

Novel Methods in Natural Language Generation for Spoken Dialogue Systems

Ondřej Dušek

Supervisor: **Filip Jurčíček** Institute of Formal and Applied Linguistics Charles University, Prague

> Ph.D. thesis defense June 12, 2017

- 1. Introduction to the problem
- 2. Surface Realization
- 3. A*/Perceptron Sentence Planning
- 4. Sequence-to-sequence Generation
- 5. Context-aware extensions (user adaptation/entrainment)
- 6. Generating Czech
- 7. Conclusions

 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)

↓

X is an Italian restaurant near the river.
```


 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)
↓
X is an Italian restaurant near the river.
```

• DA = act type (inform, request...) + slots (attributes) + values

 converting a meaning representation (dialogue acts, DAs) to a sentence

```
inform(name=X,eattype=restaurant,food=Italian,area=riverside)
↓
X is an Italian restaurant near the river.
```

• DA = act type (inform, request...) + slots (attributes) + values

 converting a meaning representation (dialogue acts, DAs) to a sentence

inform(name=X,eattype=restaurant,food=Italian,area=riverside)
↓
X is an Italian restaurant near the river.

• DA = act type (inform, request...) + slots (attributes) + values

• input: from dialogue manager

output: to TTS

- A) Create an NLG system easily adaptable for different domains
 - fully trainable
 - minimize required data annotation

- A) Create an NLG system easily adaptable for different domains
 - fully trainable
 - minimize required data annotation
- B) Create an NLG system adaptable for different languages
 - we experiment with English and Czech

- A) Create an NLG system easily adaptable for different domains
 - · fully trainable
 - minimize required data annotation
- B) Create an NLG system adaptable for different languages
 - · we experiment with English and Czech
- C) Create a generator that adapts to the user
 - reuse users' words/phrases more natural

- A) Create an NLG system easily adaptable for different domains
 - · fully trainable
 - minimize required data annotation
- B) Create an NLG system adaptable for different languages
 - · we experiment with English and Czech
- C) Create a generator that adapts to the user
 - reuse users' words/phrases more natural
- D) Compare different NLG architectures
 - two-step pipeline / end-to-end joint setup

- A) Create an NLG system easily adaptable for different domains
 - fully trainable
 - minimize required data annotation
- B) Create an NLG system adaptable for different languages
 - · we experiment with English and Czech
- C) Create a generator that adapts to the user
 - reuse users' words/phrases more natural
- D) Compare different NLG architectures
 - two-step pipeline / end-to-end joint setup
- E) Create novel NLG datasets
 - not many were available

Unaligned data

• earlier systems: manual alignments / preprocessing step

Unaligned data

- earlier systems: manual alignments / preprocessing step
- · we learn latent alignments jointly

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

Unaligned data

- earlier systems: manual alignments / preprocessing step
- · we learn latent alignments jointly
 - no error acummulation / manual annotation

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

Unaligned data

- earlier systems: manual alignments / preprocessing step
- · we learn latent alignments jointly
 - no error acummulation / manual annotation

Addressing data sparsity: Delexicalization

Some/all slot values replaced with placeholders

Take line M11 bus at 11:02am from Rockefeller Center direction Fulton Street.

inform(name="La Mediterranée", good_for_meal=lunch, kids_allowed=no) La Mediterranée is good for lunch and no children are allowed.

Unaligned data

- earlier systems: manual alignments / preprocessing step
- we learn latent alignments jointly
 - no error acummulation / manual annotation

Introduction

Addressing data sparsity: Delexicalization

Some/all slot values replaced with placeholders

```
inform(direction="Fulton Street", from_stop="Rockefeller Center", line=M11,
       vehicle=bus, departure_time=11:02am)
```

Take line M11 bus at 11:02am from Rockefeller Center direction Fulton Street.

inform(name="La Mediterranée", good_for_meal=lunch, kids_allowed=no) La Mediterranée is good for lunch and no children are allowed.

