

* a simple DQN can drive a dialogue system’s action selection
* DQN is function approximation - works fine for POMDPs P e o
* no summary space tricks needed here

Success Rate

0.4 0.36
0.2
Evc | - error model controller BT oo
rule-based simulator 4. user aotgn [1=~ =, ser acton v erer (simulating ASR/NLU noise) : pe1.77E.06 !
with agenda : I
running on DA level 2 8 '
1 - .
\ State Tracker o e
User Sim. _Agent |} Update w/ User | movie ticket booking:
. Step 1| | Add Exp. |02 from oo oo . better than rule-based
[—— ;' ----------- 'l 1. state : Get State :
I . f— I i
DQN - feed-forward, e D e —— |
. 1 || T
1 hidden RelLU layer 1 """""" = | Update w/ Agent!) rep ay mem.ory
3. (updated) agent action bmm oo oo Inltlallzed USIng a

simple handcrafted policy

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
NPFL123 L9 2019 8

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot

policy gradient theorem

Policy Netwo rks guarantees convergence

* Learning policy directly - policy network
» can work better than Q-learning S
* NN: input = state, output = prob. dist. over actions SRS
* actor-critic: network predicts bothm and V/Q

» Training can’t use/doesn’t need the DQN tricks -

* just REINFORCE with baseline / actor-critic
* reward - baseline = advantage

* these are on-policy - no experience replay D = ==l =

* minibatches used anyway —

 extension: parallel training (A3C algorithm)

* sample in multiple threads, gather gradients
® better Speed, more diverse experience https://medium.com/emergent-future/simple-

reinforcement-learning-with-tensorflow-part-8-
asynchronous-actor-critic-agents-a3c-
c88f72a5e9f2

i

y ¥ 4

Environment 2 Environment3 ... | Environment n

NPFL123 192019 9

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Natural Language Generation =

 conversion of system action semantics » text (in our case)

* NLG output is well-defined, but input is not:
* DAs
 any other semantic formalism
database tables

raw data streams -
user model -« e.g. “user wants short answers”

can be any kind of
"~ knowledge representation

dialogue history < e.g. for referring expressions, avoiding repetition

* general NLG objective:
 given input & communication goal
 create accurate + natural, well-formed, human-like text

 additional NLG desired properties:
* variation
* simplicity
 adaptability

NPFL123 192019 10

NLG Use Cases

 dialogue systems
* very different for task/non-task-oriented/QA systems

 standalone
* data-to-text

* short text generation for web & apps
» weather, sports reports
» personalized letters

* machine translation
* how mostly integrated end-to-end
 formerly not the case

e summarization

11

NPFL123 192019

NLG Subtasks (textbook pipeline) Fx

Inputs typically handled by
* ¥ Content/text/document planning = _dij_lolgue manager
deciding « content selection according to communication goal In dialogue systems

what to say * basic structuring & ordering

Content plan
* 4 Sentence planning/microplanning

* aggregatlon (faCtS K Sentences)‘\\ organizing content into sentences

* lexical choice & merging simple sentences
* referring expressions -

| Sentence p[an e.g. restaurantvs. It
* ¢ Surface realization this is needed for NLG

—

i deciding .« |inearization according to grammar in dialogue systems
owtosay it * word order, morphology

Text

NPFL123 192019 12

* Few systems implement the whole pipeline

* All stages: mostly domain-specific data-to-text, standalone
* e.g. weather reports

* Dialogue systems: just sentence planning + realization

» Systems focused on content + sentence planning with trivial realization
 frequentin DS: focus on sentence planning, trivial or off-the-shelf realizer

 Surface realization only
* requires very detailed input
* some systems: just ordering words

 Pipeline vs. end-to-end approaches
 planning + realization in one go - popular for neural approaches
* pipeline: simpler components, might be reusable (especially realizers)
* end-to-end: no error accumulation, no intermediate data structures

NPFL123 192019

NLG Basic Approaches

e canned text
* most trivial - completely hand-written prompts, no variation
» doesn’tscale (good for DTMF phone systems)

* templates

* “fillin blanks” approach
« simple, but much more expressive - covers most common domains nicely

 can scaleif doneright, still laborious
* most production dialogue systems

* grammars & rules
* grammars: mostly older research systems, realization
* rules: mostly content & sentence planning

