
Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

7. Dialogue Policy (2)
& Natural Language Generation

Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

28. 11. 2019

http://ufal.cz/npfl099

Simulated Users
• We can’t really learn just from static datasets

• on-policy algorithms don’t work

• data might not reflect our newly learned behaviour

• RL needs a lot of data, more than real people would handle
• 1k-100k’s dialogues used for training, depending on method

• solution: user simulation
• basically another DS/DM

• (typically) working on DA level

• errors injected to simulate ASR/NLU

• approaches:
• rule-based (frames/agenda)

• n-grams

• MLE policy from data

• combination (best!) 2

(from Milica Gašić’s slides)

Rewards in RL

• Reward function is critical for successful learning

• Handcrafting is not ideal
• domain knowledge typically needed to detect dialogue success

• need simulated or paid users,
can’t learn from users without knowing their task

• paid users often fail to follow pre-set goals

• Having users provide feedback is costly & inconsistent
• real users don’t have much incentive to be cooperative

• Learning/optimizing the rewards is desirable

3NPFL099 L7 2019

Supervised dialogue quality estimation
• turn features → RNN/CNN → success/fail or return (multi-class/regression)

• user & system DA (one-hot)

• belief state (per-slot prob. distributions)

• turn number

• trained from data collected by training a DM
with a user simulator
• using handcrafted rewards

• success/failure & return known

• acc. >93% on 18k dialogues, ~85-90% on 1k dialogues
• binary RNN best (not too huge differences)

• used as reward estimator ≥ handcrafted
• similar performance & doesn’t need known goals

• can learn from real users

• still ultimately based on handcrafted rewards 4

turn features

turn features

(Su et al., 2015)
http://arxiv.org/abs/1508.03386

http://arxiv.org/abs/1508.03386

Turn-level Quality Estimation

Interaction Quality

• turns annotated by experts (Likert 1-5)

• trained model (SVM/RNN)
• very low-level features

• mostly ASR-related

• multi-class classification

• result is domain-independent
• trained on a very small corpus (~200 dialogues)

• same model applicable to different datasets

• can be used in a RL reward signal
• works better than task success

current
turn

last 3
turns

whole
dialogue

(Schmitt & Ultes, 2015; Ultes et al., 2017; Ultes, 2019)
https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/

“reject” = ASR output
doesn’t match in-domain LM

https://doi.org/10.1016/j.specom.2015.06.003
https://doi.org/10.21437/Interspeech.2017-1032
https://aclweb.org/anthology/W19-5902/

Reward as discriminator
• no predefined rewards, learn from data

• known success, but learned reward for it

• success = match user slot values
& provide all requested information

• discriminator: LSTM + max-pooling

• classify 1/0 successful vs. random over whole dialogue

• dialogue manager
• LSTM tracker & feed-forward policy in a single model

• supervised pretraining + GAN-style training
• supervised reward learning = “inverse RL”

• DM: REINFORCE with rewards from discriminator

• discriminator: sample with current DM
& add to human data, train to classify success vs. random

6

dialogue manager

integrated
state tracker

discriminator

(Liu & Lane, 2018) http://arxiv.org/abs/1805.11762

http://arxiv.org/abs/1805.11762

Reward as discriminator

• DSTC2 data

• comparing rewards
• oracle = 1/0 successful/failed

• designed = +1 for each correct slot,
+1 for each informed request (with correct slots)

• pretrained = without the GAN training

• adversarial = full setup with GAN training

• adversarial better than handcrafted

• can also learn from partial user feedback
• counters disadvantage for dialogues different

from previous policy

• use discriminator if feedback is not available

• further slight improvement
7

known
goal only

also
unknown

(Liu & Lane, 2018) http://arxiv.org/abs/1805.11762

does not copy the
actual dialogue success

http://arxiv.org/abs/1805.11762

Turn-level adversarial rewards

• discriminator: policy vs. human-human
• irrespective of success → can be done on turn level

