10. Chatbots
(non-task-oriented)

Ondřej Dušek & Vojtěch Hudeček
http://ufal.cz/npfl099
12. 12. 2019
Chatbots / Chatterbots

- dialogue systems for **open-domain** dialogue – chitchat
- **non-task oriented**
 - main goal: keep the user entertained
 - standard evaluation: conversation length, user engagement
- (more or less) different architecture
 - may have the same structure as task oriented (NLU → DM → NLG)
 - often simpler, integrated – somewhat like end-to-end DS
 - it’s hard to have explicit NLU for open domain
 - no task to guide a meaning formalism
 - some of them don’t need a DB connection (but some use it)
- beware: *anything* can be called chatbots nowadays
 - here: only chatterbots / non-task-oriented systems
Chatbot tests

- **Turing test** (1950)
 - evaluator & 2 conversations, with a machine & human, text-only
 - needs to tell which is which
 - does not concern what/if the machine thinks, only how it acts → can be (and is!) gamed

- **Loebner Prize** (1990+)
 - Turing test style, first topic-restricted 1995+ unrestricted
 - time-limited (currently 25 minutes for both conversations)
 - criticized as publicity stunt – creates hype but no real progress

- **Amazon Alexa Prize** (2017+)
 - no pretending it’s human, just coherent & engaging conversation for 20 mins.
 - topic semi-restricted (“on popular topics”)
 - evaluator & 3 judges with stop-buttons
 - score: duration + 1-5 scale of “would talk again”
Chatbot history

• natural communication – important part of general AI
 • concerned people even before modern computers (cf. Turing)
• 1st chatbot: **Eliza** (1966)
 • rule-based, simulates a therapist
• **Parry** (1972)
 • similar, simulates a person with paranoid schizophrenia
 • was able to fool psychotherapists in a Turing test
• Not much progress until end of 1990’s – just better rules
 • research focused on task-oriented systems
• 1990’s/2000’s – retrieval-based systems
• 2015+ – huge surge of generative models
Notable/hyped chatbots

• Pandorabots/AIML – framework for rule-based chatbots
 • A.L.I.C.E. bot – basic implementation, ~better Eliza
 • people can reuse & add their own personality
 • Mitsuku (2013+) – multiple times Loebner Prize winner

• Jabberwacky/Cleverbot (1997+)
 • attempts to learn from users
 • remembers & reuses past conversations (>100M)
 • also won Loebner Prize multiple times

• Xiaolce (2014+)
 • Microsoft-created, mainly Chinese (English: Tay/Zo, Japanese: Rinna)
 • on social networks (mainly Weibo)
 • also learns from users & reuses user inputs
 • partly rule-based, focus on emotions
 • a lot of people bonding with “her”
Chatbot basic architectures

• **Rule-based**
 - human-scripted, react to keywords/phrases in user input
 - very time-consuming to make, but still popular
 - chitchat by conversational assistants is typically rule-based

• **Data-driven**
 - **retrieval** – remember a corpus & get replies from there
 - “nearest neighbour” approaches
 - corpus can contain past conversations with users (Jaberwacky/XiaoIce)
 - chatbots differ in the sophistication of reply selection
 - **generative** – (typically) seq2seq-based models
 - trained typically on static corpora
 - (theoretically) able to handle unseen inputs, produce original replies
 - basic seq2seq architecture is weak (dull responses) → many extensions
Eliza (rule-based chatbots)

- very basic pattern-matching rules
 - minimal context (typically just the last utterance)
 - keyword-match rules & precedence
 - e.g. **alike** → **what is the connection**
- fallbacks
 - *I see. <next question>*
 - *Please go on*
 - refer & respond to some previous utterance
- signalling understanding
 - repeating & reformulating user’s phrasing
- it’s all about the framing
 - it’s easier to appear human as a therapist (or paranoid schizophrenic)

Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

AIML (Pandorabots rules)

- XML-based markup language for chatbots
 - keyword spotting, not much smarter than Eliza
 - less powerful than regular expressions 😏

- main concepts:
 - **category** – basic unit of knowledge
 - groups patterns & templates
 - **pattern** – user input pattern (with wildcards)
 - **set** – lists of things of the same type
 - e.g. animals, musical instruments
 - can be used in patterns
 - **template** – response specification
 - allows multiple options
 - **srai** – symbolic reduction
 - used in patterns to redirect to another pattern
 - groups synonymous inputs
 - **variable** – can be set/retrieved in templates
 - e.g. remember user name

normalization is typically applied during preprocessing

```
<category><pattern>WHY DO NOT YOU ^</pattern>
<template><random>
  <li>It's not something I've considered before.</li>
  <li>Would you?</li>
  <li>Is it fun, or dangerous?</li>
  <li>I don't have an explanation for you.</li>
</random></template>
</category>
```

```
<category><pattern>HOW DO YOU LIKE # EGGS #</pattern>
<template><srai>DIET</template></category>
```

```
<category><pattern>YOU EAT *</pattern>
<template><srai>DIET</template>
</category>
```

```
<category><template>My diet consists mostly of <bot name="diet"/>.</template>
</category>
```

