Statistical Dialogue Systems
NPFL099 Statistické dialogové systémy

11. Linguistics & Ethics

Ondřej Dušek & Vojtěch Hudeček
http://ufal.cz/npfl099
19. 12. 2019
Turn-taking (interactivity)

• Speakers **take turns** in a dialogue
 • **turn** = continuous utterance from one speaker

• Normal dialogue – very fluent, fast
 • minimizing **overlaps & gaps**
 • little silence (usually <250ms), little overlap (~5%)
 • (fuzzy) rules, anticipation
 • cues/markers for turn boundaries:
 • linguistic (e.g. finished sentence), voice pitch
 • timing (gaps)
 • eye gaze, gestures (…)

• overlaps happen naturally
 • ambiguity in turn-taking rules (e.g. two start speaking at the same time)
 • **barge-in** = speaker starts during another one’s turn
Turn-taking (example)

20 seconds of a semi-formal dialogue (talk show):

S: um uh , you're about to start season [six ,]
J: [yes]
S: you probably already started but [it launches]
J: [yes thank you]
A: (cheering)
J: we're about to start thank you yeah .. we're starting , we- on Sunday yeah ,
we've been eh- we've been prepping some [things]
S: [confidence] is high . feel good ?
J: (scoffs)
S: think you're gonna
[squeeze out the shows this time ? think you're gonna do it ?]
J: (Laughing) [you're talking to me like I'm an a-]
confidence high ? no !
S: [no]
J: [my confidence] is never high .
S: okay
J: self loathing high . concern astronomic .
Speech vs. text

• Natural speech is **very different from written text**
 • ungrammatical
 • restarts, hesitations, corrections
 • overlaps
 • pitch, stress
 • accents, dialect

• See more examples in speech corpora
 • https://kontext.korpus.cz/ (Czech)
 • select the “oral” corpus and search for a random word
Turn taking in dialogue systems

• consecutive turns are typically assumed
 • system waits for user to finish their turn (~250ms non-speech)

• voice activity detection
 • binary classification problem – “is it user’s speech that I’m hearing?”[Y/N]
 • segments the incoming audio (checking every X ms)
 • actually a hard problem
 • nothing ever works in noisy environments

• wake words – making VAD easier
 • listen for a specific phrase, only start listening after it

• some systems allow user’s barge-in
 • may be tied to the wake word
Speech acts (by John L. Austin & John Searle)

• each utterance is an act
 • intentional
 • changing the state of the world
 • changing the knowledge/mood of the listener (at least)
 • influencing the listener’s behavior

• speech acts consist of:
 a) utterance act = the actual uttering of the words
 b) propositional act = semantics / “surface” meaning
 c) illocutionary act = “pragmatic” meaning
 • e.g. command, promise […]
 d) perlocutionary act = effect
 • listener obeys command, listener’s worldview changes […]
Speech acts

• Types of speech acts:
 • **assertive**: speaker commits to the truth of a proposition
 • statements, declarations, beliefs, reports […]
 • **directive**: speaker wants the listener to do something
 • commands, requests, invitations, encouragements
 • **commissive**: speaker commits to do something themselves
 • promises, swears, threats, agreements
 • **expressive**: speaker expresses their psychological state
 • thanks, congratulations, apologies, welcomes
 • **declarative**: performing actions (“performative verbs”)
 • sentencing, baptizing, dismissing

It’s raining outside.
Stop it!
I’ll come by later.
Thank you!
You’re fired!
Speech acts

• Explicit vs. implicit
 • explicit – using a verb directly corresponding to the act
 • implicit – without the verb

• Direct vs. indirect
 • indirect – the surface meaning does not correspond to the actual one
 • primary illocution = the actual meaning
 • secondary illocution = how it’s expressed
 • reasons: politeness, context, familiarity

explicit: I promise to come by later.
implicit: I’ll come by later.

explicit: I’m inviting you for a dinner.
implicit: Come with me for a dinner!

direct: Please close the window.
indirect: Could you close the window?
even more indirect: I’m cold.

direct: What is the time?
indirect: Have you got a watch?
Conversational Maxims (by Paul Grice)

• based on Grice’s **cooperative principle** (“dialogue is cooperative”)
 • speaker & listener cooperate w. r. t. communication goal
 • speaker wants to inform, listener wants to understand

• 4 Maxims (basic premises/principles/ideals)
 • M. of **quantity** – don’t give too little/too much information
 • M. of **quality** – be truthful
 • M. of **relation** – be relevant
 • M. of **manner** – be clear

