
Statistical Dialogue Systems
NPFL099 Statistické Dialogové systémy

5. Dialogue State Tracking
Ondřej Dušek & Vojtěch Hudeček

http://ufal.cz/npfl099

31. 10. 2019

http://ufal.cz/npfl099

Dialogue State Tracking

• Dialogue management consist of:
• State update ← here we need DST

• Action selection (later)

• Dialogue State needed to remember what was said in the past
• tracking the dialogue progress

• summary of the whole dialogue history

• basis for action selection decisions

2NPFL099 L5 2019

U: I’m looking for a restaurant in the city centre.
S: OK, what kind of food do you like?
U: Chinese.

❌ S: What part of town do you have in mind?
❌ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the west part of town.
✔ S: Sure, the Golden Dragon is a good Chinese restaurant. It is located in the city centre.

Dialogue State Contents
• “All that is used when the system decides what to say next”

• User goal/preferences ~ NLU output
• slots & values provided (search constraints)
• information requested

• Past system actions
• information provided

• slots and values
• list of venues offered

• slots confirmed
• slots requested

• Other semantic context
• user/system utterance: bye, thank you, repeat, restart etc.

3NPFL099 L5 2019

U: Give me the address of the first one you talked about.
U: Is there any other place in this area?

S: OK, Chinese food. […]

S: What time would you like to leave?

(Henderson, 2015)

Problems with Dialogue State

• NLU is unreliable
• takes unreliable ASR output

• makes mistakes by itself – some utterances are ambiguous

• output might conflict with ontology

• Possible solutions:
• detect contradictions, ask for confirmation

• ignore low-confidence NLU input
• what’s “low”?

• what if we ignore 10x the same thing?

• Better solution: make the state probabilistic – belief state

4NPFL099 L5 2019

NLU: 0.3 inform(type=restaurant, stars=5)

only hotels have stars!

ASR: 0.5 I’m looking for an expensive hotel
0.5 I’m looking for inexpensive hotels

Belief State

• Assume we don’t know the true current dialogue state 𝑠𝑡
• states (what the user wants) influence observations 𝑜𝑡 (what the system hears)

• based on observations 𝑜𝑡 & system actions 𝑎𝑡, we can estimate
a probability distribution 𝑏 𝑠 over all possible states – belief state

• More robust than using dialogue state directly
• accumulates probability mass over multiple turns

• low confidence – if the user repeats it, we get it the 2nd time

• accumulates probability over NLU n-best lists

• Plays well with probabilistic dialogue policies (POMDPs)
• but not only them – rule-based, too

5NPFL099 L5 2019

Belief State

6NPFL099 L5 2019

no probability
accumulation

(1-best, no state)

accumulating over
NLU n-best list
(still no state)

accumulating over
NLU n-best + turns

this is what we need
(=belief state)

(from Milica Gašić’s slides)

Basic Discriminative Belief Tracker
• Partition the state by assuming conditional independence

• simplify – assume each slot is independent:
• state 𝐬 = [𝑠1, … 𝑠𝑁], belief 𝑏 𝐬𝑡 = ς𝑖 𝑏(𝑠𝑡

𝑖)

• Always trust the NLU
• this makes the model parameter-free

• …and basically rule-based

• but very fast, with reasonable performance

7NPFL099 L5 2019

𝑏 𝑠𝑡
𝑖 =

𝑠𝑡−1
𝑖 ,𝑜𝑡

𝑖

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 𝑏(𝑠𝑡−1
𝑖)update

rule

discriminative
model

𝑝 𝑠𝑡
𝑖 𝑎𝑡−1

𝑖 , 𝑠𝑡−1
𝑖 , 𝑜𝑡

𝑖 =

𝑝(𝑜𝑡
𝑖) if 𝑠𝑡

𝑖 = 𝑜𝑡
𝑖 ∧ 𝑜𝑡

𝑖 ≠🤫

𝑝 𝑜𝑡
𝑖 if 𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖 ∧ 𝑜𝑡

𝑖 =🤫

0 otherwise

𝑏 𝑠𝑡
𝑖 =

𝑝 𝑠𝑡
𝑖 =🤫 𝑝(𝑜𝑡

𝑖 =🤫) if 𝑠𝑡
𝑖 =🤫

𝑝 𝑜𝑡
𝑖 = 𝑠𝑡

𝑖 + 𝑝 𝑜𝑡
𝑖 =🤫 𝑝(𝑠𝑡

𝑖 = 𝑠𝑡−1
𝑖) otherwise

user silent about slot 𝑖

substitution

the belief state update rule is deterministic

(Žilka et al., 2013)
http://www.aclweb.org/anthology/W13-4070

http://www.aclweb.org/anthology/W13-4070

Basic Feed-forward Tracker

• a simple feed-forward network
• input – features (w.r.t. slot-value 𝑣 & time 𝑡)

• SLU score of 𝑣

• n-best rank of 𝑣

• user & system act type

• … – domain-independent, low-level NLU outputs

• 3 tanh layers

• output – softmax (= probability distribution over values)