0/more words

0/more words (higher priority match)

1/more words

2 categories reduced via srai to the same pattern

multiple options chosen at random

using a variable
Retrieval-based chatbots

• remember a large corpus
 1) check for similar inputs in the corpus
 2) retrieve & rerank corresponding outputs

• needs 2 steps
 1) **rough retrieval**
 • needs to be fast to search the whole corpus
 • e.g. TF-IDF
 2) more accurate **reranking** for candidates
 • most research focuses on this step

• problems:
 • can’t produce unseen sentences
 • reply consistency isn’t great

• solution (Xiaolce, Cleverbot):
 • use postprocessing, combine with rules

(Wang et al., 2013)
https://aclweb.org/anthology/D13-1096
Ranking responses

• Machine learning – **learning to rank**
 • **pointwise**: binary classifier
 • good=1, bad=0, ranking score = P(good)
 • **pairwise**: just learn to rank good > bad
 • incur loss for inversions
 • architecture – anything possible
 • typical neural: **dual encoder**
 • 2 RNNs, for context & response + fully connected

• training data problem:
 • datasets = positive examples only
 • but other responses might be good, too
 • need negative examples
 • manual annotation (expensive!)
 • random sampling (not very efficient)
 • smarter sampling (e.g., replies from “bad” dialogues where long = good & short = bad)

(Shalyminov et al., 2018)
https://www.aclweb.org/anthology/W18-5701
Inspiration from MT (Ritter et al., 2011)
http://www.aclweb.org/anthology/D11-1054

• Early generative approach – convert to phrase-based MT
 1) **align phrases** in inputs & responses
 • build **phrase table**
 2) **build responses by covering input**
 • cover each phrase in input with likely response phrase
 • order & select phrases according to a language model (n-gram LM)

• it’s harder than MT
 • possible responses are much more variable than possible translations
 • using more sensitive phrase building (occurrence correlation)
 • discouraging input repetition (← would be vanilla MT behaviour)

• works, but…
 • fluency is not ideal
 • limited context

U: *I want to go to a bonfire right about now.*
S: *that does sound fun bonfire i wan na go !*

U: *riding to the arc on my bike. Hopefully I won't melt into the pavement.*
S: *good luck on your bike ride arc*

U: *I really hate watching movies in the living room.*
S: *me too , what movies are you doing in room ?*
Using RNN LMs (still MT-inspired)

- Non-LSTM solution:
 a) Vanilla RNN LM, force-decode input, decode response
 • problem: conditioned too loosely
 b) LM with extra conditioning
 • encode input into a fixed vector (using bag-of-words + feed-forward)
 • inject it into each LM decode step
 • more fluent than phrase-based, problems with long replies
 • long replies get less fluent & wander off-topic

- Vanilla Seq2seq model
 • encode input, decode response
 • sounds great, but… (→)

(Sordoni et al., 2015)
https://www.aclweb.org/anthology/N15-1020

NPFL099 L10 2019
Seq2seq Chatbot Problems

- **generic/dull responses**
 - short, low-entropy, repetitive
 - see phrase-based model: too many possible outputs
 - hard to train with MLE & use softmax – both prefer 1 option
 - models settle on safe replies, applicable to any context
 - they become over-confident (LM rules)
- **limited context**
 - encoding long contexts is slow & ineffective
 - contexts are too sparse to learn much
- **inconsistency**
 - ask the same question twice, get two different answers
 - no notion of own personality

U: Where do you live now?
S: I live in Los Angeles.
U: In which city do you live now?
S: I live in Madrid.
U: In which country do you live now?
S: England, you?

U: How old are you?
S: 16 and you?
U: What’s your age?
S: 18.