Unaligned data

- earlier systems: manual alignments / preprocessing step
- we learn latent alignments jointly
 - no error acummulation / manual annotation

Introduction

Addressing data sparsity: Delexicalization

Some/all slot values replaced with placeholders

```
inform(direction="X-dir", from stop="X-from", line=X-line,
       vehicle=X-vehicle, departure_time=X-departure)
```

Take line X-line X-vehicle at X-departure from X-from direction X-dir.

```
inform(name="X-name", good_for_meal=X-meal, kids_allowed=no)
X-name is good for X-meal and no children are allowed.
```


Unaligned data

- earlier systems: manual alignments / preprocessing step
- we learn latent alignments jointly
 - no error acummulation / manual annotation

Introduction

Addressing data sparsity: Delexicalization

- Some/all slot values replaced with placeholders
- Different from full alignments much easier to obtain

```
inform(direction="X-dir", from stop="X-from", line=X-line,
       vehicle=X-vehicle, departure_time=X-departure)
```

Take line X-line X-vehicle at X-departure from X-from direction X-dir.

```
inform(name="X-name", good_for_meal=X-meal, kids_allowed=no)
X-name is good for X-meal and no children are allowed.
```


Unaligned data

- earlier systems: manual alignments / preprocessing step
- we learn latent alignments jointly
 - no error acummulation / manual annotation

Pipeline / joint NLG

· traditional: sentence planning + surface realization

Unaligned data

- earlier systems: manual alignments / preprocessing step
- · we learn latent alignments jointly
 - no error acummulation / manual annotation

Pipeline / joint NLG

- · traditional: sentence planning + surface realization
- newer: joint, end-to-end 1-step

Unaligned data

- earlier systems: manual alignments / preprocessing step
- · we learn latent alignments jointly
 - no error acummulation / manual annotation

Addressing data sparsity: Delexicalization

- Some/all slot values replaced with placeholders
- Different from full alignments much easier to obtain

Pipeline / joint NLG

- traditional: sentence planning + surface realization
- newer: joint, end-to-end 1-step
- we compare both, use t-trees as sentence plan

- 1. Introduction to the problem
- 2. Surface Realization
- 3. A*/Perceptron Sentence Planning
- 4. Sequence-to-sequence Generation
- Context-aware extensions (user adaptation/entrainment)
- Generating Czech
- 7. Conclusions

• Simple *t-tree* to text

- Simple *t-tree* to text
- Mostly rule-based pipeline (Treex), based on Czech

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree
 - · Add grammatical words

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - Copy t-tree
 - · Add grammatical words

a-tree zone=en step4

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - Copy t-tree
 - · Add grammatical words

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech

Copy t-tree

· Add grammatical words

AuxA

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech

Copy t-tree

· Add grammatical words

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree
 - Add grammatical words
 - Word inflection (Flect)

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree
 - Add grammatical words
 - Word inflection (Flect)

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree
 - · Add grammatical words
 - Word inflection (Flect)
- Used in our NLG systems & MT (TectoMT)

- Simple t-tree to text
- Mostly rule-based pipeline (Treex), based on Czech
 - · Copy t-tree
 - · Add grammatical words
 - Word inflection (Flect)
- Used in our NLG systems & MT (TectoMT)

Flect - Statistical Word Inflection Generation

Generate surface word form given lemma + morphology

Flect – Statistical Word Inflection Generation

- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words

- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words
- Recast as multi-class classification

Wort

NN Pl Neut

- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words
- Recast as multi-class classification

```
Wort
ort
rt
t
NN
Pl
Neut
Dat
```


- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words
- Recast as multi-class classification
 - Predict edit script (character diff lemma vs. form)

- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words
- · Recast as multi-class classification
 - Predict edit script (character diff lemma vs. form), then apply it

- Generate surface word form given lemma + morphology
- Trained from corpora, generalizes to unseen words
- · Recast as multi-class classification
 - Predict edit script (character diff lemma vs. form), then apply it

• Evaluated on 6 languages, 96-99% accuracy

- 1. Introduction to the problem
- 2. Surface Realization
- 3. A*/Perceptron Sentence Planning
- 4. Sequence-to-sequence Generation
- 5. Context-aware extensions (user adaptation/entrainment)
- Generating Czech
- 7. Conclusions

