Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

6. Dialogue Policy

Ondrej Dusek & Vojtéch Hudecek
http://ufal.cz/npfl099
7.11.2019

http://ufal.cz/npfl099

Dialogue Management
 Two main components: Q ° o o O ° o o
* State traCking (laSt lectu re) BELIEF TRACKING ? POLICY

 Action selection/Policy (today) inital turn PAST curent FurURE il turn

e action selection - deciding what to do next
* based on the current belief state - under uncertainty
» following a policy (strategy) towards an end goal (e.g. book a flight)
 controlling the coherence & flow of the dialogue
* actions: linguistic & non-linguistic

° DM/pOlICy should: / Did you say Indian or Italian?

* manage uncertainty from belief state
* recognize & follow dialogue structure
. plan actions ahead towards the goal < e.g. ask for all information you require

NPFLO099 L6 2019 2

(from Milica Gasic¢’s slides)

- follow convention, don’t be repetitive

Action Selection Approaches FX

* Finite-state machines
 simplest possible
* dialogue state is machine state

* Frame-based (VoiceXML)
* slot-filling + providing information - basic agenda
* rule-based in essence

* Rule-based
* any kind of rules (e.g. Python code)

* Statistical
* typically using reinforcement learning

NPFLO099 L6 2019 3

DM with supervised learning

* Action selection ~ classification - use supervised learning?

* set of possible actions is known
* belief state should provide all necessary features

* Yes, but...
* You’d need sufficiently large human-human data - hard to get
* human-machine would just mimic the original system
* Dialogue is ambiguous & complex
 there’s no single correct next action- multiple options may be equally good
* but datasets will only have one next action
« some paths will be unexplored in data, but you may encounter them

« DSs won’t behave the same as people
* ASR errors, limited NLU, limited environment model/actions
» DSs should behave differently - make the best of what they have

NPFLO099 L6 2019

DM as a Markov Decision Process

* MDP = probabilistic control process
* modelling situations that are partly random, partly controlled

agent in an environment:

* hasinternal state s; € § (~ dialogue state)

 takes actions a; € A (~ system dialogue acts)

* actions chosen according to policy m: § = A

» getsrewardsr; € R & state changes from the environment
rewards are typically handcrafted

* very high positive for a successful dialogue (e.g. +40)

* high negative for unsuccessful dialogue (-10)

» small negative for every turn (-1, promote short dialogues) > pgent |

» Ngent |
Markov property - state defines everything state | [rewarc

action
S, R, A,

* no other temporal dependency R f—
policy may be deterministic or stochastic <2 Environment]47

* stochastic: prob. dist. of actions, sampling (Sutton & Barto, 2018) .

grey =observed

Partially-observable MDPs i -inomened e

* POMDPs - belief states instead of dialogue states
* true states (“what the user wants”) are not observable
 observations (“what the system hears”) depend on states
* belief - probability distribution over states
* can be viewed as MDPs with continuous-space states

observation
reward

* All MDP algorithms work... S i ot e
* if we quantize/discretize the states e
* use grid points & nearest neighbour approaches
* this might introduce errors / make computation complex

* Deep RL typically works out of the box
 function approximation approach, allows continuous states

NPFLO99 162019 https://en.wikipedia.org/wiki/Voronoi diagram

https://en.wikipedia.org/wiki/Voronoi_diagram

Reinforcement learning

* RL =finding a policy that maximizes long-term reward
* unlike supervised learning, we don’t know if an action is good
* immediate reward might be low while long-term reward high

alternative - episodes: only count to T when we encounter a terminal state
- (e.g. 1 episode = 1 dialogue)

0.0)

accumulated .

— ‘ .

long-term R = z Y Tet+q y € [0,1] = discount factor
t=0

reward (immediate vs. future reward trade-off)

Y < 1:R;isfinite (if r is finite)
vy = 0: greedy approach (ignore future rewards)

e state transition is stochastic > maximize expected return

E[R;|1,sg] «— expected R, if we start from state s, and follow policy 7

NPFLO099 L6 2019 7

State-value Function

* Using return, we define the value of a state s under policy : V™ (s)
» Expected return for starting in state s and following policy

