
Dialogue Systems
NPFL123 Dialogové systémy

7. NLU with Neural Networks
& Dialogue State Tracking

Ondřej Dušek & Ondřej Plátek & Jan Cuřín

ufal.cz/npfl123

2. 4. 2019

Neural networks
• Can be used for both classification & sequence models

• Non-linear functions, composed of basic building blocks
• stacked into layers

• Layers are built of activation functions:
• linear functions
• nonlinearities – sigmoid, tanh, ReLU
• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗)

• Fully differentiable – training by gradient descent
• gradients backpropagated from outputs to all parameters
• (composite function differentiation)

2NPFL123 L7 2019

https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Neural networks – features
• You can use the same as for LR/SVM…

• but it’s a lot of work to code them in

• Word embeddings
• let the network learn features by itself

• input is just words (vocabulary is numbered)

• distributed word representation
• each word = vectors of floats

• part of network parameters – trained
a) random initialization

b) pretraining

• network learns which words are used
similarly
• they end up having close embedding values

• different embeddings for different tasks
3NPFL123 L7 2019

http://ruder.io/word-embeddings-2017/

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• Cell types
• basic RNN: linear + tanh

• problem: vanishing gradients

• can’t hold long recurrences

• GRU, LSTM: more complex,
to make backpropagation
work better
• “gates” to keep old values

4NPFL123 L7 2019

basic RNN cell

https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-
in-more-flexible-control-5f33e07b1e57

LSTM cell
GRU cell

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57

Encoder-Decoder Networks
• Default RNN paradigm for sequences/structure prediction

• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡
• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state
• output: hidden state & softmax over output vocabulary + argmax
• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size
• MT, dialogue, parsing…

• more complex structures linearized to sequences

5
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.htmlhttps://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

RNN RNN RNN RNN RNN RNN RNN

ℎ1 ℎ2 ℎ3 ℎ4 = 𝑠0

𝑦1

𝑠1

𝑦2

𝑠2

𝑦3

𝒔0 = 𝒉𝑇

𝑝(𝑦𝑡 𝑦1, … 𝑦𝑡−1, 𝐱 = softmax 𝒔𝑡
𝒔𝑡 = cell(𝒚𝑡−1, 𝒔𝑡−1)

𝒉0 = 𝟎
𝒉𝑡 = cell(𝒙𝑡, 𝒉𝑡−1)

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

• Encoder-decoder too crude for complex sequences
• the whole input crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination

• re-weighted every decoder step
→ can focus on currently important part of input

• fed into decoder inputs + decoder softmax layer

• Self-attention – over previous decoder steps

Attention Models

6NPFL123 L7 2019

𝒄𝑡 =෍

𝑖=1

𝑛

𝛼𝑡𝑖𝒉𝑖

𝛼𝑡𝑖 = softmax(𝒗𝛼 ⋅ tanh(𝐖𝜶 ⋅ 𝒔𝑡−1 + 𝐔𝛼 ⋅ 𝒉𝑖))

𝑡 = decoder step
1…𝑛 = encoder steps

attention value = context vector encoder hidden state

decoder state

trained parametersattention weights
= alignment model

https://skymind.ai/wiki/attention-mechanism-memory-network

https://skymind.ai/wiki/attention-mechanism-memory-network

Neural NLU

• Various architectures possible

• Classification
• feed-forward NN

• RNN + attention weight → softmax

• Sequence tagging
• RNN (LSTM/GRU) → softmax over hidden states

• default version: label bias (like MEMM)

• CRF over the RNN possible

• Still treats intent + slots independently

7NPFL123 L7 2019
https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

RNN

softmax

em
bed
ding

encoder hidden states

attention
model

https://colinraffel.com/publications/iclr2016feed.pdf

softmax

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://colinraffel.com/publications/iclr2016feed.pdf

NN NLU – Joint Intent & Slots

• Same network for both tasks

• Bidirectional encoder
• 2 encoders: left-to-right, right-to-left

• concatenate hidden states

• “see the whole sentence before you start tagging”