* machine learning

* modern research systems
* pre-neural attempts often combined with rules/grammar

* RNNs made it work much better

NPFL123 192019

14

Template-based NLG

* Most common in dialogue systems
» especially commercial systems

» Simple, straightforward, reliable
 custom-tailored for the domain
» complete control of the generated content

* Lacks generality and variation

1of2

(Facebook, 2015)

{user} shared {object-owner}'s {=album} {title}
2 close friend sharing content

Notify user of 3 close

{user} sdilelz {=album} ,{title}" uFvatele {object-owner} v | %

{user} sdilelz {object-owner} ufvatele {=albumHtitle} v | %

+ New translation

{name1} tagged {name3} and {other-products} .

Atitle about a user being at a particular place

{name1} oznadil {name3 # pad akuzativ = (vidim) koho? co?} a {other-products # pad:akuzativ = (vidim) koho?

e difficult to maintain, expensive to scaleup =

+ New translation

* Can be enhanced with rules
* e.g. articles, inflection of the filled-in phrases

* template coverage/selection rules, e.g.:
» select most concrete template
» coverinput with as few templates as possible
* random variation

NPFL123 192019 (Alex public transport information rules)

https://github.com/UFAL-DSG/alex

"iconfirm(to_stop={to_stop})&iconfirm(fro

"iconfirm(to_stop={to_stopl})&iconfirm

(Facebook, 2019)
inflection rules

m_stop={from_stop})":
"Alright, from {from_stop} to {to_stopl},”,

(arrival_time_rel="{arrival_time_rel}")":

"Alright, to {to_stop} in {arrival_time_rel},",

"iconfirm(arrival_time="{arrival_time}")":

"You want to be there at {arrival_time},",

"iconfirm(arrival_time_rel="{arrival_time_rel}")":

"You want to get there in {arrival_time_rel},",

https://github.com/UFAL-DSG/alex

Trainable Sentence Planning:
Overgenerate & Rerank

https://www.aclweb.org/anthology/N01-1003

* Assuming you have a flexible handcrafted planner
* underspecified grammar
e rules with multiple options... this takes time!

SpoT trainable planner
(RankBoost ranking)

rt Sentence Planner ir\

* Generate multiple outputs/ N
Dialog CIEE A~ RealPro
Bell= 4H - g
* Select the best one \;3/

\ - Y,

* train just the selection - learning to rank |
. . Sp—trees with associated DSyniSs "g
¢ any Su perVISEd apprOaCh pOSS|ble Text Plan Chosen sptree with associated DSyntS S 003
« ”» « ” E <
a) “top”=1,“nottop”=0 35
b) IOSS incurred by relative Scores inPUt DA OAJT ifi:?zi would you like to travel on LI‘J:I Rggl

—_ (13 2 1 2
loss =max(0, “not top” - “top”) —_________“_ September the 15 to Dallas from Nevark?
implicit-con r““““g*’_‘rf'-) ‘ 5 Leaving on September the 1st. What ime 4.5 .82
implicitconfirm(dest-city:DALLAS) would you like to travel from Mewark to Dal-

implicit-confirm{month:9) ‘ las?

illlpl'lCiT-CDﬂﬁl'ﬂ}(d ay-number:1) 8 Leaving in September. Leaving on the 1st. 2 .39
requestidepart-time) ‘What time would you, traveling from Newark
NPFL123 L92019 to Dallas, like to leave?

https://www.aclweb.org/anthology/N01-1003

,ll}:Pl:lT lrmna]i[:frjjlr)n[rillll‘u?icativc goal
Trainable Sentence Planning:
1

Parameter O pti mization T e e

maodels e.g. verbosity = 0.9 generator

* Assuming you have a flexible handcrafted planner SERSONAGE.PE:

 + one that has configurable parameters, fore.g.: generation with
* sentence aggregation Big Five personality traits
* fillers
° lexical Choices I see, oh Chimichurri Grill is a latin american extra=2.50

place with sort of poor atmosphere. Although — ems=4.50
it doesn’t have rather nasty food, its priceis ~ agree=3.50