* Returnisrecursive: Ry =73.1 + VY - Reyq
* This gives us a recursive equation (Bellman Equation):

| ad |
V(s) = E [Z Yeriaalm, so = s] =) n(s,a) Z p(s'ls,@)(r(5,0,5) + YV(s")
t=0 aEA T s'es I
. o expected
prob. of choosing transition ;- adiate
a from s underm probs. reward

actions that look best for the next step

* V" (s) defines a greedy policy:

v
| ¥ora Sfora = argmaxzs s p(s'ls, a)(r(s,a,s") +yV™(s"))
n(s,a) =

NPFL099 L6 2019 0 otherwise 8

—

Action-value (Q-)Function

* Q™ (s, a) -return of taking action a in state s, under policy
« Same principle as value V™(s), just considers the current action, too
 Has its own version of the Bellman equation

| e l
0"(s,0) = E [2 YTl o = 5,00 = a] = Y pls@)|r(sas)+y) Qs a)n(s',a)
t=0

s'eS a'eA

° Qn(S, Cl) also defines a greedy pO“CyZ again, “actions that look best for the next step”

—

simpler: no need to enumerate s’,
no need to know p(s’|s,a) and r(s,a,s’)

#ofa's

0 otherwise \

—

NPFL099 L6 2019 but Q function itself tends to be more complex than V

fora = argmaxQ™(s,a) «~—
n(s,a) == 7 a

Optimal Policy in terms of V and Q

» optimal policy 7™ - one that maximizes expected return [E[R;|m]
* V™ (s) expresses E[R;|m] > useitto define”

- 7* is a policy such that V™' (s) = V™ (s) Vr',Vs € S
e r* always exists in an MDP (need not be unique)
* " has the optimal state-value function V" (s) := max V" (s)
VA

« " also has the optimal action-value function Q*(s,a) == max Q" (s, a)
T

» greedy policies with V*(s) and Q* (s, a) are optimal
* we can search for either ™, V*(s) or Q*(s, a) and get the same result
* each has their advantages and disadvantages

NPFLO099 L6 2019 10

RL Agent Taxonomy

* Quantity to optimize:
* value function - critic
 policy - actor
* both - actor-critic

 Environment model:

« model-based (assume known p(s’|s,a), (s, a,s))

* model-free (don’t assume anything, sample)
* thisis where using Q instead of V comes handy

(from David Silver’s slides)

NPFLO99 L6 2019 11

* How to optimize:

* dynamic programming - find the exact solution from Bellman equation
* iterative algorithms, refining estimates
* expensive, assumes known environment

* Monte Carlo learning - learn from experience
* sample, then update based on experience

« Temporal difference learning - like MC but look ahead (bootstrap)
» sample, refine estimates as you go

* Sampling & updates:
 on-policy - improve the policy while you’re using it for decisions
« off-policy - decide according to a different policy

NPFLO099 L6 2019

Deep Reinforcement Learning

° (13 M b
Exactly the same as plalp RL o Agont]
* agent & environment, actions & rewards state | | rewar I

R, A

* “deep” = part of the agent is handled by a NN L 2 Envionment)
* value function (typically Q) “
* policy

* function approximation approach
* (values/ policy are represented as a parameterized function Q(s, a; 8) / n(s; 8)
* enumerating in a table would take up too much space, be too sparse
e the parameters 6 are optimized

* assuming huge state space
* much fewer weights than possible states
» update based on one state changes many states

* needs tricks to make it stable

]

A

(Sutton & Barto, 2018)

13

Q-Learning

* temporal difference - update Q asyou go anypolicy that chooses all
. . . actions & states enough times
» off-policy - directly estimates best Q" i converge to Q*g(s, 2):

* regardless of policy used for sampling we need to explore to converge Jw
* choose learning rate a, initialize Q arbitrarily

—

» foreach epiSOde: argmax Q (s, a) with probability 1 — €
* choose initial s a = o v
- for each step: l random action with probability €

* choose a from s according to e-greedy policy based on Q

State: S’

* take action a, observe observe reward r and state s’ e L S I AT A
c Q(s,a) «(1—a)-0(s,a) +« (r +y-maxQ(s’, a'))

a
° :; — f;, \ . J

update uses best a’, regardless of current policy:
a’ is not necessarily taken in the actual episode

TD: moving estimates
https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfadf3ce
Animated example for SARSA & Q-Learning: https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

NPFLO099 L6 2019

https://towardsdatascience.com/td-in-reinforcement-learning-the-easy-way-f92ecfa9f3ce
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

(Mnih et al., 2013, 2015)

D e e - N etwo rks http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

* Q-learning, where Q function is represented by a neural net

» Causes of poor convergence in basic Q-learning with NNs:

a) SGD is unstable

b) correlated samples (data is sequential)

c) TDupdates aim at a moving target (using Q in computing updates to Q)
d) scale of rewards & Q values unknown - numeric instability