• Decoder – tag word-by-word, inputs:
a) attention

b) input encoder hidden states (“aligned inputs”)

c) both

• Intent classification: softmax over last encoder state
• + specific intent context vector (attention)

8NPFL123 L7 2019

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454

NN NLU – Joint Intent & Slots

• Extended version: use slot tagging in intent classification
• Bidi encoder

• Slots decoder with encoder states & attention

• Intent decoder – attention over slots decoder states

• Works slightly better

9NPFL123 L7 2019

same as (c)
on previous slide

this is new

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454

Dialogue State Tracking

• Dialogue management consist of:
• State update ← here we need DST

• Action selection (later)

• Dialogue State needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions

10NPFL123 L7 2019

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

Dialogue State Contents
• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)
• information requested

• Past system actions
• information provided

• slots and values
• list of venues offered

• slots confirmed
• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.

11NPFL123 L7 2019

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)

Ontology
• To describe possible states

• Defines all concepts in the system
• List of slots

• Possible range of values per slot

• Possible actions per slot
• requestable, informable etc.

• Dependencies
• some concepts only applicable

for some values of parent concepts

12NPFL123 L7 2019

food_type – only for type=restaurant
has_parking – only for type=hotel

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

“if entity=venue, then…”

some slot names may need disambiguation
(venue type vs. landmark type)

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

13NPFL123 L7 2019

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels

Belief State

• Assume we don’t know the true dialogue state
• but we can estimate a probability distribution over all possible states

• In practice: per-slot distributions

• More robust
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies
• but not only them – rule-based, too

14NPFL123 L7 2019

Belief State

15NPFL123 L7 2019

no probability
accumulation

(1-best, no state)

accumulating over
NLU n-best list
(still no state)

accumulating over
NLU n-best + turns

this is what we need
(=belief state)

(from Milica Gašić’s slides)

Dialogue as a Markov Decision Process

• MDP = probabilistic control process
• model – Dynamic Bayesian Network

• random variables & dependencies in a graph/network

• “dynamic” = structure repeats over each time step 𝑡

• 𝑠𝑡 – dialogue states = what the user wants

• 𝑎𝑡 – actions = what the system says

• 𝑟𝑡 – rewards = measure of quality
• typically slightly negative for each turn, high positive for successful finish

• 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 – transition probabilities

• Markov property – state defines everything

• Problem: we’re not sure about the dialogue state

16NPFL123 L7 2019

(from Milica Gašić’s slides)

Partially Observable (PO)MDP
• Dialogue states are not observable

• modelled probabilistically – belief state 𝑏 𝑠 is a prob. distribution over states

• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• Still Markovian

• 𝑏′ 𝑠′ =
1

𝑍
𝑝 𝑜 𝑠′ σ𝑠∈S𝑝 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

• 𝑏(𝑠) can be modelled by an HMM

17NPFL123 L7 2019

(from Milica Gašić’s slides)grey = observed
white = unobserved

(from Filip Jurčíček’s slides)

Digression:

Generative vs. Discriminative Models

What they learn:

• Generative – whole distribution 𝑝(𝑥, 𝑦)

• Discriminative – just decision boundaries between classes ~ 𝑝(𝑦|𝑥)

To predict 𝑝(𝑦|𝑥)…

• Generative models
1) Assume some functional form for 𝑝(𝑥), 𝑝(𝑥|𝑦)
2) Estimate parameters of 𝑝(𝑥), 𝑝(𝑥|𝑦) directly from training data
3) Use Bayes rule to calculate 𝑝(𝑦|𝑥)

• Discriminative models
1) Assume some functional form for 𝑝(𝑦|𝑥)
2) Estimate parameters of 𝑝 𝑦 𝑥 directly from training data

18NPFL123 L7 2019
https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3

they get the
same thing, but
in different ways

https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3

Generative vs. Discriminative Models
Example: elephants vs. dogs

• Discriminative:
• establish decision boundary (~find distinctive features)