• By default, speakers are assumed to adhere to maxims
 • apparently breaking a maxim suggests a different/additional meaning
Conversational Implicatures

- **implicatures** = implied meanings
 - standard – based on the assumption that maxims are obeyed
 - maxim flouting (obvious violation) – additional meanings (sarcasm, irony)

John ate some of the cookies → [otherwise too little/low-quality information] not all of them

A: I’ve run out of gas.
B: *There’s a gas station around the corner.* → [otherwise irrelevant] the gas station is open

A: *Will you come to lunch with us?*
B: I have class. → [otherwise irrelevant] B is not coming to lunch

A: *How’s John doing in his new job?*
B: *Good. He didn’t end up in prison so far.* → [too much information] John is dishonest / the job is shady
Speech acts & maxims & implicatures in dialogue systems

• Learned from data / hand-coded

• Understanding
 • tested on real users → usually knows indirect speech acts
 • implicatures limited – there’s no common sense
 • (other than what’s hand-coded or found in training data)

• Responses
 • mostly strive for clarity – user doesn’t really need to imply

system: *The first train from Edinburgh to London leaves at 5:30 from Waverley Station.*
user: *I don’t want to get up so early.* → [fails]
Grounding

• dialogue is cooperative → need to ensure mutual understanding

• **common ground** = shared knowledge, mutual assumptions of dialogue participants
 • not just shared, but *knowingly* shared
 • $x \in \text{CG}(A, B)$:
 • A & B must know x
 • A must know that B knows x and vice-versa
 • expanded/updated/refined in an informative conversation

• validated/verified via **grounding signals**
 • speaker **presents** utterance
 • listener **accepts** utterance by providing evidence of understanding
Grounding signals / feedback

- used to notify speaker of (mis)understanding
- positive – understanding/acceptance signals:
 - **visual** – eye gaze, facial expressions, smile [...]
 - **backchannels** – particles signalling understanding
 - **explicit feedback** – explicitly stating understanding
 - **implicit feedback** – showing understanding implicitly in the next utterance
- negative – misunderstanding:
 - **visual** – stunned/puzzled silence
 - **clarification requests** – demonstrating ambiguity & asking for additional information
 - **repair requests** – showing non-understanding & asking for correction

Examples:

Positive Feedback:

U: *uh-uh, hmm, yeah*
S: *I know, Yes I understand*

Negative Feedback:

A: *Do you know where John is?*
B: *John? Haven’t seen him today.*

Clarification Request:

A: *Do you mean John Smith or John Doe?*

Repair Request:

A: *Oh, so you’re not flying to London? Where are you going then?*
Grounding (example)

T: [...] And the ideology is also very against mixed-race couples. So that was also a target. Whenever we saw mixed-race couples, we attacked them.

E: Was there ever a moment back there where you felt a tiny bit bad about it?

T: No.

E: **No? So you were** absolutely convinced that you're doing the right thing…

T: Yeah, for quite some time **(nods), yeah.**

E: … for the sake of the white race and et cetera?

E: No doubt at all?

T: Well I got **doubt** eventually, roughly a year before I left the movement […]

Grounding in dialogue systems

- Crucial for successful dialogue
 - e.g. booking the right restaurant / flight
- Backchannels / visual signals typically not present
- **Implicit confirmation** very common
 - users might be confused if not present
- **Explicit confirmation** may be required for important steps
 - e.g. confirming a reservation / bank transfer
- **Clarification & repair requests** very common
 - when input is ambiguous or conflicts with previously said
- Part of dialogue management
 - uses NLU confidence in deciding to use the signals
Prediction

• Dialogue is a **social interaction**
 • people view dialogue partners as goal-directed, intentional agents
 • they analyze their partners’ goals/agenda

• Brain does not listen passively
 • projects hypotheses/interpretations on-the-fly

• **prediction** is crucial for human cognition
 • people predict what their partner will (or possibly can) say/do
 • continuously, incrementally
 • unconsciously, very rapidly
 • guides the cognition

• this is (part of) why we understand in adverse conditions
 • noisy environment, distance
Prediction in dialogue systems

• Used a lot in speech recognition
 • **language models** – based on information theory
 • predicting likely next word given context
 • weighted against acoustic information

• Not as good as humans
 • may not reflect current situation (noise etc.)
 • (often) does not adapt to the speaker

• Less use in other DS components
 • also due to the fact that they aren’t incremental
Alignment/entrainment