* Fixesin DQN:
a) minibatches (updates by averaged n samples, not just one)
b) experience replay
c) freezing target Q function} cool

d) clipping rewards -
common NN tricks

NPFLO099 L6 2019 15

http://arxiv.org/abs/1312.5602
http://www.nature.com/articles/nature14236

« Experience replay - break correlated samples “generate your own
* run through some episodes (dialogues, games...) supervised'training data”
store all tuples (s, a,r’,s") in a buffer ——

for training, don’t update based on most recent moves - use buffer
* sample minibatches randomly from the buffer

overwrite buffer as you go, clear buffer once in a while
only possible for off-policy

v / 1.0 2
loss = E(5 4+ s"ebur [(7‘ +)/HZLE}XQ (s',a’;0) — Q(s, a; 9))]

* Target Q function freezing

» fix the version of Q function used in update targets
* have a copy of your Q network that doesn’t get updated every time

* oncein awhile, co our current estimate over
» COPYY “——_ “have afixed target,

NPFL099 L6 2019
like in supervised learning”

DQN algorithm 7

 initialize @ randomly
* initialize replay memory D (e.g. play for a while using current Q(9))
» repeatoverall episodes:
» forepisode, setinitial state s
» selectaction a from e-greedy policy based on Q(8)
* take a, observe reward r’ and new state s’
e store(s,a,r’,s’)inD
* s« 5§ =
often ——* ONCe every k steps:
« sample a batch B of random (s,a,r’,s")’sfrom D “replay”

_ 21 [a.k.a.training
* update 8 usingloss E(, ;.7 s1)ep [(r’ +y nzle,le (s’,a’;0) —Q(s,a; 0))]

rarely —»* once every A steps:
c 06<80

—

_ storing experience

—

NPFLO099 L6 2019 17

input: Atari 2600 screen, FK:

D Q N fo r Ata ri downsized to 84x84 (grayscale)

4 last frames

(Mnih et al., 2015)

Convolution Convelution Fully connected Fully connected
- - - -

* 4-layers:

| !
« 2x CNN . Y
 2x fully connected with ReLU activations Z o o *
* Another trick: . §
 output values for all actions at once - . .
« ~vector Q(s) instead of Q(s,a) —
* aisnotfed as a parameter
* faster computation values for all actions
* Learns many games at human level doaw oaw) v dean) (joystick moves)
* with the same network structure T T
* no game-specific features /\w/\ - /\/\
https://youtu.be/V1eYniJORnk?t=18 T T T o |
NPFL099 L6 2019 L ! (from David Silver'sslides) 18

https://youtu.be/V1eYniJ0Rnk?t=18

(Lietal., 2017) !
DQN for Dialogue Systems o
(Lipton et al., 2018)

 DON can drive action selection nttps://ariv.org/abs/ 160805061

* warm start needed to make the training actually work:
* pretrain the network using supervised learning o e
- replay buffer spiking - initialize using simple rule-based policy . I |

* so there are at least a few successful dialogues

» the RL agent has something to catch on o
5 —
2 i
emc | . error model controller 35 I
ru le_based Simulator 4. user action :Tn-fu-s;-E-rr:)r-l 5. user action (w/ error) (S|mu1at|ng ASR/N LU nO|Se) %? i '
withagenda | T ° Rue ban
running on DA level movie ticket booking:
\ btk better than rule-based
User Sim. Agent L E Update w/ User i
| Step [— | Add Exp. |[e.nextstate el
AR wrmmzzniin) el | cetstate |
DQ!\I - feed-forward, E:Gemction -~ | replay memory
1 hidden ReLU layer « H el R initialized using a
1 Update w/ Agent, .]
3. (updated) agent action ———— Slmple handcrafted pOIICy

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383
https://arxiv.org/abs/1703.01008
https://github.com/MiuLab/TC-Bot
https://arxiv.org/abs/1608.05081

(Lipton etal.,2018) https://arxiv.org/abs/1608.05081

BBQ - Bayes-by-Backprop Q-NetworksFK

* better exploration than e-greedy - explore uncertain regions

* Bayes-by-Backprop - prob. dist. over network weights
« start from prior p(8), learn posterior p(8|D) for training data D

 posterior approximated by Gaussians g(8|w), each 8;~N (u;, ;)
* now learning w; = {(u;, pi)} where o; = log(1 + exp p;), to keep g; positive
* VAE-style: minimizing KL divergence between g and p, reparameterization trick

* using BB to represent DQN + posterior (Thompson) sampling
 actions sampled acc. to posterior prob. they’re optimal in current state
* justsample 6; from g, then choose a; = argmax, Q(s;, a; 6;)

