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Neural networks
• Can be used for both classification & sequence models

• Non-linear functions, composed of basic building blocks
• stacked into layers

• Layers are built of activation functions:
• linear functions
• nonlinearities – sigmoid, tanh, ReLU
• softmax – probability estimates:

softmax 𝐱 𝑖 =
exp(𝑥𝑖)

σ
𝑗=1
𝐱 exp(𝑥𝑗)

• Fully differentiable – training by gradient descent
• gradients backpropagated from outputs to all parameters
• (composite function differentiation)
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https://medium.com/@shrutija
don10104776/survey-on-
activation-functions-for-deep-
learning-9689331ba092

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092


Neural networks – features
• You can use the same as for LR/SVM…

• but it’s a lot of work to code them in

• Word embeddings
• let the network learn features by itself

• input is just words (vocabulary is numbered)

• distributed word representation 
• each word = vectors of floats

• part of network parameters – trained
a) random initialization

b) pretraining

• network learns which words are used 
similarly
• they end up having close embedding values

• different embeddings for different tasks
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http://ruder.io/word-embeddings-2017/

http://blog.kaggle.com/2016/05/18/home-depot-product-search-
relevance-winners-interview-1st-place-alex-andreas-nurlan/

http://ruder.io/word-embeddings-2017/
http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/


Recurrent Neural Networks

• Many identical layers with shared parameters (cells)
• ~ the same layer is applied multiple times, taking its own outputs as input

• ~ same number of layers as there are tokens

• output = hidden state – fed to the next step

• additional input – next token features

• Cell types
• basic RNN: linear + tanh

• problem: vanishing gradients

• can’t hold long recurrences

• GRU, LSTM: more complex, 
to make backpropagation 
work better
• “gates” to keep old values
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basic RNN cell

https://medium.com/@saurabh.rathor092/
simple-rnn-vs-gru-vs-lstm-difference-lies-
in-more-flexible-control-5f33e07b1e57

LSTM cell
GRU cell

https://medium.com/@saurabh.rathor092/simple-rnn-vs-gru-vs-lstm-difference-lies-in-more-flexible-control-5f33e07b1e57


Encoder-Decoder Networks
• Default RNN paradigm for sequences/structure prediction

• encoder RNN: encodes the input token-by-token into hidden states ℎ𝑡
• next step: last hidden state + next token as input

• decoder RNN: constructs the output token-by-token
• initialized by last encoder hidden state
• output: hidden state & softmax over output vocabulary + argmax
• next step: last hidden state + last generated token as input

• LSTM/GRU cells over vectors of ~ embedding size
• MT, dialogue, parsing… 

• more complex structures linearized to sequences

5
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.htmlhttps://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129
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https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129


• Encoder-decoder too crude for complex sequences
• the whole input crammed into a fixed-size vector (last hidden state)

• Attention = “memory” of all encoder hidden states
• weighted combination

• re-weighted every decoder step 
→ can focus on currently important part of input

• fed into decoder inputs + decoder softmax layer

• Self-attention – over previous decoder steps

Attention Models
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𝒄𝑡 =෍

𝑖=1

𝑛

𝛼𝑡𝑖𝒉𝑖

𝛼𝑡𝑖 = softmax(𝒗𝛼 ⋅ tanh(𝐖𝜶 ⋅ 𝒔𝑡−1 + 𝐔𝛼 ⋅ 𝒉𝑖))

𝑡 = decoder step
1…𝑛 = encoder steps

attention value = context vector encoder hidden state

decoder state

trained parametersattention weights 
= alignment model

https://skymind.ai/wiki/attention-mechanism-memory-network

https://skymind.ai/wiki/attention-mechanism-memory-network


Neural NLU

• Various architectures possible

• Classification
• feed-forward NN

• RNN + attention weight → softmax

• Sequence tagging
• RNN (LSTM/GRU) → softmax over hidden states

• default version: label bias (like MEMM)