• static – does not model dialogue as a sequence
• uses a sliding window – current time 𝑡 + few steps back + ∑previous

8NPFL099 L5 2019

(Henderson et al., 2013)
https://aclweb.org/anthology/W13-4073

(imagine this
part for all 𝑣’s)

https://aclweb.org/anthology/W13-4073

Basic RNN Tracker

• plain sigmoid RNN with a memory vector
• not quite LSTM/GRU, but close

• memory updated separately, used in belief update

• does not need NLU
• turn features = lexicalized + delexicalized n-grams

from ASR n-best list, weighted by confidence

• delexicalization very harsh: <slot> <value>
• you don’t even know which slot it is

• this apparently somewhat helps the system generalize across domains

• dynamic – explicitly models dialogue as sequence
• using the network recurrence

9NPFL099 L5 2019

turn featsmemory belief

σ

belief’

softmax

memory’

σ

+

(Mrkšić et al., 2015)
http://arxiv.org/abs/1506.07190

http://arxiv.org/abs/1506.07190

Neural/Rule Hybrid

• explicit update over belief
• per-slot model (separate for each slot)

• simple update rule 𝑅
• for a value: add 𝑎 ⋅ current NLU confidence, normalize

• differentiable, can be trained end-to-end

• trained models 𝐹, 𝐺 provide 𝑎
• 𝐹 is generic LSTM, 𝐺 is value specific feed-forward

• needs an NLU, but postprocesses it
• input & output of tracker NLU step

= prob. dist. of informs over slot values in current turn

• generic & specific part again

(Vodolán et al., 2017)
http://arxiv.org/abs/1702.06336

𝑎 = “transition coefficients”
(control how much
probability mass is moved)

differentiable update rule

belief (prob. dist.
over values)

n-grams from
ASR n-best +

prev. system DAs

previous belief
– for carry-over

delex. ASR n-grams
base NLU output
(prob. dist. of informs
over slot values)

NLU

this part is
mostly for
overriding
frequent ASR
errors

feed-forward
only

this can generalize
creates scores with LSTM
– good for null value

N
LU

http://arxiv.org/abs/1702.06336

Incremental Recurrent Tracker
• simple: LSTM over words + classification on hidden states

• runs over the whole dialogue history (user utterances + system actions)

• classification can occur after each word, right as it comes in from ASR

• also dynamic/sequential

• also doesn’t use any NLU
• infrequent values are delexicalized (otherwise it can’t learn them)

• slightly worse performance – possible causes:
• only uses ASR 1-best

• long recurrences (no hierarchy)

11NPFL099 L5 2019

LSTM

ReLU → softmax
(per slot)

(Žilka & Jurčíček, 2015)
https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

https://dl.acm.org/citation.cfm?id=2955040
http://arxiv.org/abs/1507.03471

NBT

12NPFL099 L5 2019

(Mrkšić et al., 2017)
https://www.aclweb.org/anthology/P17-1163

https://www.aclweb.org/anthology/P17-1163

NBT

• Better use of data: Getting rid of delexicalization
• pre-trained word vectors – important!

• shared parameters

• RNN/CNN feature extractors

• Discriminative learning slot values

13NPFL099 L5 2019

(Mrkšić et al., 2017)
https://www.aclweb.org/anthology/P17-1163

Belief state update

https://www.aclweb.org/anthology/P17-1163

Candidate Ranking
• Previous systems consider all values for each slot

• this is a problem for open-ended slots (e.g. restaurant name)

• enumerating over all takes ages, some are previously unseen

• Alternative: always consider just 𝐾 candidates
• use last 𝐾 candidates from system actions and NLU output

• NB: only way history is incorporated here!

• select from them using a per-slot softmax

(Rastogi et al., 2017)
https://arxiv.org/abs/1712.10224

pictures assume 𝐾 = 2

representation of
i-th candidate:
utterance/slot/candidate
features (next slide)

2 sigmoid layers

additional values to consider
(even if not mentioned in NLU)

https://arxiv.org/abs/1712.10224

Candidate Ranking – representation

• Using BiGRU over lexicalized & delexicalized utterance

• Features:
• utterance – last GRU state + indicators for non-slot DAs (user & prev. system)

• slot – indicators for DAs with this slot (user & prev. system)
+ last turn scores for null & dontcare

• candidate – GRU states over matched value words
+ indicators for DAs with this slot & value (user & prev. system)

15NPFL099 L5 2019

bye(), affirm()

inform(slot=*), request(slot)

inform(slot=value)

Multi-value Candidate Ranking

• What if multiple values are true?
• previous approach picks one (softmax)

• use set of binary classifiers (log loss) instead

• + more flexible regarding candidates
• can be past 𝑘 from NLU, but also just current ASR n-grams