* Train the best parameters for your task 1 dollrs Louspectitskind ofaleght. - coneer 3
* generate under different settings i Sonsider i because i hoe endly om0,
. . . . staff and tasty food, you know buddy.) agree=6.25
 annotate the outputs with linguistic features conec=h 25
* learn classifiers: linguistic features > generator settings Eﬁgat‘i’oeglo:tabmty T
* any supervised learning agreeableness
* can predict the settings jointly/independently conscientiousness

openness to experience

(Mairesse & Walker, 2008; 2011)
NPFL123 L9 2019 https://www.aclweb.org/anthology/P08-1020
https://www.aclweb.org/anthology/J11-3002

17

https://www.aclweb.org/anthology/P08-1020
https://www.aclweb.org/anthology/J11-3002

Grammar-based realizers

* Various grammar formalisms

 production / unification rules in the grammar

* typically general-domain, reusable

KPML - multilingual

* systemic functional grammar

FUF/SURGE - English

* functional unification grammar

FUF/SURGE input and output

(Elhadad & Robin, 1996)
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

NPFL123 192019

KPM

L sentence plan

for Adog is in the park.

(10

/ spatial-locating
:speechact (a0 / assertion :polarity positive
:speaking-time t0)

:reference-time-id t0

:event-time (t0 / time)

:theme dO

:domain (d0 / object :lex dog
tidentifiability-q notidentifiable)

:range (p0 / three-d-location :lex park
:identifiability-q identifiable))

(Bateman, 1997)
http://www.academia.edu/download/3459017/bateman97-jnle.pdf

Input Specification ({4):

cat

Process

pariie

Output Sentence (57): “She hands the draft to the editor”

clause

type
relation
lex

agent
of fected
POSSESSOT

possessed

composite
POSSESRINE
“hand"

cat
gerde

]

cat
lex

cot
lex

|

PETS_pro] 7

T .III-I'-.'J'J‘I.I.TE.I.TP.F.

np
Seditor!!

np
“dra ft

18

http://www.academia.edu/download/3459017/bateman97-jnle.pdf
https://academiccommons.columbia.edu/doi/10.7916/D83T9RG1/download

Grammar-based Realizers:

OpenCCG

* OpenCCG - English

* combinatory categorial grammar

* reuse/reverse of CCG pau

* (reverse) lexical lookup

* combination according to grammar
— dynamic programming

e statistical enhancements

OpenCCG input for flight information

be [tense=pres info=rh id=nl]
<Arg> flight [num=sg det=the info=th id=£2]
<HasProp> cheapest [kon=+ id=nZ]
<Prop>» has-rel [id=n3]
<Qf> £2
<Airline> Ryanair [kon=+ id=n4]

(Moore et al., 2004)

NPFL123 192019 http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf

@, (man A {GENREL) (e A see A\ {TENSE}past
A AACT) (B A Bob) A (PAT)a))

0:@,man, 1: @, {GENREL}e, 2: @, see
3. @, (TENSE)past, 4: @, {ACT)b
5@, (PaT)x, 6 : @yBob

OpenCCG input

12,3.4,5} {e, b, x}
saw (s \nps)/np.
M, see N, (TENSE)past A @, (ACT)bAG, (PAT)z

12,4,5} {e, bz}
886 b (S, wonie \NPs) /NP,

G,see A @, (ACT)b A @, (PAT)z OpenCCG

1 2T 1
;(ha};r {—P (n},‘\n,)f{s. g \NPe) @ (GENREL)e leXICal IOOku p
{1} {e =}
that & (n.\n.)/(5. 5 /np.) : @ (GENREL)e

(White & Baldridge, 2003)
https://www.aclweb.org/anthology/W03-2316

Bob + s, /(s,\nps) : @,Bob

losee (s, .. \np.)/np. :
@,.see A Q. (ACT)h A G, (PAT)x

Bob saw + s, ;. /np. :
i, see A @, (TENSE)past
AL {ACTD A @ {PAT)x A @, Bob

OpenCCG parsing
(combinatory rules)

Bob to see & s. . /np. :
@ see A Q. (ACT)h A Q. (PAT)x A @, Bob

man that Bob saw - n, :
@, man /A @, (GENREL}e
A 0 see A O (TENSE) past

A G, (ACT)D A @, (PAT) A @, Bob 19

http://www.aaai.org/Papers/FLAIRS/2004/Flairs04-155.pdf
https://www.aclweb.org/anthology/W03-2316

Procedural realizer: SimpleNLG

* Asimple Java API

» “do-it-yourself” style — only cares about the grammar SimpleNLG
* input needs to be specified precisely generation procedure
* building up ~syntactic structure ricon Lot - e e cny Lot

Realiser realiser = new Realiser(lexicon);

 final linearization

SPhraseSpec p = nlgFactory.createClause();

* built for English et iect (Hary
p.setVerb("chase");

* large coverage lexicon included p. setObject ("the monkey");
° ports to mul“ple languages available p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.println(output);

>>> Mary chased the monkey.