• policy 𝜋 & reward estimator 𝑓 are feed-forward
• ReLU, 1 hidden layer

• still the same process:
• pretrain both 𝜋 & 𝑓 using supervised learning

• sample dialogs using 𝜋

• update 𝑓 to distinguish sampled vs. human-human

• update 𝜋 using rewards provided by 𝑓

• using proximal policy optimization to update 𝜋

• using 2 different user simulators
• provides more diversity

8

(Takanobu et al., 2019) http://arxiv.org/abs/1908.10719

rule-based
feed-forward feed-forward

generated

human-human
from data

2 simulators:
- agenda/rules
- seq2seq

domains
(previous slide)

(this model)

http://arxiv.org/abs/1908.10719

Alternating supervised & RL

• we can do better than just supervised pretraining

• alternate regularly
• start with supervised more frequently

• alleviate sparse rewards, but don’t completely avoid exploring

• later do more RL
• but don’t forget what you learned by supervised learning

• options:
• schedule supervised every 𝑁 updates

• same + increase 𝑁 gradually

• use supervised after RL does poorly (worse than baseline)
• baseline = moving average over history + 𝜆 ⋅ std. error of the average

• agent is less likely to be worse than baseline in later stages of learning

9NPFL099 L7 2019

(Xiong et al., 2018)
http://arxiv.org/abs/1806.06187

http://arxiv.org/abs/1806.06187

Deep Dyna-Q: learning from humans & simulator

• humans are costly, simulators are inaccurate

• ⇒ learn from both, improve simulator as you go
• direct RL = learn from users

• world model learning = improve internal simulator
• supervised, based on previous dialogues with users

• planning = learn from simulator

• DQN, feed-forward policy

• simulator: feed-forward multi-task net
• draw a goal uniformly at the start

• predict actions, rewards, termination

• use 𝐾 simulated (“planning”) dialogues per 1 real

• discriminative DDQ: only use a simulated dialogue
if it looks real (according to a discriminator)

user action

internal simulator = world model

reward terminate?

movie booking:
name, date, # tickets etc.

(Peng et al., 2018) https://www.aclweb.org/anthology/P18-1203
(Su et al., 2018) https://www.aclweb.org/anthology/D18-1416

https://www.aclweb.org/anthology/P18-1203
https://www.aclweb.org/anthology/D18-1416

• for a typical DS, the belief state is too large to make RL tractable

• solution: map state into a reduced space, optimize there, map back

• reduced space = summary space
• handcrafted state features

• e.g. top slots, # found, slots confirmed…

• reduced action set = summary actions
• e.g. just DA types (inform, confirm, reject)

• remove actions that are not applicable

• with handcrafted mapping to real actions

• state is still tracked in original space
• we still need the complete information for accurate updates

Summary Space

11NPFL099 L7 2019

(from Milica Gašić’s slides)

Hierarchical RL

• good for multiple subtasks
• e.g. book a flight to London and a hotel for the same day,

close to the airport

• top-level policy: select subtask 𝑔𝑖

• low-level policy: actions 𝑎𝑗,𝑔𝑖 to complete subtask 𝑔𝑖
• given initiation/termination conditions

• keeps on track until terminal state is reached

• shared by all subtasks (subtask=parameter)

• internal critic (=prob. that subtask is solved)

• global state tracker (integrates information from subtasks)

12NPFL099 L7 2019

top-level Q-network low-level Q-network

(Peng et al., 2017)
http://aclweb.org/anthology/D17-1237

http://aclweb.org/anthology/D17-1237

Feudal RL
• spatial (slot-based) split instead of temporal

• doesn’t need defined subtasks & sub-rewards

• belief state abstraction
• handcrafted (could be neural nets)

• supports sharing parameters across domains

• two-step action selection:
1) master action: “slot-dependent or not”?