* no need to sample for the target network, just use u
» faster, actually more stable

NPFL099 L6 2019 20

https://arxiv.org/abs/1608.05081
https://arxiv.org/abs/1608.05081

(Lipton et al., 2018)

B B Q p e rfo r m a n Ce https://arxiv.org/abs/1608.05081

MLP with 2 hidden layers, ReLU, width=256

movie booking task

one-hot dialogue state representation (268 dim)

39 actions (basic hello(), deny(), thanks() etc. + inform/request for each slot)

(enhanced rewards with surprisal)

l

0.6
. —— BBQN-VIME-MAP
no sampling from I e
—>» —— BBQN-MAP
frozen network 05 e
DQN-VIME-MAP
Sa m pll ng from 3 DQN-VIME-MC

- = DQN-Bootstrap
= = DQN-Boltzmann

frozen network g
—"("’:“""J-*’\"'

. -
AN
'v‘:,d‘ P
Lo

susgess rate
o

J N) A\ o »

o - ;\';" 7, QI,[QP:,‘\ 7\
. v

S e AR O LS A

0.2

e-greedy

0.1

0.0
50 100 150 200 250 300 350 400

NPFL099 L6 2019

21

https://arxiv.org/abs/1608.05081

Re C u rre nt Q— N Etwo rks Emzt?:?:(;/iri?b.i?gj;’bi(;igz)e.02560 FR
szi(z;m DA (masked out) Q for DB actions
- Joint dialogue tracking & action selection actions ™~ J' T
« actions are either system DAs or updates to state oo o fo o Eob'éo)“@:;‘;j\
P00 @00 @00 @oo

» forced to alternate action types by masking
* rewards from DB for narrowing down selection

* Models the Q-network as a LSTM /

 orrather LSTM underlying multiple MLPs
* LSTM maintains internal state representation

DB observation

_ . user observation
previous action

e 1 MLP for system DAs R’
* 1 MLP per slot (action=select value X) o e oo
av user rewards, r‘” db rewards, o h}:DOIhOSiS action,
g ™
NPFL099 L6 2019 g\ Environment f—%

http://arxiv.org/abs/1606.02560

Policy Gradients

* instead of value functions, train a network to represent the policy
* allows better sampling - acc. to actual stochastic policy

 performance metric: J(8) = V™0 (s,)
» expected return in starting state when following g
* we want to directly optimize this using gradient ascent

Policy Gradient Theorem:
« expresses VJ(60) intermsof Vrr(als, 6)])

VJ(6) %) u(s)) Q"(s,)Vn(als,) = Fr | Y Q"(s,a)Vn(als,)

L a _

\ J
|

u(s) is state probability under i - this is the same as expected value E;

23

NPFL099 L6 2019

(Sutton & Barto, 2018; p. 327f) "
\
/

REINFORCE: Monte Carlo Policy Gradients ™A

» direct search for policy parameters by stochastic gradient ascent

* looking to maximize performance J(8) = V™6 (s,)
this will guarantee

* choose learning rate a, initialize 8 arbitrarily the right state
distribution/frequency u(s)
* loop forever:

* generate an episode sy, ag, 11, ..., ST—1,A7_1, T'T, following (- | -, 9)
« foreacht =0,1..T:0 « 0 + ay*R.VInn(a.|s;, 0)
\ 4 J

| 1 \ this is stochastic V/(0):

returns R, = Y _tyt-ty, , /
variant - advantage instead of returns: T Al T * from policy gradient theorem
discounting a baseline * using smgle anctlon sample a;
b(s) (predicted by any mod'el)\ a good b(s) is actually V(s) * expressing ¢ oy Ry (under £r)
A; = R; — b(s;) instead of R; * usingVinx = —

gives better performance

24

Policy Gradients (Advantage) Actor-Critic UF\RL

* REINFORCE + V' approximation + TD estimates - better convergence
« differentiable policy m(als, 8)

« differentiable state-value function parameterization V (s, w) ®)
* two learning rates a?, a¥ f
* loop forever: W N Jaw
* setinitial state s for the episode NS
« for each step t of the episode: st

» sample action a from (- |s, @), take a and observe reward r and new state s’
O undat « compute advantage A « r +yV(s',w) — V(s,w)
rupdate 0.t P
after each step update\B — 0+ a’y"AVinn(als, 9)},\w —w+a" - AVV (s, w)
* s« s ' V
actor (policy update) critic (value function update)
same as REINFORCE, except:

« we use (s, w) as baseline

NPFL099 L6 2019 * risused instead of R; (TD instead of MC) (Suetal., 2017)
http://arxiv.org/abs/1707.00130