• this model keeps track of context by itself

NPFL099 L5 2019

multiple per-slot models
share info about previous beliefs

previous belief state embedding

current sentence

past sentences over
hierarchical LSTM

past system actions turn-level LSTM

(Goel et al., 2018)
http://arxiv.org/abs/1811.12891

http://arxiv.org/abs/1811.12891

Hybrid Classify/Rank

• Ranking is faster & more flexible

• Classification over all values is more accurate
• at least for most slots, where # of values is limited

• Solution: combine classification & ranking
• choose best model for each slot based on dev data performance

• Ranking approach – multi-value from previous slide

• Classification approach – straightforward:
hierarchical LSTM + per-slot feed-forward + softmax

17NPFL099 L5 2019

shared
across
slots

separate for each slot

Hybrid
Classification only
Ranking only

metric: joint goal accuracy
– exact match on dialogue state
(most probable value only)

ensemble (majority vote of 3 models)

single model

(Goel et al., 2019)
http://arxiv.org/abs/1907.00883

http://arxiv.org/abs/1907.00883

Using BERT
• Very basic:

• run BERT over previous system & current user utterance

• from 1st token’s representation, get a decision: none/dontcare/span
• per-slot (BERT is shared, but the final decision is slot-specific)

• span = need to find a concrete value as a span somewhere in the text
• predict start & end token of the span using 2 softmaxes

• carry-over across
multiple turns
is rule-based:
• if none is predicted,

keep previous value,
otherwise change it

18NPFL099 L5 2019

(Chao & Lane, 2019)
http://arxiv.org/abs/1907.03040

http://arxiv.org/abs/1907.03040

Slot-Utterance Matching
Belief Tracker
• different take on BERT trackers

• inspired by reading comprehension

• considers “domain – slot” a question
& tries to find the value in the input utterance

• tracker over BERT
• attention + turn-based RNN

• attention in current utterance

• RNN (LSTM/GRU) for carry-over of past values

• layer normalization to match BERT outputs
• BERT includes layer normalization by default

• trained to match the correct values in the utterance
• loss: distance of true value BERT encoding

from the tracker output (Euclidean/Cosine)
19NPFL099 L5 2019

value BERT encoder

slot BERT encoder utterance BERT encoder
(prev. system + user)

match score
- distance

(Lee et al., 2019)
http://arxiv.org/abs/1907.07421

http://arxiv.org/abs/1907.07421

Even More Reading Comprehension

• Also uses BERT, but not necessarily
• works slightly worse with random-initialized word embeddings

• sequence of 3 decisions
• do we carry over last turn’s prediction? (Yes/No)

• if no: what kind of answer are we looking for? (yes/no/dontcare/span of text)

• if span: predict span’s start and end

20

BiLSTM

this can be BERT
slot embeddinginput: whole dialogue,

concatenated

2 prediction softmaxes:
1 for span start, 1 for end

final LSTM states
in both directions

(Gao et al., 2019)
https://www.aclweb.org/anthology/W19-5932/

https://www.aclweb.org/anthology/W19-5932/

Dialogue State as SQL
• User goal is a query → why not SQL query?

• Text-to-SQL models used for tracking
• with contextual enhancements, input:

• all user inputs so far

• previous system response

• database schema

• Seq2seq-based model example:
• hierarchical LSTM for encoding user & system

• database column embeddings
= averaged embeddings over table + column name

• decoder:
• decide between SQL keyword vs. column

• then select which keyword / column via softmax

• So far, experimental – performance is low 21

(Yu et al., 2019)
http://arxiv.org/abs/1909.05378
http://arxiv.org/abs/1906.02285

http://arxiv.org/abs/1909.05378
http://arxiv.org/abs/1906.02285

Summary
• State tracking is needed to maintain user goal over multiple turns

• Best to make the state probabilistic – belief state

• Architectures – many options
• good NLU + rules – works well!

• neural, hybrid

• static (sliding-window) vs. dynamic (recurrent, modelling dialogue as sequence)

• with/without NLU

• classifiers vs. candidate rankers vs. reading comprehension
• classifiers are more accurate than rankers but slower, limited to seen values

• reading comprehension is a very new approach, works nicely but probably slow

• BERT & co. as usual – good but slow

• incremental – not used too much so far

• Alternative/experimental: SQL instead of slots/values
22

Thanks

Contact us:
odusek@ufal.mff.cuni.cz
hudecek@ufal.mff.cuni.cz

Get these slides here:

http://ufal.cz/npfl099

References/Inspiration/Further:

• Filip Jurčíček’s slides (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
• Milica Gašić’s slides (Cambridge University): http://mi.eng.cam.ac.uk/~mg436/teaching.html
• Henderson (2015): Machine Learning for Dialog State Tracking: A Review

https://ai.google/research/pubs/pub44018

23NPFL099 L5 2019

mailto:odusek@ufal.mff.cuni.cz
mailto:hudecek@ufal.mff.cuni.cz
http://ufal.cz/npfl099
https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
http://mi.eng.cam.ac.uk/~mg436/teaching.html
https://ai.google/research/pubs/pub44018