(Gatt & Reiter, 2009)

NPFL123 LS 2019 https://www.aclweb.org/anthology/W09-0613 20

https://www.aclweb.org/anthology/W09-0613

Grammar/Procedural Realizer:
Re a l P ro (Lavoie & Rambow, 1997)

http://dl.acm.org/citation.cfm?id=974596

* Also procedural, but built on a grammar formalism
* Meaning-Text Theory

* Pipeline, working through different levels of meaning description
* deep syntax / semantics

* surface syntax Realze o
"'1 DEynt Checker |
* morphology T RealPro
m ¥ . .
":"1 D&wnt L;;mpuncnt pl pell n e
RealPro input (textual/graphical representation) S — ssymis
¥
"1 S8ymt Component
for This boy sees Mary V
for Do these boys see Mary? DMgphS
. S5CC ...[DMnrph{‘umpnnum |
SEE [question:+] I In
{ I boy [number:pl] SM-J* hs
{ ATTR THIS1) — -
II Mary [class:proper_noun]) boy Mary [Graph ':-;'“"F"‘""'- L
ATTRd/ —
TH [Sl ASCIH Formatier HTML Formatier RTF Formatter
NPFL123192019 v ¥ ¥ 21

http://dl.acm.org/citation.cfm?id=974596

Grammar/Procedural Realizer:

AR i *tree
TectoMT/Treex I
cat window
° Slmllar to RealPrO ACT n:subj DIR2 n:through+X j!l;mp
* based on Functional Generative Description j\ -
(a.k.a. tectogrammatics) S A e

zone=en_step4d

* deep syntax > surface syntax > morphology and linearization

* English, Czech, Dutch, Spanish, Basque
* Simple Perl program:

* copy deep syntax

Q
a-tree
zone=en_step5

&~
a-tree™~_

fix morphology agreement sone=en_steps
add prepositions, conjunctions & articles \ \Q

 add auxiliary verbs
* inflect words v
* add punctuation & capitalization \;deow
(Popel & Zabokrtsky 2010; Dusek et al., 2015) jAdV
NPFL123 192019 https://ufal.mff.cuni.cz/~popel/papers/2010 icetal.pdf 22

https://www.aclweb.org/anthology/W15-3009 the

https://ufal.mff.cuni.cz/~popel/papers/2010_icetal.pdf
https://www.aclweb.org/anthology/W15-3009

Trainable Realizers

* Overgenerate & Rerank
* same approach as for sentence planning
thismeans * assuming a flexible handcrafted realizer (e.g., OpenCCQG)
the grammar — e ynderspecified input > more outputs possible
may be smaller _
* generate more & use statistical reranker, based on:

NITROGEN (Langkilde & Knight, 1998) https://www.aclweb.org/anthology/P98-1116
* n'gram la nguage mOdelS HALOGEN (Langkilde-Geary, 2002) https://www.aclweb.org/anthology/W02-2103

e Tree language models rereus (Bangalore & Rambow, 2000) https://aclweb.org/anthology/C00-1007
° eXPQCted teXt‘tO‘SpeeCh output quahty (Nakatsu & White, 2006) https://www.aclweb.org/anthology/P06-1140
. personality traits & align ment/entrainment CRAG (Isard et al., 2006) https://www.aclweb.org/anthology/W06-1405

* more variance, but at computational cost

StuMaBa (Bohnet et al., 2010)

° Grammarlprocedura l-basec' https://www.aclweb.org/anthology/C10-1012
* same as RealPro or TectoMT, but predict each step using a classifier

NPFL123 192019 23

https://www.aclweb.org/anthology/C10-1012
https://www.aclweb.org/anthology/P98-1116
https://www.aclweb.org/anthology/W02-2103
https://aclweb.org/anthology/C00-1007
https://www.aclweb.org/anthology/P06-1140
https://www.aclweb.org/anthology/W06-1405

(Oh & Rudnicky, 2002)