25

http://arxiv.org/abs/1707.00130

ACER: Actor-Critic with Experience Replay

» off-policy actor-critic - using experience replay buffer
* same approach as Q learning

» since ER buffer has past experience with out-of-date policies (using “old” 8),
it’s considered off-policy (behaviour policy mz # target policy my)
 sampling behaviour from my is biased w. r. t. g
 correcting the bias - importance sampling: multiply by importance weight p; = %
plat|St

 all updates are summed over batches & importance-sampled

ﬂe(atlst)A‘]

. objective: Et[ng(at|5t) g

using advantage instead of returns

T batch average importance sampled

(Wangetal.,2017) http://arxiv.org/abs/1611.01224
NPFL0O99 L6 2019 (Su et al., 2017) http://arxiv.org/abs/1707.00130 26
(Weisz et al.,2018) http://arxiv.org/abs/1802.03753

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753

(Wangetal., 2017) http://arxiv.org/abs/1611.01224
(Suetal., 2017) http://arxiv.org/abs/1707.00130
(Weisz et al.,2018) http://arxiv.org/abs/1802.03753

TRACER: Trust-Region ACER

 basic ACER may be unstable/slow to learn
e prone to excessively large updates e
- need to set learning rates low

* high learning rate = unstable, high variance
* low learning rate = too slow

trust region

» limit on KL-divergence change b/t updated policy 6 & average policy 6
» 0 is a moving average of past policies: 8 « a6 + (1 — a)8

f d
* modified policy gradient g is defined as: min, % ||V8 —J| |z Z‘i’f}';fensfe‘fre
so that VKL[mz(s:)||me (s)fg<é¢ (square of L2)

* i.e.the closest you can get to the gradient,
but don’tincrease KL between the average and new policy too much

« quadratic programming, has closed solution

NPFL099 L6 2019 S . 27
https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1707.00130
http://arxiv.org/abs/1802.03753

(Schulman et al.,2017) http://arxiv.org/abs/1707.06347

Proximal Policy Optimization

* Changing the objective to be more like trust-region |

» without the need to adjust gradients & do the optimization - much higher
* Basically clipping the objective |

. : _ mo(a¢|St) -

definer.(0) = 7a(@clSs) ratio to old params , S
« starting from E, [ne(atlst) At] = E.[r.(6)4;] (see ACER) o optimization
mg(aAe|St) . j / ¢ starting
. P . A . A € 1
* using E; [mln (rt (6)A;, chp[rt (H)At]l_e)] § /

LCLIP

]\ J :
Y Y |
‘ original clipped to stay close to 1 \

minimum - lower bound on the unclipped objective

NPFL099 L6 2019 28

http://arxiv.org/abs/1707.06347

* Action selection = deciding what to do next
* following a policy

* Approaches:
* FSM, Frames, Rule-based
* Machine learning (RL better than supervised)

* RL - agentin an environment, taking actions, getting rewards
 optimizing value function (V/Q) or policy
learning on-policy or off-policy (act by the policy you learn/not)

DQN - optimizing Q function with a network
* batches, freezing, experience replay

Policy gradients - optimizing policy
 Actor-Critic - optimizing policy & value function
« ACER, PPO

NPFLO099 L6 2019

Thanks J=—1.

Contact us:
odusek@ufal.mff.cuni.cz Labs today

hudecek@ufal.mff.cuni.cz 14:00 SW1
(oron Slack) Projects updates

Get these slides here:
http://ufal.cz/npfl099

References/Inspiration/Further:

Sutton & Barto (2018): Reinforcement Learning: An Introduction (2"d ed.): http://incompleteideas.net/book/the-book.html
Nie et al. (2019): Neural approaches to conversational Al: https://arxiv.org/abs/1809.08267

Filip JurciCek’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/

Milica Gasic’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html

Heidrich-Meisner et al. (2007): Reinforcement Learning in a Nutshell: https://christian-igel.github.io/paper/RLiaN.pdf
Young et al. (2013): POMDP-Based Statistical Spoken Dialog Systems: A Review:
http://cs.brown.edu/courses/csci2951-k/papers/youngl3.pdf

30

mailto:odusek@ufal.mff.cuni.cz
mailto:hudecek@ufal.mff.cuni.cz
http://ufal.cz/npfl099
http://incompleteideas.net/book/the-book.html
https://arxiv.org/abs/1809.08267
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://christian-igel.github.io/paper/RLiaN.pdf
http://cs.brown.edu/courses/csci2951-k/papers/young13.pdf