A*-Search/Perceptron Sentence Planner

- A*-style "path search": empty \rightarrow full sentence plan

• A*-style "path search": empty \rightarrow full sentence plan

- A*-style "path search": empty → full sentence plan
- Expanding candidate plan trees node-by-node

- A*-style "path search": empty \rightarrow full sentence plan
- · Expanding candidate plan trees node-by-node

- A*-style "path search": empty → full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights × features from tree & input DA

- A*-style "path search": empty → full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights × features from tree & input DA

- A*-style "path search": empty \rightarrow full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights × features from tree & input DA

- A*-style "path search": empty \rightarrow full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights × features from tree & input DA

- A*-style "path search": empty → full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights × features from tree & input DA

- A*-style "path search": empty \rightarrow full sentence plan
- · Expanding candidate plan trees node-by-node
- Score = weights \times features from tree & input DA

Sentence Planner Details

Output sentence plan processed by our realizer

Sentence Planner Details

- Output sentence plan processed by our realizer
- Perceptron ranker learning (Collins & Duffy, 2002)

Sentence Planner Details

- Output sentence plan processed by our realizer
- Perceptron ranker learning (Collins & Duffy, 2002)
- 1st NLG system learning from unaligned data

Sentence Planner Details

- Output sentence plan processed by our realizer
- Perceptron ranker learning (Collins & Duffy, 2002)
- 1st NLG system learning from unaligned data

Experiments

BAGEL (404 sentences, restaurants) – 60% BLEU

Sentence Planner Details

- Output sentence plan processed by our realizer
- Perceptron ranker learning (Collins & Duffy, 2002)
- 1st NLG system learning from unaligned data

Experiments

- BAGEL (404 sentences, restaurants) 60% BLEU
 - worse than orig. with alignments (67% BLEU) (Mairesse et al., 2010)

Sentence Planner Details

- Output sentence plan processed by our realizer
- Perceptron ranker learning (Collins & Duffy, 2002)
- 1st NLG system learning from unaligned data

Experiments

- BAGEL (404 sentences, restaurants) 60% BLEU
 - worse than orig. with alignments (67% BLEU) (Mairesse et al., 2010)
- mostly fluent, but frequent errors (missed/added information)

- - 4. Sequence-to-sequence Generation

Main generator: seq2seq with attention (Bahdanau et al., 2015)

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

Basic Sequence-to-Sequence NLG

input: tokenized DAs

- input: tokenized DAs
- output 2 modes:
 joint mode sentences

- input: tokenized DAs
- output 2 modes:

```
joint mode – sentences
2-step mode – t-trees, in bracketed format (→ surface realizer)
```

```
( <root> <root> ( ( X-name n:subj ) be v:fin ( ( Italian adj:attr ) restaurant n:obj ( river n:near+X ) ) ) )
```


- input: tokenized DAs
- output 2 modes:

```
joint mode – sentences
2-step mode – t-trees, in bracketed format (→ surface realizer)
```

- BAGEL joint mode better:
 - BLEU joint 63% vs. trees 60%, same # of semantic errors

Generating Trees and Strings

- input: tokenized DAs
- output 2 modes:

```
joint mode − sentences
2-step mode − t-trees, in bracketed format (→ surface realizer)
```

- BAGEL joint mode better:
 - BLEU joint 63% vs. trees 60%, same # of semantic errors
 - best without alignments (Mairesse et al. 2010: 67% BLEU)

- 1. Introduction to the problem
- 2. Surface Realization
- 3. A*/Perceptron Sentence Planning
- 4. Sequence-to-sequence Generation
- 5. Context-aware extensions (user adaptation/entrainment)
- Generating Czech
- 7. Conclusions

Entrainment in Dialogue

speakers influenced by each other, reuse words & syntax

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

Aim: condition generation on preceding context

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

- Aim: condition generation on preceding context
 - data sparsity \rightarrow just preceding utterance (biggest impact)

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

- Aim: condition generation on preceding context
 - data sparsity \rightarrow just preceding utterance (biggest impact)
- Context-aware data: new set collected via crowdsourcing