• master policy

2) primitive action
a) slot-independent policy

b) slot-specific policies (with shared parameters, distinguished only by belief state)
• chooses max. 𝑄 for all slot-action pairs – involves choosing the slot

• all trained using the same global reward signal

13NPFL099 L7 2019

(Casanueva et al., 2018)
http://arxiv.org/abs/1803.03232

request, confirmhello, inform

inform = “inform over all slots”

http://arxiv.org/abs/1803.03232

Natural Language Generation
• conversion of system action semantics → text (in our case)

• NLG output is well-defined, but input is not:
• DAs
• any other semantic formalism
• database tables
• raw data streams
• user model
• dialogue history

• general NLG objective:
• given input & communication goal
• create accurate + natural, well-formed, human-like text

• additional NLG desired properties:
• variation
• simplicity
• adaptability

14NPFL099 L7 2019

can be any kind of
knowledge representation

e.g. “user wants short answers”

e.g. for referring expressions, avoiding repetition

NLG Subtasks (textbook pipeline)
Inputs

• ↓ Content/text/document planning
• content selection according to communication goal
• basic structuring & ordering

Content plan

• ↓ Sentence planning/microplanning
• aggregation (facts → sentences)
• lexical choice
• referring expressions

Sentence plan

• ↓ Surface realization
• linearization according to grammar
• word order, morphology

Text
15NPFL099 L7 2019

organizing content into sentences
& merging simple sentences

this is needed for NLG
in dialogue systems

typically handled by
dialogue manager

in dialogue systemsdeciding
what to say

deciding
how to say it

e.g. restaurant vs. it

NLG Basic Approaches
• canned text

• most trivial – completely hand-written prompts, no variation
• doesn’t scale (good for DTMF phone systems)

• templates
• “fill in blanks” approach
• simple, but much more expressive – covers most common domains nicely
• can scale if done right, still laborious
• most production dialogue systems

• grammars & rules
• grammars: mostly older research systems, realization
• rules: mostly content & sentence planning

• machine learning
• modern research systems
• pre-neural attempts often combined with rules/grammar
• RNNs made it work much better

16NPFL099 L7 2019

Template-based NLG
• Most common in dialogue systems

• especially commercial systems

• Simple, straightforward, reliable
• custom-tailored for the domain

• complete control of the generated content

• Lacks generality and variation
• difficult to maintain, expensive to scale up

• Can be enhanced with rules
• e.g. articles, inflection of the filled-in phrases

• template coverage/selection rules, e.g.:
• select most concrete template

• cover input with as few templates as possible

• random variation

17NPFL099 L7 2019

(Facebook, 2015)

(Facebook, 2019)

inflection rules

(Alex public transport information rules)
https://github.com/UFAL-DSG/alex

https://github.com/UFAL-DSG/alex

Neural End-to-End NLG:

RNNLG
• Unlike previous, doesn’t need alignments

• no need to know which word/phrase
corresponds to which slot

• Using RNNs, generating word-by-word
• neural language models conditioned on DA

• generating delexicalized texts

• input DA represented as binary vector

• Enhanced LSTM cells (SC-LSTM)
• special part of the cell (gate)

to control slot mentions
18NPFL099 L7 2019

delexicalized (~generated templates)

after lexicalization (templates filled in)

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

(Wen et al, 2015; 2016)
http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

dialogue act
binary representation

dialogue act
binary representation

Loch Fyne is a kid-friendly restaurant serving cheap Japanese food.

name [Loch Fyne], eatType[restaurant], food[Japanese], price[cheap], familyFriendly[yes]

http://aclweb.org/anthology/D15-1199
http://arxiv.org/abs/1603.01232

Seq2seq NLG (TGen)
• Seq2seq with attention

• encoder – triples <DA type, slot, value>

• decodes words (possibly delexicalized)

• Beam search & reranking
• DA classification of outputs

• checking against input DA

19NPFL099 L7 2019

attention model

encoder decoder

output beam

penalty: distance
from input DA

DA classifier

checking against
input DA

(Dušek & Jurčíček, 2016)
https://aclweb.org/anthology/P16-2008

https://aclweb.org/anthology/P16-2008

Problems with neural NLG
• Checking the semantics

• neural models tend to forget / hallucinate (make up irrelevant stuff)