• classification: just check on which side we are

• Generative
• ~ 2 models – what elephants & dogs look like

• classification: match against the two models

• Discriminative – typically better results

• Generative – might be more robust, more versatile
• e.g. predicting the other way, actually generating likely (𝑥, 𝑦)’s

19NPFL123 L7 2019

?

http://cs229.stanford.edu/notes/cs229-notes2.pdf

http://cs229.stanford.edu/notes/cs229-notes2.pdf

Naïve Generative Belief Tracking
(= Belief Monitoring)

• Using the HMM model
• estimate the transition & observation probabilities from data

• Problem: too many states
• e.g. 10 slots, 10 values each → 1010 distinct states – intractable

• Solutions: pruning/beams, additional assumptions…
• or different models altogether

20NPFL123 L7 2019

𝑏 𝑠 =
1

𝑍
𝑝 𝑜𝑡 𝑠𝑡 ෍

𝑠𝑡−1∈S

𝑝 𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1 𝑏(𝑠𝑡−1)
same as previous

Generative BT: Pruning/Beams

• Tricks to make the naïve model tractable:
• only track/enumerate states supported by NLU

• “other” = all equal, don’t even keep the rest in memory explicitly

• just keep n most probable states (beam)
• prune others & redistribute probability to similar states

• merge similar states (e.g. same/similar slots, possibly different history)
• along with probability mass

• Model parameters estimated from data
• transition probabilities 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

• observation probabilities 𝑝 𝑜𝑡 𝑠𝑡
• this is hard to do reliably, so they’re often set by hand

21NPFL123 L7 2019

Generative BT: Pruning/Beams

22NPFL123 L7 2019
(from Filip Jurčíček’s slides)

hypotheses not supported
by NLU are ignored

merging similar states
(note they’re not the same)

pruning an unlikely state
& redistributing probability

to similar ones

𝑏0 𝑏1 𝑏2

Generative BT: Independence Assumptions

• Partition the state by assuming conditional independence
• track parts of the state independently → reduce # of combinations

• e.g. “each slot is independent”:
• state 𝐬 = [𝑠1, … 𝑠𝑁], belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡

𝑖)

• other partitions possible – speed/accuracy trade-off

• Slot partition:
• 𝑏 𝑠𝑡

𝑖 = σ
𝑠𝑡−1,𝑜𝑡

𝑖 𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏 𝑠𝑡−1
𝑖

= σ
𝑠𝑡−1,𝑜𝑡

𝑖 𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 𝑝(𝑜𝑡

𝑖|𝑠𝑡
𝑖)𝑏 𝑠𝑡−1

𝑖

• Further simplification: parameter tying

23NPFL123 L7 2019 (Žilka et al., 2013; Marek, 2013)

transition
probability

observation
probability

last belief

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 =

𝜃𝑇 if 𝑠𝑡
𝑖 = 𝑠𝑡−1

𝑖

1−𝜃𝑇

#values𝑖−1
otherwise

𝑝 𝑜𝑡
𝑖 𝑠𝑡

𝑖 =

𝜃𝑂𝑝(𝑜𝑡
𝑖) if 𝑜𝑡

𝑖 = 𝑠𝑡
𝑖

1−𝜃𝑂

#values𝑖−1
𝑝 𝑜𝑡

𝑖 otherwise

𝜃𝑇 ~ rigidity (bias for keeping old values)

𝜃𝑂 ~ confidence in NLU

𝑝 𝑜𝑡
𝑖 = NLU output

Basic Discriminative Belief Tracker

• Based on the previous model
• same slot independence assumption

• Actually simpler – “always trust the NLU”
• this makes it parameter-free

• …and kinda rule-based

• but very fast, with reasonable performance

24NPFL123 L7 2019

𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖)update

rule

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑝 𝑠𝑡
𝑖 =🤫 𝑝(𝑜𝑡

𝑖 =🤫) if 𝑠𝑡
𝑖 =🤫

𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖) otherwise

user silent about slot 𝑖

substitution

the rule is now deterministic(Žilka et al., 2013)