(U et al., 2016) https://www.aclweb.org/anthology/P16-1094
Diversity/Coherence

• **Reranking** (Li et al., 2016)

 - avoid dull replies that work anywhere
 - instead of maximizing $P(T|S)$, maximize mutual information
 - actually can be rewritten as a trade-off between $P(T|S)$ and $P(S|T)$
 - can’t train it easily, so train normally & rerank beams afterwards

• **Longer context:** HRED (Hierarchical Recurrent Encoder-Decoder)
 - 2nd, turn-level LSTM encoder, with word-level LSTM hidden state as input

(Lowe et al., 2017)

\[\text{MI} = \log \frac{P(S,T)}{P(S)P(T)} \]

\[\text{NPFL099 L10 2019} \]

\[\text{14} \]
Diversity

- joining seq2seq (next turn generation) & autoencoding
 - multi-task learning
 - shared decoder
 - additional “fusion loss” enforcing same encoding for both tasks
- Inference: adding a little noise to produce different outputs

(Gao et al., 2019)
http://arxiv.org/abs/1902.11205
Coherence

• **CVAE with a coherence measure**
 • GLoVe average embedding cosine similarity
 • training data: coherence of target response known
 • also good for data filtering
 • inference: set coherence very high: 0.95/1.0

• **GAN-style for consistent order**
 • detect if three turns are consecutive or not
 • given 1 ordered, 1 misordered triple from previous dialogue history
 • use in dialogue generation learning: good replies are easy to check for order
 • see if misorder is easy to detect with a generated reply
 • GAN: train generator to produce good replies (where misorder is easy to detect) train detector to detect misorder in real sentences, not in generated

(Xu et al., 2018)
http://arxiv.org/abs/1809.06873
(Wu et al., 2019)
http://arxiv.org/abs/1907.00448
Personality

• **Persona embeddings**
 - improve consistency
 - train speaker embeddings
 - this is a little data-picky
 - use speaker + word embeddings in the decoder
 - can also be used in the encoder

• **Persona copy-net**
 - using a hierarchical pointer-generator net
 - context includes short personal bio

(Li et al., 2016)
https://www.aclweb.org/anthology/P16-1094

(Yavuz et al., 2019)
https://www.aclweb.org/anthology/W19-5917/
Hybrid / Ensemble Chatbots
a.k.a. most Alexa Prize Entries

• State-of-the-art today: **combining all methods**
 • rule-based for sensitive/frequent/important questions
 • retrieval for jokes, trivia etc.
 • task-oriented-like systems for specific topics (handcrafted/specially trained)
 • news, weather etc.
 • seq2seq only as a backoff or not at all

• NLU is typically shared, with advanced NLP pipelines
 • NER is very important – can get relevant news & trivia

• Decision among bots
 a) based on NLU topic detection
 b) ranking multiple answers
 • profanity detection – censoring outputs
Alana (2017 & 2018 3rd) (Heriot-Watt University)

- Bots:
 - Rule-based chit-chat
 - Ontologies – knowledge graph walk
 - movies, music, sports, books
 - Retrieval
 - Reddit trivia
 - news
 - Wikipedia
 - fun facts
 - Specific services
 - Bots compete for reply
 - priority list
 - bots can “lock”

NLU pipeline
NP extraction
NER/entity linking
intents
sentiment
topic detection
ellipsis
coreference

Amazon Echo
Main hub
Selection Strategy
Post-processing

Coherence bot
Eliza bot
Persona bot

Ontologies bot
News bot
Wiki bot

Golf bot
Reddit bot
Fun facts bot

Weather
Abuse mitigation
Clarification

http://arxiv.org/abs/1712.07558
Alana: Welcome back then John. Since I remember that you like movies, [...] What movie are you looking forward to watching?

User: Vanilla Sky → I'm looking forward to watching Vanilla Sky [Ellipsis resolution]

User: Interesting

Alana: I just think the world is full of strange and unexpected things like that. So, talking about movies, What famous actor or actress would you like to meet? [...]

User: I want to talk about music

Alana: So, talking about music. Who is a singer that you like? I really like Taylor Swift [...]

User: Kendrick Lamar

Alana: Yes. One of my friends once told me something interesting about Kendrick Lamar. [... Music trivia] What's a band that you would like to see? [...]

User: any news about him → any news about Kendrick Lamar [Coreference resolution]
Alana Example dialogue

Alana: Hmm... about Kendrick Lamar, so John, I read a story with this headline [... News headline] Shall I say some more about this?
User: could we talk about something else

Alana: So John, since I know you like books, what have you read recently? I am reading […]
User: Let's talk about Tom Hardy

Alana: Oh I know Tom Hardy. Do you mean Tom Hardy the English actor, screenwriter and producer or Thomas Hardy the English novelist and poet?
User: I mean the novelist

Alana: Yes. Some friends told me something interesting about Thomas Hardy. [... Trivia]
User: What do you know about pizza?