• reranking works currently best to mitigate this, but it’s not perfect

• Delexicalization needed (at least some slots)
• otherwise the data would be too sparse

• alternative: copy mechanisms

• Diversity & complexity of outputs
• still can’t match humans by far

• needs specific tricks to improve this
• vanilla seq2seq models tend to produce repetitive outputs

• Still more hassle than writing up templates

20NPFL099 L7 2019

(Dušek et al., 2019)
http://arxiv.org/abs/1901.07931

open sets, verbatim on the output
(e.g., restaurant/area names)

http://arxiv.org/abs/1901.07931

Delexicalization

• Most models still use it
• preprocess/postprocess step – names to <placeholders>

• generator works with template-like stuff

• Alternative – copy mechanisms (see NLU)

• generate or point & copy from input

• does away with the pre/postprocessing

• Czech & other languages with rich morphology
• basic delexicalization or copy don’t work

• nouns need to be inflected
(unlike English, where they only have 1 form)

• basically another step needed: inflection model
• one option: RNN LM

NPFL099 L7 2019

(Dušek & Jurčíček, 2019)
https://arxiv.org/abs/1910.05298

Baráčnická rychta je na <area>

Baráčnická rychta is in Malá Strana

inform(name=Baráčnická rychta, area=Malá Strana)

Malá Strana nominative
Malé Strany genitive
Malé Straně dative, locative
Malou Stranu accusative
Malou Stranou instrumental

0.10
0.07
0.60
0.10
0.03

lstm lstm lstm lstm

(Shi et al., 2018) http://arxiv.org/abs/1812.02303

https://arxiv.org/abs/1910.05298
http://arxiv.org/abs/1812.02303

Ensembling

• “two heads are better than one” – use more models & aggregate
• common practice in neural models elsewhere in NLP

• base version: same model, different random initializations

• getting diverse predictions: use different models
• different architectures – e.g. CNN vs. LSTM encoder

• different data – diverse ensembling
• cluster training data & train different models on different portions

• clustering & training can be done jointly:
• assign into groups randomly/train 𝑘 models for 1 iteration

• check prob. of each training instance under each model

• reassign to model that predicts it with highest probability

22NPFL099 L7 2019

(Juraska et al., 2018)
http://arxiv.org/abs/1805.06553
(Gehrmann et al., 2018)
https://www.aclweb.org/anthology/W18-6505

iterate until
assignments

converge

http://arxiv.org/abs/1805.06553
https://www.aclweb.org/anthology/W18-6505

Ensembling

• combine predictions from multiple models:
• just use the model that’s best on development data

• won’t give diverse outputs, but may give better quality

• compose n-best list from predictions of all models
• n-best lists are more diverse

• assuming reranking (e.g. checking against input DA)

• vote on the next word at each step / average predicted word distributions
• & force-decode chosen word with all models

• this is rather slow

• might not even work:
• each model may expect different sentence structures, combination can be incoherent

23NPFL099 L7 2019

Hidden Semi-Markov Model
• learning latent “templates” (sequences of phrases)

• discrete, induced during training automatically

• provide (some) interpretation

• can be used to condition generation

• HMM on the level of phrases + word-level RNN
• encoder: max-pooling of item embs. + ReLU

• transitions: softmax of
dot prod. of state embs. + transformed inputs

• lengths: uniform

• emissions: RNN with attention over input items + copy

• training – backward algorithm
• can be end-to-end differentiable

(Wiseman et al., 2018) http://aclweb.org/anthology/D18-1356

output words generated by RNN
– depend on input
+ current phrase (state/template)

phrase/state transition
– independent of word-level realization

input

HMM states

http://aclweb.org/anthology/D18-1356

Hidden Semi-Markov Model
• phrases can be associated with state numbers

• “Viterbi segmentation” on training data

• this provides the interpretation

• generation – can do “template extraction” first
• collect frequent templates (sequences of phrases/states) from training data