Discriminative Trackers

• Generative trackers – need many assumptions to be tractable
• cannot exploit arbitrary features

• … or they can, but not if we want to keep them tractable

• often use handcrafted parameters

• … may produce unreliable estimates

• Discriminative trackers – can use any features from dialogue history
• parameters estimated from data more easily

• General distinction
• static models – encode whole history into features

• sequence models – explicitly model dialogue as sequential

25NPFL123 L7 2019

http://ieeexplore.ieee.org/document/6424197/

http://ieeexplore.ieee.org/document/6424197/

Static Discriminative Trackers
• Generally predict 𝑝 𝑠𝑡 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡

• any kind of classifier (SVM, LR…)

• need fixed feature vector from 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡 (where 𝑡 is arbitrary)
• current turn, cumulative, sliding window

• per-value features & tying weights– some values are too rare

• Global feature examples:
• NLU n-best size, entropy, lengths (current turn, cumulative)

• ASR scores

• Per-value 𝑣 examples:
• rank & score of hypo with 𝑣 on current NLU n-best + diff vs. top-scoring hypo

• # times 𝑣 appeared so far, sum/average confidence of that

• # negations/confirmations of 𝑣 so far

• reliability of NLU predicting 𝑣 on held-out data
26NPFL123 L7 2019

https://www.aclweb.org/anthology/P13-1046

https://www.aclweb.org/anthology/P13-1046

Sequence-Based Discriminative Trackers
• Dialogue as a sequence 𝑝(𝑠1, … 𝑠𝑡|𝑜1, … 𝑜𝑡)

• CRF models
• similar features as previously – can be current-slot only (CRF will handle it)

• feature value: NLU score for the given thing (e.g. DA type + slot + value)

• target: per-slot BIO coding

27NPFL123 L7 2019 (Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345

food

phone

method

https://www.aclweb.org/anthology/W14-4345

Neural State Trackers

• Many different architectures

• Typically sequential, discriminative

• Typically not using NLU – directly ASR/words → belief

• Simple example: RNN over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)

28NPFL123 L7 2019

LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

Neural State Trackers
• More complex – better generalization

across slots

29NPFL123 L7 2019

encoders shape:

local = per-slot, global = shared among slots

𝛽 ⋅global + 1 − 𝛽 ⋅ local

does the utterance specify
this slot-value pair?

attention over utterance
w. r. t. slot-value pair

if utterance refers to previous
system actions

attention over prev. system actions
w. r. t. current user utterance

(Zhong et al., 2018)
http://arxiv.org/abs/1805.09655

weighted sum
+ sigmoid

http://arxiv.org/abs/1805.09655

Summary
• Neural networks primer

• embeddings

• layers (sigmoid, tanh, ReLU)

• recurrent networks (LSTM, GRU)

• attention

• NN SLU examples

• Dialogue state, belief state

• Dialogue as (Partially observable) Markov Decision Process

• Generative belief trackers

• Discriminative belief trackers

• NN tracker examples
30NPFL123 L7 2019

Thanks

31NPFL123 L7 2019

Contact me:
odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123

References/Inspiration/Further:
• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Henderson (2015): Machine Learning for Dialog State Tracking: A Review https://ai.google/research/pubs/pub44018
• Žilka et al. (2013): Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking

https://aclweb.org/anthology/W13-4070 (+David Marek’s MSc. thesis https://is.cuni.cz/webapps/zzp/detail/122733/)
• Liu & Lane (2016): Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling

http://arxiv.org/abs/1609.01454
• Kim & Banchs (2014): Sequential Labeling for Tracking Dynamic Dialog States

https://www.aclweb.org/anthology/W14-4345

Labs tomorrow
9:00 SU1

mailto:odusek@ufal.mff.cuni.cz
http://ufal.cz/npfl123
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://ai.google/research/pubs/pub44018
https://aclweb.org/anthology/W13-4070
https://is.cuni.cz/webapps/zzp/detail/122733/
http://arxiv.org/abs/1609.01454
https://www.aclweb.org/anthology/W14-4345