- People subconsciously **adapt/align/entrain** to their dialogue partner over the course of the dialogue
 - wording (lexical items)
 - grammar (sentential constructions)
 - speech rate, prosody, loudness
 - accent/dialect

- This helps a successful dialogue
 - also helps social bonding, feels natural

(Oppenheim & Jones, 2019)

Alignment in dialogue systems

• Systems typically don’t align
 • NLG is rigid
 • templates
 • machine learning trained without context
 • experiments: makes dialogue more natural

• People align to dialogue systems
 • same as when talking to people

context
response DA
base NLG
+ alignment

<table>
<thead>
<tr>
<th>context</th>
<th>response DA</th>
<th>base NLG</th>
<th>+ alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I need to find a bus connection</td>
<td>inform_no_match(vehicle=bus)</td>
<td>Next connection.</td>
<td>I’m sorry, I cannot find a bus connection.</td>
</tr>
</tbody>
</table>

(Dušek & Jurčiček, 2016)
http://www.aclweb.org/anthology/W16-3622

NPFL099 L11 2019
(Parent & Eskenazi, 2010)
https://www.iscaspeech.org/archive/interspeech_2010/i10_3018.html
Politeness

• Dialogue as social interaction – follows social conventions

• indirect is polite
 • this is the point of most indirect speech acts
 • clashes with conversational maxims (m. of manner)
 • appropriate level of politeness might be hard to find
 • culturally dependent

• face-saving (Brown & Lewinson)
 • positive face = desire to be accepted, liked
 • negative face = desire to act freely
 • face-threatening acts – potentially any utterance
 • threatening other’s/own negative/positive face
 • politeness softens FTAs

<table>
<thead>
<tr>
<th>threat to</th>
<th>positive face</th>
<th>negative face</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>apology, self-humiliation</td>
<td>accepting order / advice, thanks</td>
</tr>
<tr>
<td>other</td>
<td>criticism, blaming</td>
<td>order, advice, suggestion, warning</td>
</tr>
</tbody>
</table>
Ethics & NLP

- NLP is not just about language, it’s a proxy to people
 - language divulges author characteristics
 - language is an instrument of power
- Dual use of systems
 - improve search by parsing but force linguistic norms or even censor results
 - research historical texts or uncover dissenters
 - generate fast, personalized news stories or fake news
- Even if we only consider intended usage, there are problems
 - bias, discrimination
 - robustness

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096

Some proposed NLP tasks are questionable by definition:

- Predicting intellect/personality from text snippets:
 - Given university entrance tests
 - Free text answers to questions
 - IQ, knowledge and other capabilities tests
 - Will hurt people who don’t fit norms

- Predicting face from voice:
 - Given a few seconds of audio
 - Trained from audio & photos pairs
 - Questionable w. r. t. race (+ possibly gender)

- Predicting length of prison charge from case description

Interesting as intellectual exercises

But it’s hard to find a “non-evil” application
Bias

• (Mainly) **data side effect**

• Demographic bias: exclusion/misrepresentation
 • best user experience is for white males in California
 • models tend to score worse for ethnic minorities & young people
 • **models augment** data bias if there are no countermeasures
 • not just ease-of-use problem – GPT-2 text production shows biases too
 • can be subtle, hard to detect by e.g. sentiment analysis

• Language/typological bias:
 • most recent systems are tested on English
 • up to the point where English is not even mentioned in papers
 • self-reinforcing: more tools available → more research → more tools

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096

(Sheng et al., 2019)
https://www.aclweb.org/anthology/D19-1339/

https://www.youtube.com/watch?v=CYvFxs32zvQ
Voice Assistant Gender Bias

• Basically all voice assistants have a woman’s voice by default
 • you can change it for a few of them, not all
 • they identify as genderless
 • some of them (Alexa, Cortana, Siri) have a woman’s name

• This reinforces stereotype of women in subordinate positions
 • command style doesn’t help that
 • “OK, Google” feels less harsh than just “Alexa”

• Women’s voice aren’t more intelligible
 • as a popular myth suggests
 • but it’s easier to create a likeable woman’s voice (→ safer bet)

https://qz.com/911681/
https://gizmodo.com/1683901643
https://medium.com/startup-grind/google-home-vs-alexa-56e26f69ac77
Overgeneralization/Overconfidence

- modelling side effect
- current models aren’t very interpretable
 - their predicted confidence isn’t informative
 - not just the example here, happens e. g. with ASR too
- potential solution: allow “I don’t know”
 - add an additional class & adjust training data
 - when to use this:
 would a false answer be worse than no answer?
- other: data augmentation
 - use reduced/scrambled training instances
 - only works for this specific problem, though