• CRF over the RNN possible

• Still treats intent + slots independently
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https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
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https://colinraffel.com/publications/iclr2016feed.pdf

softmax

https://www.depends-on-the-definition.com/guide-sequence-tagging-neural-networks-python/
https://colinraffel.com/publications/iclr2016feed.pdf


NN NLU – Joint Intent & Slots

• Same network for both tasks

• Bidirectional encoder
• 2 encoders: left-to-right, right-to-left

• concatenate hidden states

• “see the whole sentence before you start tagging”

• Decoder – tag word-by-word, inputs:
a) attention

b) input encoder hidden states  (“aligned inputs”)

c) both

• Intent classification: softmax over last encoder state 
• + specific intent context vector (attention)
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(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454


NN NLU – Joint Intent & Slots

• Extended version: use slot tagging in intent classification
• Bidi encoder

• Slots decoder with encoder states & attention

• Intent decoder – attention over slots decoder states

• Works slightly better
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same as (c) 
on previous slide

this is new

(Liu & Lane, 2016) http://arxiv.org/abs/1609.01454

http://arxiv.org/abs/1609.01454


Dialogue State Tracking

• Dialogue management consist of:
• State update ← here we need DST

• Action selection (later)

• Dialogue State needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions
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U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.



Dialogue State Contents
• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)
• information requested

• Past system actions
• information provided

• slots and values 
• list of venues offered

• slots confirmed
• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.
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U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)



Ontology
• To describe possible states

• Defines all concepts in the system
• List of slots

• Possible range of values per slot 

• Possible actions per slot
• requestable, informable etc.

• Dependencies
• some concepts only applicable 

for some values of parent concepts
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food_type – only for type=restaurant
has_parking – only for type=hotel

entity = {venue, landmark}
venue.type = {restaurant, bar,…}

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf

“if entity=venue, then…”

some slot names may need disambiguation
(venue type vs. landmark type)

http://mi.eng.cam.ac.uk/research/dialogue/papers/youn09.pdf


Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state
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NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels



Belief State

• Assume we don’t know the true dialogue state
• but we can estimate a probability distribution over all possible states

• In practice: per-slot distributions

• More robust
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies
• but not only them – rule-based, too
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Belief State

15NPFL123 L7 2019

no probability 
accumulation

(1-best, no state)

accumulating over
NLU n-best list
(still no state)

accumulating over 
NLU n-best + turns

this is what we need
(=belief state)

(from Milica Gašić’s slides)



Dialogue as a Markov Decision Process

• MDP = probabilistic control process
• model – Dynamic Bayesian Network 

• random variables & dependencies in a graph/network

• “dynamic” = structure repeats over each time step 𝑡

• 𝑠𝑡 – dialogue states = what the user wants

• 𝑎𝑡 – actions = what the system says

• 𝑟𝑡 – rewards = measure of quality
• typically slightly negative for each turn, high positive for successful finish

• 𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 – transition probabilities

• Markov property – state defines everything

• Problem: we’re not sure about the dialogue state
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(from Milica Gašić’s slides)



Partially Observable (PO)MDP
• Dialogue states are not observable

• modelled probabilistically – belief state 𝑏 𝑠 is a prob. distribution over states

• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• Still Markovian

• 𝑏′ 𝑠′ =
1

𝑍
𝑝 𝑜 𝑠′ σ𝑠∈S𝑝 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

• 𝑏(𝑠) can be modelled by an HMM
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(from Milica Gašić’s slides)grey = observed
white = unobserved

(from Filip Jurčíček’s slides)



Digression:

Generative vs. Discriminative Models

What they learn:

• Generative – whole distribution 𝑝(𝑥, 𝑦)

• Discriminative – just decision boundaries between classes ~ 𝑝(𝑦|𝑥)