• restrict generation to just one/some of them
• constrained beam search

(within phrases only, state transitions are given)

• allows for diversity
• choosing different templates each time

• allows checking what slots are generated

• outputs not as fluent as plain seq2seq

25NPFL099 L7 2019

55 – 59 – 12 – 3 – 50 – 1 -17 – 26 – 16 – 2 – 8 – 25 – 40 –
53 – 19 – 23 – 2

name[_], type[_], rating[_], food[_], area[_], price[_]

(Wiseman et al., 2018) http://aclweb.org/anthology/D18-1356

http://aclweb.org/anthology/D18-1356

Two-step: content selection & realization

• explicit content planning step (selection & ordering)
• designed for sports report generation – longer texts, selection needed

• records (team / entity / type / value) → summary

• record encoder: feed-forward + attention gate

• content selection: pointer network
• decode records with top attention

• generation: pointer-generator net
• generating/copying tokens

• attending over selected records

• two-stage training
• selected records extracted

automatically from texts

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

col1 col2 col3 col4

input
sigmoid

http://arxiv.org/abs/1809.00582

Two-step: content selection & realization

27NPFL099 L7 2019

(Puduppully et al., 2019) http://arxiv.org/abs/1809.00582

source statistics target text
content plan
• automatic conversion
• content selection is done here

(shown for 1st sentence)

team ID – home/visiting

http://arxiv.org/abs/1809.00582

Two-step: content planning & realization
• create explicit text plans by aggregating inputs

• RDF triples → list of trees (one per sentence)
• joining + ordering (←→)

• create all possibilities + rank
• product of experts for given features:

• individual arrow directions

• % of reversed

• sentence split + # of triplets in each

• relation bigrams (e.g. p(capital|residence))

• can select the best plan, or a random highly-rated one
• most plans beyond a certain threshold are fine

• training plans extracted automatically
• text is consistent with a plan if it has the right sentence split & assignment + order of entities

• relations are not checked (this is much harder than for entities)

• sentence-by-sentence generation: pointer-generator net
• more faithful than generating everything in one step 28

(Moryossef et al., 2019) http://arxiv.org/abs/1904.03396

John | residence | London
John | occupation | bartender
England | capital | London

John lives in London, the capital of England,
and works as a bartender.

input RDF

text planΠ of cond.
distributions

http://arxiv.org/abs/1904.03396

Realizing from Trees

• Input: tree-shaped MRs
• hierarchy: discourse relation ↓ dialogue act ↓ slot

• can be automatically induced, much flatter than usual syntactic trees
• discourse connectives, sentence splits

• could potentially use other tree-like structures (see previous slide)

• Output: annotated responses
• generate trees parallel to MRs – more guidance for the generator

• less ambiguity, the MR shows a sentence plan as well

• can use standard seq2seq, with linearized trees

(Balakrishnan et al., 2019)
http://arxiv.org/abs/1906.07220

Parker is not expecting any snow, but today there’s a very likely chance of
heavy rain showers and it’ll be partly cloudy

http://arxiv.org/abs/1906.07220

Realizing from Trees

NPFL099 L7 2019

(Balakrishnan et al., 2019) http://arxiv.org/abs/1906.07220
(Rao et al., 2019) https://www.inlg2019.com/assets/papers/10_Paper.pdf

OK

this token will be disallowed

• Consistency checks – constrained decoding
• when decoding, check any non-terminal against the MR

• disallow any opening tokens not covered by MR

• disallow any closing brackets until all children from MR are generated

• Tree-aware model
• n-ary TreeLSTM encoder – copies the input MR tree structure bottom-up

• LSTM conditioned not on just previous, but all child nodes

• all LSTM equations sum 𝑁 nodes (padded with zeros for fewer children)

• Tree-aware decoder
• nothing special, just use both current & previous hidden state in final prediction