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

- Aim: condition generation on preceding context
 - data sparsity \rightarrow just preceding utterance (biggest impact)
- Context-aware data: new set collected via crowdsourcing
- Instance = DA + sentence

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

- Aim: condition generation on preceding context
 - data sparsity → just preceding utterance (biggest impact)
- Context-aware data: new set collected via crowdsourcing
- Instance = DA + sentence + preceding utterance

NEW→I'm headed to Rector Street

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street", departure_time=9:13pm, line=M21)

Go by the 9:13pm bus on the M21 line from Fulton Street directly to Rector Street

Entrainment in Dialogue

- speakers influenced by each other, reuse words & syntax
- natural, subconscious, helps success (Friedberg et al., 2012)
- NLG systems do not entrain (only limited, rule-based)

Our Seq2seq System & Entrainment

- Aim: condition generation on preceding context
 - data sparsity \rightarrow just preceding utterance (biggest impact)
- Context-aware data: new set collected via crowdsourcing
- Instance = DA + context-aware sentence + preceding utterance

```
I'm headed to Rector Street
```

inform(from_stop="Fulton Street", vehicle=bus, direction="Rector Street",

CONTEXT

departure_time=9:13pm, line=M21)

Heading to Rector Street from Fulton Street, take a bus line M21 at 9:13pm.

Two direct context-aware extensions:

• Two direct context-aware extensions:

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated
- (One more) reranker: n-gram match

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated
- (One more) reranker: n-gram match
 - promote outputs having word/phrase overlap with context

```
is there a later time inform_no_match(alternative=next)
```

- -2.914 No route found later sorry
- -3.544 The next connection is not found.
- -3.690 I'm sorry , I can not find a later ride .
- -3.836 I can not find the next one sorry .
- -4.003 I'm sorry , a later connection was not found .

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated
- (One more) reranker: n-gram match
 - promote outputs having word/phrase overlap with context
- Evaluation (our set, 5.5k instances, public transport)

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated
- (One more) reranker: n-gram match
 - promote outputs having word/phrase overlap with context
- Evaluation (our set, 5.5k instances, public transport)
 - a) or b) + reranker best (66→69% BLEU)

- Two direct context-aware extensions:
 - a) preceding user utterance prepended to DA and fed into decoder
 - b) separate context encoder, hidden states concatenated
- (One more) reranker: n-gram match
 - promote outputs having word/phrase overlap with context
- Evaluation (our set, 5.5k instances, public transport)
 - a) or b) + reranker best (66→69% BLEU)
 - a) + reranker preferred by humans to baseline (52.5% cases, slight but significant)

- 1. Introduction to the problem
- 2. Surface Realization
- 3. A*/Perceptron Sentence Planning
- 4. Sequence-to-sequence Generation
- Context-aware extensions (user adaptation/entrainment)
- 6. Generating Czech
- 7. Conclusions

Motivation

Statistical NLG tested almost exclusively on English

Motivation

- Statistical NLG tested almost exclusively on English
 - no proper name inflection → easy delexicalization
 - little morphology, smaller lexicon

Motivation

- Statistical NLG tested almost exclusively on English
 - no proper name inflection → easy delexicalization
 - little morphology, smaller lexicon
- → Czech is good choice (morphology, noun inflection)

Motivation

- Statistical NLG tested almost exclusively on English
 - no proper name inflection \rightarrow easy delexicalization
 - · little morphology, smaller lexicon
- → Czech is good choice (morphology, noun inflection)

Czech NLG Data

Virtually no non-English NLG datasets available

Motivation

- Statistical NLG tested almost exclusively on English
 - no proper name inflection \rightarrow easy delexicalization
 - little morphology, smaller lexicon
- → Czech is good choice (morphology, noun inflection)

Czech NLG Data

- · Virtually no non-English NLG datasets available
- Crowdsourcing not usable \rightarrow translating an English set (restaurants, Wen et al. 2015)

• Czech proper names & other DA slot values need to be inflected

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)

?confirm(good_for_meal=brunch)

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)

?confirm(good_for_meal=brunch)

	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	WpMPXR-AA

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:

?confirm(good_for_meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	■VpMP-=-XR-AA-