To predict 𝑝(𝑦|𝑥)…

• Generative models
1) Assume some functional form for 𝑝(𝑥), 𝑝(𝑥|𝑦)
2) Estimate parameters of 𝑝(𝑥), 𝑝(𝑥|𝑦) directly from training data
3) Use Bayes rule to calculate 𝑝(𝑦|𝑥)

• Discriminative models
1) Assume some functional form for 𝑝(𝑦|𝑥)
2) Estimate parameters of 𝑝 𝑦 𝑥 directly from training data
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https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3

they get the 
same thing, but 
in different ways

https://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3


Generative vs. Discriminative Models
Example: elephants vs. dogs

• Discriminative:
• establish decision boundary (~find distinctive features)

• classification: just check on which side we are

• Generative
• ~ 2 models – what elephants & dogs look like

• classification: match against the two models

• Discriminative – typically better results

• Generative – might be more robust, more versatile
• e.g. predicting the other way, actually generating likely (𝑥, 𝑦)’s
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?

http://cs229.stanford.edu/notes/cs229-notes2.pdf

http://cs229.stanford.edu/notes/cs229-notes2.pdf


Naïve Generative Belief Tracking 
(= Belief Monitoring)

• Using the HMM model
• estimate the transition & observation probabilities from data

• Problem: too many states
• e.g. 10 slots, 10 values each → 1010 distinct states – intractable

• Solutions: pruning/beams, additional assumptions…
• or different models altogether
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𝑏 𝑠 =
1

𝑍
𝑝 𝑜𝑡 𝑠𝑡 ෍

𝑠𝑡−1∈S

𝑝 𝑠𝑡 𝑎𝑡−1, 𝑠𝑡−1 𝑏(𝑠𝑡−1)
same as previous



Generative BT: Pruning/Beams

• Tricks to make the naïve model tractable:
• only track/enumerate states supported by NLU

• “other” = all equal, don’t even keep the rest in memory explicitly

• just keep n most probable states (beam)
• prune others & redistribute probability to similar states

• merge similar states (e.g. same/similar slots, possibly different history)
• along with probability mass

• Model parameters estimated from data
• transition probabilities  𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

• observation probabilities  𝑝 𝑜𝑡 𝑠𝑡
• this is hard to do reliably, so they’re often set by hand
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Generative BT: Pruning/Beams
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(from Filip Jurčíček’s slides)

hypotheses not supported 
by NLU are ignored

merging similar states
(note they’re not the same)

pruning an unlikely state
& redistributing probability

to similar ones

𝑏0 𝑏1 𝑏2



Generative BT: Independence Assumptions

• Partition the state by assuming conditional independence
• track parts of the state independently → reduce # of combinations

• e.g. “each slot is independent”:
• state 𝐬 = [𝑠1, … 𝑠𝑁],  belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡

𝑖)

• other partitions possible – speed/accuracy trade-off

• Slot partition:
• 𝑏 𝑠𝑡

𝑖 = σ
𝑠𝑡−1,𝑜𝑡

𝑖 𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏 𝑠𝑡−1
𝑖

= σ
𝑠𝑡−1,𝑜𝑡

𝑖 𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 𝑝(𝑜𝑡

𝑖|𝑠𝑡
𝑖)𝑏 𝑠𝑡−1

𝑖

• Further simplification: parameter tying
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transition 
probability

observation
probability

last belief

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 =

𝜃𝑇 if 𝑠𝑡
𝑖 = 𝑠𝑡−1

𝑖

1−𝜃𝑇

#values𝑖−1
otherwise

𝑝 𝑜𝑡
𝑖 𝑠𝑡

𝑖 =

𝜃𝑂𝑝(𝑜𝑡
𝑖) if 𝑜𝑡

𝑖 = 𝑠𝑡
𝑖

1−𝜃𝑂

#values𝑖−1
𝑝 𝑜𝑡

𝑖 otherwise

𝜃𝑇 ~ rigidity (bias for keeping old values)