(Luong attention + previous hidden state)
• previous state is often the parent tree node

• all of this improves consistency & data-efficiency

(Luong et al., 2015) http://arxiv.org/abs/1508.04025

http://arxiv.org/abs/1906.07220
https://www.inlg2019.com/assets/papers/10_Paper.pdf
http://arxiv.org/abs/1508.04025

Generating trees

• Adapting seq2seq to produce real (not just linearized) trees
• generating tree topology along with the output

• using 2 LSTM decoders:
• rule RNN

• produces CFG rules

• applies them top-down, left-to-right
(expand current non-terminal)

• word RNN
• turned on upon seeing a pre-terminal

• generates terminal phrase word-by-word

• ends with <eop> token, switch back to rule RNN

• rule RNN’s state is updated when word RNN generates

• can work for any type of trees
• but found to work best for binary trees without linguistic information

(Wang et al., 2018)
https://www.aclweb.org/anthology/D18-1509/

pre-terminals

generated tree

decoding process

w
o

rd
 R

N
N

ru
le

 R
N

N

https://www.aclweb.org/anthology/D18-1509/

Fact grounding
• NLG errors are often caused by data errors

• ungrounded facts (← hallucinating)

• missing facts (← forgetting)

• domain mismatch

• noise (e.g. source instead of target)
• just 5% untranslated stuff kills an NMT system

• Easy-to-get data are noisy
• web scraping – lot of noise, typically not fit for purpose

• crowdsourcing – workers forget/don’t care

• Cleaning improves situation a lot
• can be done semi-automatically up to a point

• 94-97% semantic error reduction on cleaned E2E restaurant data

• cleaning RotoWire sports report data improves accuracy

(Dušek et al., 2019)
https://arxiv.org/abs/1911.03905

(Khayrallah & Koehn, 2018)
https://www.aclweb.org/anthology/W18-2709

(Wang et al., 2019)
https://www.inlg2019.com/assets/papers/32_Paper.pdf

https://arxiv.org/abs/1911.03905
https://www.aclweb.org/anthology/W18-2709
https://www.inlg2019.com/assets/papers/32_Paper.pdf

Summary
Policy learning

• RL rewards are critical for good performance, can be learned
• supervised, adversarial / dialogue- or turn-level

• RL & supervised: warm start / supervised after RL does bad (gets rarer over time)

• user simulators: good to use more & mix with humans

• multiple tasks: hierarchical / feudal RL

NLG: system DA → text
• templates work well, seq2seq & co. is the best data-driven

• problems: hallucination, not enough diversity

• attempted fixes:
• delexicalization

• ensembling

• two-step: content planning & realization (simplifying the task)

• tree-based approaches (more supervision)

• fixing training data 33

Thanks
Contact us:

odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz
(or on Slack)

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:
• Matiisen (2015): Demystifying Deep Reinforcement Learning: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
• Karpathy (2016): Deep Reinforcement Learning – Pong From Pixels: http://karpathy.github.io/2016/05/31/rl/
• David Silver’s course on RL (UCL): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
• Sutton & Barto (2018): Reinforcement Learning: An Introduction (2nd ed.): http://incompleteideas.net/book/the-book.html
• Milan Straka’s course on RL (Charles University): http://ufal.mff.cuni.cz/courses/npfl122/
• Gatt & Krahmer (2017): Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

http://arxiv.org/abs/1703.09902
• My PhD thesis (2017), especially Chapter 2: http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

34NPFL099 L7 2019

Labs today
14:00 SW1

Projects updates

mailto:odusek@ufal.mff.cuni.cz
mailto:hudecek@ufal.mff.cuni.cz
http://ufal.cz/npfl099
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
http://karpathy.github.io/2016/05/31/rl/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://incompleteideas.net/book/the-book.html
http://ufal.mff.cuni.cz/courses/npfl122/
http://arxiv.org/abs/1703.09902
http://ufal.mff.cuni.cz/~odusek/2017/docs/thesis.print.pdf