Question answering based on text / image

SQuAD

Context	In 1899, John Jacob Astor IV invested $100,000 for Tesla to further develop and produce a new lighting system. Instead, Tesla used the money to fund his Colorado Springs experiments.
Original	What did Tesla spend Astor’s money on?
Reduced	did
Confidence	0.78 → 0.91

VQA

Original	What color is the flower?
Answer	yellow
Reduced	flower?
Confidence	0.827 → 0.819

Removing words from input doesn’t change prediction

(Hovy & Spruit, 2016)
https://www.aclweb.org/anthology/P16-2096
(Feng et al., 2018)
http://aclweb.org/anthology/D18-1407
(Niu & Bansal, 2018)
http://arxiv.org/abs/1809.02079
Robustness

• Slight change in the input can break the output
 • e.g. misspellings, paraphrases
 • solution: data augmentation, again

• Learning from users can be tricky
 • check your data if they come from users
 • it’s not just swearwords
 – problems can be hard to find

• Users can be used for system hacking
 • let users break your system, then add their trials to training data
 • human-in-the-loop adversarial training
 • used to improve offensive speech classifier
 • setup needs to be controlled
 (crowdsourcing, not real-world use)
Robustness to Sexual Abuse

• ~5% of voice bot requests are explicit

• Different harassment types:
 • comments on gender/sexuality
 • sexualized comments
 • sexualized insults
 • sexual requests & demands

• Chatbots/voice assistants’ responses
 • various systems:
 • commercial (Alexa, Google…)
 • rule-based (Pandorabots, adult chatbots)
 • data-driven (seq2seq)
 • responses often nonsense / play-along
 • conflict of interest for bot builders: be ethical vs. cater to abusive users
Safety

• it’s not just about “not being offensive”

• care about sensitive topics – death, suicide etc.
 • you don’t want to worsen someone’s depression
 • especially for medical systems, but also in general

• contextual safety
 • e.g. in-car systems:
 • do not startle the driver
 • do not give dangerous instructions
 • do not give too much mental load

• special care needs to be taken for RL rewards here
 • restricting exploration / highly negative rewards for unsafe behavior

(Henderson et al., 2017)
http://arxiv.org/abs/1711.09050
Privacy

• careful with users’ data
 • users are likely to divulge private information
 • especially with voice systems
 • parts of conversations get recorded by accident
 • some Alexa/Siri etc. conversations are checked by humans

• trained neural models can leak training data
 • synthetic experiment:
 • train a seq2seq model with dialogue data + passwords
 • try getting the password by providing the same context
 • works a lot of the time

(Henderson et al., 2017)
http://arxiv.org/abs/1711.09050

https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
Summary

• Dialogue is messy: **turn** overlaps, **barge-ins**, weird grammar […]
• Dialogue utterances are acts
 • **illocution** = pragmatic meaning
• Dialogue needs understanding
 • **grounding** = mutual understanding management
 • backchannels, confirmations, clarification, repairs
• Dialogue is cooperative, social process
 • **conversational maxims** ~ “play nice”
 • people **predict & adapt** to each other
• NLP has ethical considerations
 • **bias** – misrepresentation, can be amplified by the models
 • **overconfidence/brittleness** – misclassification/lack of robustness
 • **safety** – robustness to abuse, sensitive topics, contextual safety
 • **privacy** – training data can be private, models can leak them
Thanks

Contact us: odusek@ufal.mff.cuni.cz, hudecek@ufal.mff.cuni.cz or via Slack

Get the slides here: http://ufal.cz/npfl099

References/Inspiration/Further:
 - Pierre Lison’s slides (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
 - Ralf Klabunde’s lectures and slides (Ruhr-Universität Bochum): https://www.linguistics.ruhr-uni-bochum.de/~klabunde/lehre.htm
 - Arash Eshghi & Oliver Lemon’s slides (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
 - Gina-Anne Levow’s slides (University of Washington): https://courses.washington.edu/ling575/
 - Eika Razi’s slides: https://www.slideshare.net/eikarazi/anaphora-and-deixis
 - Emily M. Bender’s Ethics in NLP course (University of Washington): http://faculty.washington.edu/ebender/2019_575/
 - Wikipedia: Anaphora_(linguistics) Conversation Cooperative_principle Grounding_in_communication Implicature Speech_act Sprechakttheorie

Labs today 2pm SW1