𝜃𝑂 ~ confidence in NLU

𝑝 𝑜𝑡
𝑖 = NLU output



Basic Discriminative Belief Tracker

• Based on the previous model
• same slot independence assumption

• Actually simpler – “always trust the NLU”
• this makes it parameter-free

• …and kinda rule-based

• but very fast, with reasonable performance
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𝑏 𝑠𝑡
𝑖 = ෍

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖 )update

rule

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑝 𝑠𝑡
𝑖 =🤫 𝑝(𝑜𝑡

𝑖 =🤫) if 𝑠𝑡
𝑖 =🤫

𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ) otherwise

user silent about slot 𝑖

substitution

the rule is now deterministic(Žilka et al., 2013)



Discriminative Trackers

• Generative trackers – need many assumptions to be tractable
• cannot exploit arbitrary features 

• … or they can, but not if we want to keep them tractable

• often use handcrafted parameters

• … may produce unreliable estimates

• Discriminative trackers – can use any features from dialogue history
• parameters estimated from data more easily

• General distinction
• static models – encode whole history into features

• sequence models – explicitly model dialogue as sequential
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http://ieeexplore.ieee.org/document/6424197/

http://ieeexplore.ieee.org/document/6424197/


Static Discriminative Trackers
• Generally predict  𝑝 𝑠𝑡 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡

• any kind of classifier (SVM, LR…)

• need fixed feature vector from 𝑜1, 𝑎1, … , 𝑎𝑡−1, 𝑜𝑡 (where 𝑡 is arbitrary)
• current turn, cumulative, sliding window

• per-value features & tying weights– some values are too rare

• Global feature examples:
• NLU n-best size, entropy, lengths (current turn, cumulative)

• ASR scores

• Per-value 𝑣 examples:
• rank & score of hypo with 𝑣 on current NLU n-best + diff vs. top-scoring hypo

• # times 𝑣 appeared so far, sum/average confidence of that

• # negations/confirmations of 𝑣 so far

• reliability of NLU predicting 𝑣 on held-out data
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https://www.aclweb.org/anthology/P13-1046

https://www.aclweb.org/anthology/P13-1046


Sequence-Based Discriminative Trackers
• Dialogue as a sequence 𝑝(𝑠1, … 𝑠𝑡|𝑜1, … 𝑜𝑡)

• CRF models
• similar features as previously – can be current-slot only (CRF will handle it)

• feature value: NLU score for the given thing (e.g. DA type + slot + value)

• target: per-slot BIO coding

27NPFL123 L7 2019 (Kim & Banchs, 2014) https://www.aclweb.org/anthology/W14-4345

food

phone

method

https://www.aclweb.org/anthology/W14-4345


Neural State Trackers

• Many different architectures

• Typically sequential, discriminative

• Typically not using NLU – directly ASR/words → belief

• Simple example: RNN over words + classification on hidden states
• runs over the whole dialogue history (user utterances + system actions)
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LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471


Neural State Trackers
• More complex – better generalization 

across slots
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encoders shape:

local = per-slot, global = shared among slots

𝛽 ⋅global + 1 − 𝛽 ⋅ local

does the utterance specify 
this slot-value pair?

attention over utterance
w. r. t. slot-value pair

if utterance refers to previous
system actions

attention over prev. system actions
w. r. t. current user utterance

(Zhong et al., 2018)
http://arxiv.org/abs/1805.09655

weighted sum
+ sigmoid

http://arxiv.org/abs/1805.09655


Summary
• Neural networks primer

• embeddings

• layers (sigmoid, tanh, ReLU)

• recurrent networks (LSTM, GRU)

• attention

• NN SLU examples

• Dialogue state, belief state

• Dialogue as (Partially observable) Markov Decision Process

• Generative belief trackers

• Discriminative belief trackers

• NN tracker examples
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Thanks
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Contact me:
odusek@ufal.mff.cuni.cz
room 424 (but email me first)

Get these slides here:

http://ufal.cz/npfl123
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