Non-neural End-to-End NLG: tusidsiozioios oo
S0885-2308(02)00012-8 TR Diaiog Mengts
Language Models {*";] |

— =) (==
* hierarchy of n-gram models - ﬁ{w””“
Markov

Model * slot level (which slot follows which) [mmm]
& word level (words in the phrase for current slot) e {m’

* limited history, no long-range dependencies
* beam & reranking (sanity checks)

* hierarchy of maximum entropy models
uen . unlimited history

(Angeli et al., 2010) https://www.aclweb.org/anthology/D10-1049

style ° Conditioned also on higher-[eve[decisions (Liang et al., 2009) https://www.aclweb.org/anthology/P09-1011
» factored language models /m\
name food type near area

1 | /S~ [

/ conditioned onvarious features “——— s o e Ccsicome) o
® glObal Sea rch for best Seq uence Jinling is_a Chinese restaurant near King’s_College , in_the centre of town’

Jinling Chine: restaurant | King’s_College tral
CRF style | m,m\ = =] CE = (=
(not completely) e mandatry

BAGEL (Mairesse et al., 2010; Mairesse & Young, 2014)

NPFL123 L9 2019
https://www.aclweb.org/anthology/P10-1157 https://www.aclweb.org/anthology/J14-4003

https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P10-1157
https://www.aclweb.org/anthology/J14-4003
https://doi.org/10.1016/S0885-2308(02)00012-8

Gusts{ Nuvp, No,n) — GustCore(Noy, Na)
Gusts(Nuy, Na, ST) — GustCore(Nvy, Na) Gusit Post Mod{5T)

N o n = |1 e u ra '. E n d 'to = E n d N L G : i\Btf[l)Zs’:/z/(i%?L.ac.uk/download/ GustCore(Nv,n) — GustTrans Num({Nuv)

® pdf/5222614.pdf GustCore Nvy, Nvz) — GustTrans Num{Nuvi) — Num{Nwvz)
N L G a S P a rs I n GustTrans — gusts Gust Post Mod(s) — in any showers
GustTrans — gusts to Gust Post Mod(s) — in or near showers
G’”-"'”'?'ﬂ”\‘; — in gusts Gust Post Mod(s) — in showers
ol e . GustTrans — risk gusts to Gust Post Mod(t) — in any thunderstorm
° P b b l t C FG GustTrans — with gusts
ronanlitistic

[F&,_] {search) .r,limrl}]

Risearch, .

* base handcrafted generator
* rules chosen based

on corpus probability / (]

Fa({fight,.r.start} Riflight; .1} |\l\-‘nc.-sc:a|'ch|..r.t5-'pc]| |w|_gﬁcurch1.r.wlmt]l Fa 4iflight) .r.trom) F5aaiflight .r.from}

me flights
the flights - 2words —=
" Fa giflight, .7.to) ¢

M M {a)Alignment Features (local) (b Word Trigrams (non-local) (¢)Field Bigrams (non-local)
i P C F G W I t h ge n e rl C ru I.es <Risrchy 2} — FS(flycst) Rifl o) <show me the=, <show me flights=, erc. <from ta>= .ﬂfﬁ’ff _ i)
(d)Number of Words per Field (local)

(Konstas & Lapata, 2012) <2 | from=

¢ dOma|n |ndependent https://www.aclweb.org/anthology/P12-1039
(~DA - slots > values)

» approx. search for best derivation
— bottom_up n—best if CONDITION i CONDITION

* Synchronous CFGs - aligned MR & text CFGs v rioer vieenar o L

aur 4 our 4

* “translation” with hierarchical phrase models <« (@ Englis ® CLANG
* parsing MR & synchronously generating text T i Commos D)

player CONDITION — (bowner TEAM {UNUM})
4
WASP-1 (Wong & Mooney, 2007) has LEAM = our

the - UnNuM — 4

https://www.aclweb.org/anthology/N07-1022 o

https://www.aclweb.org/anthology/P12-1039
https://core.ac.uk/download/pdf/5222614.pdf
https://www.aclweb.org/anthology/N07-1022

dialogue act
binary representation

Inform(name=EAT, food=British)

Neu ral End-to-End N LG: (0,0,1,0,0,.,1,0,0,.,1,0,0,0,0,0..
(Wen et al, 2015; 2016) SLOT_NAME serves SLOT_FOOD . </s>
R N N LG http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

T

NNY |

NNY_|—

NNY |—
v

NN

* Unlike previous, doesn’t need alighments T ’ ’
* no need to know which word/phrase _l
corresponds to which slot [Iox o e SORE00

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]
delexicalized (~generated templates)

after lexicalization (templates filled in)

och Fyne is a kid-friendly restaurant serving cheap Japanese food.