- Czech proper names & other DA slot values need to be inflected
- · Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form

?confirm(good for meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA

- Czech proper names & other DA slot values need to be inflected
- · Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form

?confirm(good_for_meal=brunch)

-		
forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	_VpMPXR-AA

- Czech proper names & other DA slot values need to be inflected
- · Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:

?confirm(good_for_meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	=VpMP-=-XR-AA

- Czech proper names & other DA slot values need to be inflected
- · Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM

?confirm(good_for_meal=brunch)

forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	=VpMP-=-XR-AA

- Czech proper names & other DA slot values need to be inflected
- · Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM
 - d) RNN LM

?confirm(good_for_meal=brunch)

•		
forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	=VpMP-=-XR-AA

- Czech proper names & other DA slot values need to be inflected
- Generalized: selecting proper surface form
 - e.g., obědvat vs. oběd ('lunch' as noun/verb)
- Two baselines:
 - a) random form
 - b) most frequent form
- Two LM-based approaches:
 - c) n-gram LM
 - d) RNN LM
 - score options
 & select most probable

?confirm(good_for_meal=brunch)

•		
forms	lemmas	tags
brunch	brunch	NNIS1A
brunche	brunch	NNIP1A
brunchů	brunch	NNIP2A
brunchi	brunch	NNIS3A
brunchům	brunch	NNIP3A
brunch	brunch	NNIS4A
brunche	brunch	NNIP4A
pozdní snídaně	pozdní snídaně	NNFS1A
pozdních snídaní	pozdní snídaně	NNFP2A
pozdní snídani	pozdní snídaně	NNFS4A
pozdní snídaně	pozdní snídaně	NNFP4A
pozdních snídaních	pozdní snídaně	NNFP6A
pozdními snídaněmi	pozdní snídaně	NNFP7A
brunchový	brunchový	AAMS11A
brunchová	brunchový	AAFS11A
brunchové	brunchový	AANS11A
brunchového	brunchový	AAMS41A
brunchovou	brunchový	AAFS41A
dáte brunch	dát brunch	VB-P2P-AA
dát brunch	dát brunch	VfA
dali brunch	dát brunch	=VpMP-=-XR-AA

Further Architecture Extensions

Aimed at morphology

Further Architecture Extensions

Aimed at morphology

Evaluation

BLEU & human (selected setups, WMT-style) on our dataset

Further Architecture Extensions

Aimed at morphology

Evaluation

- BLEU & human (selected setups, WMT-style) on our dataset
- Success, mostly good Czech

Further Architecture Extensions

Aimed at morphology

Evaluation

- BLEU & human (selected setups, WMT-style) on our dataset
- · Success, mostly good Czech
- RNN lexicalization helps (better than baselines or n-grams)

Further Architecture Extensions

Aimed at morphology

Evaluation

- BLEU & human (selected setups, WMT-style) on our dataset
- · Success, mostly good Czech
- RNN lexicalization helps (better than baselines or n-grams)
- · Other extensions do not help

A√ adapt easily to different domains (ACL'15, ACL'16)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances
- D√ show a comparison of different architectures (ACL'16)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances
- D√ show a comparison of different architectures (ACL'16)
 - generating strings / trees

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances
- D√ show a comparison of different architectures (ACL'16)
 - · generating strings / trees
- E√ make novel datasets available

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - · no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances
- D√ show a comparison of different architectures (ACL'16)
 - generating strings / trees
- E√ make novel datasets available
 - entrainment (with user utterances) (RE-WOCHAT'16)

- A√ adapt easily to different domains (ACL'15, ACL'16)
 - · no need for fine-grained alignments
- B√ adapt easily to a different language
 - English surface realizer from t-trees (WMT'15)
 - Morphology generation (ACL-SRW'13)
 - Seq2seq system adapted for Czech
- C√ adapt to the user (SIGDIAL'16)
 - entrainment: generation conditioned on user utterances
- D√ show a comparison of different architectures (ACL'16)
 - generating strings / trees
- E√ make novel datasets available
 - entrainment (with user utterances) (RE-WOCHAT'16)
 - Czech