Alana: I was thinking that whenever a pizza commercial has stretchy melty cheese, it looks good and appealing, but when it happens in real life it's annoying and messy.
Alquist (Czech Technical University, 2017 & 2018 2nd)

- full NLU pipeline (similar to Alana)
- 2017 – handcrafted state machines
 - traversing sub-dialogue graphs
 - dividing for easier maintenance
 - well scripted
 - easy to break, but users play along
 - hand-added variation
- 2018 – adding machine learning
 - Hybrid Code Networks
 - RNN-based dialogue management
 - for each sub-dialogue/topic
 - topic switch detector
 - RNN-based architecture similar to HCN

http://alquistai.com/
https://chatbotsmagazine.com/13-lessons-we-have-to-learn-from-amazon-alexa-prize-965628e38ccb
https://towardsdatascience.com/11-more-lessons-we-have-to-learn-from-alexa-prize-94fe14b8986f
Sounding Board (Uni Washington, 2017 winner)

- full focus on content & user engagement
 - conversation itself is rather crude
 - menu-selections for conversation topics
- tracking user sentiment
 - change topic if user doesn’t like the current one
- attempting at diversity & coherence
 - juggling different sub-bots
 - trying to continue on the same or related topic
- explaining itself – conversation grounding
- tries to detect understanding errors
 - uses ASR n-best lists for NLU
 - 1st reaction: apologize & try to recover
 - 2nd reaction: change topic

### Turn	User	Sounding Board
1 | Let’s chat. | Hi! This is an Alexa Prize socialbot. How’s your day?
2 | I’m five. | Glad to hear it! We could talk about robots, Batman, or Superman. Say “next”, to chat about other things.
3 | Superman. | It looks like you wanna chat about Superman. I was high up in the cloud when I realized: If people don’t recognize Clark Kent as Superman because of his glasses, does his eye doctor know his true identity?
4 | I guess so. | Did you know that Henry Cavill almost missed the call for the role of Superman cause he was playing "World of Warcraft"
5 | Really, I didn’t know that. | Weird, right? Speaking of Superman, Did you see Superman? It was released in 1997. It’s a comedy.
6 | Yes, it was hilarious. | I’m glad you feel this is hilarious. Which part do you like best about this movie?
7 | The part when he met Lewis. | Interesting, Mccarthy and Reiff co-directed this film. The movie has a 6.3 out of 10 on IMDb, which seems pretty good! Do you like the movie’s director?

http://arxiv.org/abs/1804.10202
https://sounding-board.github.io/
Gunrock (UC Davis, 2018 winner)

- Improving ASR
 - error correction – KB fuzzy matching (allow for “typos”)
 - sentence segmentation (RNN-based)

- NLU – keyphrase extraction
 - focus on noun phrases

- Dialog manager – stack
 - return to previous topics
 - related topics
 - a lot of different topics with domain-specific KBs
 - games, psychology, travel…

Alexa Prize bottom line

• understanding is the bottleneck
 • ASR problems – chat-specific ASR improved things, but it’s by far not perfect
 • vague concept of dialogue state, despite full NLP pipelines
 • result: typically very crude intents + list of named entities
 • recognizing multiple/fine-grained intents is a problem
• it’s still more about social engineering than “AI”
 • a lot of strategies for not-understanding (switching topics, questions…)
• machine learning helps, but pure ML is not enough
 • lack of annotated data → often relatively simple methods
 • ML helps mainly in NLU, end-to-end seq2seq doesn’t work
• interesting content is crucial
 • the more handcrafted topics, the better
 • fluent NLG not so much (but prosody helps!)
• brutal variance in the evaluation – very subjective
Summary

• chatbots – **non-task oriented** systems
 • targets: *conversation length & user engagement*
 • impersonating a human – Turing test

• approaches
 • **rule-based** – keyword spotting, scripting
 • **retrieval** – copy & paste from large databases
 • **generative** – seq2seq etc. trained on corpora of dialogues
 • too many possible responses don’t go well with MLE → safe, short, dull
 • many extensions: personality, coherence, diversity
 • still doesn’t work very well
 • **hybrid** – combining all of the above
 • typically mainly rule-based + retrieval, machine learning in NLU only

• open-domain NLU is still an unsolved problem
 • despite that, many people enjoy conversations with chatbots
 • interesting content is crucial
Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
or on Slack

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:
• Mainly individual papers referenced directly on slides
• Wikipedia: AIML Chatbot Cleverbot ELIZA Jabberwacky Loebner_Prize Mitsuku PARRY Turing_test Xiaoice Zo (bot)