 Using RNNs, generating word-by-word RV
* neural language models conditioned on DA
» generating delexicalized texts

* input DA represented as binary vector

* Enhanced LSTM cells (SC- LS"I'M/ 5
i

5/

LSTM cell

* special part of the cell (gate)
to ContrOl SlOt mentlons 0,0,1,0,0,.,1,0,0,..,1,0,0,..) dialogueact

NPFL123 192019 Inform(name Seven Days binary representation
food=Chinese)

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

(Dusek & Jurcicek, 2016)

Seq zseq N LG (TG e n) https://aclweb.org/anthology/P16-2008 F\R

* Seg2seq with attention penalty: distance

) checking against from input DA
* encoder - triples <DA type, slot, value> input DA
» decodes words (possibly delexicalized) -
. DA classifier g 0 2
* Beam search & reranking output beam i5 88
» DA classification of outputs SEEEE
¢ CheCking againSt inPUt DA Istm| —> |Istm| —> |Ilstm| —> |Istm| —> |Istm g":ll g] (:IJ :II 8
5 XX
inform(name=X-name,eattype=restaurant) T T T T T
X-name is a bar . <STOP> 2
X-name is a restaurant . <Stop> O
g X name restaurant in the centre <STOP> ~2
attention model <STOP> 0
Istm| — |Istm| —= |lstm| — |[Istm| —= |lstm| —= |Istm / | JStm \\:\I!:“ Isftm T;Y &:m ‘__\T' —,‘:m ‘_T-iii:n \\\\é i’s't:ﬂ A “‘i'-

inform name X-name inform eattype restaurant <GO>X-name is a restaurant

NPFL123 L9 2019 T T 27
encoder decoder

https://aclweb.org/anthology/P16-2008

P ro b le m S W i t h n e u ra l N L G ﬁ::ie/?aer;s/l:é?;/lagtjs/wo1.07931

* Checking the semantics
* neural models tend to forget / make up irrelevant stuff
* reranking currently best, but not perfect

* Delexicalization needed (at least some slots)
» otherwise the data would be too sparse
« alternative: copy mechanisms

* Diversity & complexity of outputs
e still can’t match humans
* needs specific tricks to improve this

open sets, verbatim on the output
(e.g., restaurant/area names)

e

* Still more hassle than writing up templates =

28

NPFL123 192019

http://arxiv.org/abs/1901.07931

* Deep Reinforcement Learning
* same as plain RL - agent + states, actions, rewards — just Q or wris a NN
 function approximation for Q - mean squared value error

* Deep Q Networks - Q learning where Q is a NN + tricks
 experience replay, target function freezing

* Policy networks - policy gradients where m is a NN

* Natural Language Generation

* steps: content planning, sentence planning, surface realization
 not all systems implement everything (content planningis DM’s job in DS)
* pipeline vs. end-to-end

* approaches: templates, grammars, statistical
» templates work great
* state-of-the-art = seq2seq with reranking

NPFL123 192019

Thanks FoL ¢ N

Contact me:

odusek@ufal.mff.cuni.cz Labs tomorrow
room 424 (but email me first) 9:00 SU1

Get these slides here:
http://ufal.cz/npfl123

References/Inspiration/Further:

Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

Karpathy (2016): Deep Reinforcement Learning - Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/

David Silver’s course on RL (UCL): http://wwwo0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Sutton & Barto (2018): Reinforcement Learning: An Introduction (2"d ed.): http://incompleteideas.net/book/the-book.html

Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/

Deep RL for NLP tutorial

Mnih et al. (2013): Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

Mnih et al. (2015): Human-level control through deep reinforcement learning:

https://storage.googleapis.com/deepmind-media/dgn/DQNNaturePaper.pdf

* Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
http://arxiv.org/abs/1703.09902

* My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

NPFL123 192019 30

mailto:odusek@ufal.mff.cuni.cz
http://ufal.cz/npfl123
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
https://arxiv.org/abs/1312.5602
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