Thank you for your attention

Download my work

- Word Inflection Generator Code: bit.ly/flect
- A*+Seq2seq Generator Code: bit.ly/tgen_nlg
- Entrainment dataset: bit.ly/nlgdata
- Czech restaurant dataset: bit.ly/cs_rest

Contact me

Ondřej Dušek

odusek@ufal.mff.cuni.cz

References

Bahdanau, D. et al. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. *ICLR*

Collins, M. & Duffy, N. 2002. New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. *ACL*

Friedberg, H. et al. 2012. Lexical entrainment and success in student engineering groups. \emph{SLT}

Mairesse, F. et al. 2010. Phrase-based statistical language generation using graphical models and active learning. ACL

Wen, T. H. et al. 2015. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. *EMNLP*

Embeddings

- function: words $\rightarrow \mathbb{R}^n$
- equiv. to 1-hot encoding + fully connected layer
 - embedding values = weights in fully connected layer
- initialized randomly
- · backpropagation during training
 - from output layer
 - · through recurrent layers
 - to embedding layer

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly
 - no error acummulation / manual annotation
 - alignment is latent (needs not be hard/1:1)

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

X is an italian restaurant in the riverside area.

text

- earlier, NLG systems required:
 - a) manual alignments
 - b) alignment preprocessing step
- we learn alignments jointly
 - no error acummulation / manual annotation
 - alignment is latent (needs not be hard/1:1)

```
inform(name=X-name, type=placetoeat, area=centre, eattype=restaurant, near=X-near)
```

The X restaurant is **conveniently** located near X, **right in the city center**.

```
inform(name=X-name, type=placetoeat, foodtype=Chinese_takeaway)

X serves Chinese food and has a takeaway possibility.
```

inform(name=X-name, type=placetoeat, **pricerange=cheap**)

**Prices at X are quite cheap.

Way to address data sparsity

- Way to address data sparsity
 - many slot values seen once or never in training

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing
- Still different from full semantic alignments
 - can be obtained by simple string replacement

- Way to address data sparsity
 - many slot values seen once or never in training
 - + they appear verbatim in the outputs
 - restaurant names, departure times
 - → replaced with placeholders for generation
 - + added back in post-processing
- Still different from full semantic alignments
 - can be obtained by simple string replacement
- Can be applied to some or all slots

enumerable: food type, price range

non-enumerable: restaurant name, phone number, postcode

Detail: Pipeline vs. Joint NLG

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize

Detail: Pipeline vs. Joint NLG

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step

Detail: Pipeline vs. Joint NLG

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits two-step: simpler structure generation (more abstract)

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits

two-step: simpler structure generation (more abstract) joint: avoids error accumulation over a pipeline

- NLG pipeline traditionally divided into:
 - 1. sentence planning decide on the overall sentence structure
 - 2. surface realization decide on specific word forms, linearize
- some NLG systems join this into a single step
- both aproaches have their merits
 two-step: simpler structure generation (more abstract)
 joint: avoids error accumulation over a pipeline
- we try both in one system + compare

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax

how bout the next ride
Sorry, I did not find a later option.
I'm sorry, the next ride was not found.

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - no way of adapting to user's way of speaking
- entrainment in NLG limited to rule-based systems so far

- speakers are influenced by previous utterances
 - adapting (entraining) to each other
 - reusing lexicon and syntax
- entrainment is natural, subconscious
- entrainment helps conversation success (Friedberg et al., 2012)
- typical NLG only takes the input DA into account
 - · no way of adapting to user's way of speaking
- entrainment in NLG limited to rule-based systems so far
- our system is trainable and entrains/adapts

• English: little morphology

- English: little morphology
 - vocabulary size relatively small

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - \rightarrow lexicalization = copy names from DA to output

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology

```
Toto se líbí <del>uživateli</del> Jan<mark>ě</mark> Nováková.

This is liked by user [masc] (name) [fem] [dat]
```

```
Děkujeme, Jan<sup>e</sup> Novák<mark>u</mark>, vaše hlasování
Thank you, (name)[nom] bylo vytvořeno.
your poll has been created
```


- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try

```
Toto se líbí <del>uživateli</del> Jan<mark>ě</mark> Nováková.

This is liked by user [masc] (name) [fem]
[dat] [nom]
```

```
Děkujeme, Jan Novák vaše hlasování
Thank you, (name)[nom] bylo vytvořeno.

your poll has been created
```


- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - \rightarrow lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try
- Extensions to our generator to address this:
 - 3rd generator mode: generating lemmas & morphological tags

- English: little morphology
 - vocabulary size relatively small
 - (almost) no morphological agreement
 - no need to inflect proper names
 - → lexicalization = copy names from DA to output
- This does not work with rich morphology
 - → Czech is a good language to try
- Extensions to our generator to address this:
 - 3rd generator mode: generating lemmas & morphological tags
 - inflection for lexicalization (surface form selection)

Surface Realizer in TectoMT

BLEU scores for TectoMT translation within the QTLeap project

Task	Dutch-English		Czech-English	
	IT	news	IT	news
Phrase-based	25.57	23.50	19.03	24.03
TectoMT	27.09	19.40	20.53	13.04

Surface Realizer in TectoMT

Source:

(1) Output: One Council, how into that moment to do: carefully this page snatch

and make from it bookmark.

Source: Jedna rada, jak se v tu chvíli zachovat: Opatrně tuhle stránku vytrhněte

a udělejte si z ní záložku.

Reference: A piece of advice on how to proceed at that moment: gently excise this

page and make it your bookmark.

(2) Output: Mr. Englund a historian is swedish and a journalist.

Pan Englund je švédský historik a novinář.

Reference: Mr. Englund is a Swedish historian and journalist.

(3) Output: Their lives flikkeren as votiefkaarsen in a church; new is added to the

altar other is been.

Source: Hun levens flikkeren als votiefkaarsen in een kerk; nieuwe worden

toegevoegd aan het altaar terwijl andere worden uitgemaakt.

Reference: Their lives flicker like votive candles in a church; new ones are added to

the altar while others are put out.

(4) *Output:* From the almost beginning, this is an inspiring book.

Source: Vrijwel vanaf het begin is dit een bezielend boek.

Reference: Almost from the start, this is a moving book.

Errors: source parsing, t-lemma translation, untranslated, formeme translation, article assignment, word ordering (transfer), word ordering (realizer), inflection (realizer)

Flect: The need for morphology in generation

 English – not so much: hard-coded solutions often work well enough

Flect: The need for morphology in generation

- English not so much: hard-coded solutions often work well enough
- Languages with more inflection (e.g. Czech): even for the simplest things

```
Toto se líbí <del>uživateli</del> Jan<mark>å Nováková.</mark>

This is liked by user [masc] (name) [fem]
[dat] [nom]
```

Děkujeme, Jan^e Novák^u, vaše hlasování Thank you, (name)[nom] bylo vytvořeno. vour poll has been created

Flect: The task at hand

```
word + NNS \rightarrow words

Wort + NN Neut,PI,Dat \rightarrow Wörtern

be + VBZ \rightarrow is

ser + V_{\text{mood=indicative,tense=present}}^{\text{gen=c,num=s,person=3,}} es
```

- Input: Lemma (base form) or stem
 + morphological properties (POS, case, gender, etc.)
- Output: Inflected word form
- Inverse to POS tagging

Flect: Inflection patterns as multi-class classification

Our inflection rules: edit scripts

- · A kind of diffs: how to modify the lemma to get the form
- · Based on Levenshtein distance

Flect: Features useful for morphology generation

• Same POS + same ending = (often) same inflection

$$\frac{\text{sky}}{\text{fly}} + \text{NNS} \rightarrow -\text{ies}$$
 $\frac{\text{bind}}{\text{find}} + \text{VBD} \rightarrow -\text{ound}$

Flect: Features useful for morphology generation

• Same POS + same ending = (often) same inflection

- Suffixes = good features to generalize to unseen inputs
- Machine learning should be able to deal with counter-examples

Flect: Features useful for morphology generation

• Same POS + same ending = (often) same inflection

- Suffixes = good features to generalize to unseen inputs
- Machine learning should be able to deal with counter-examples
- Capitalization: no influence on morphology

Wort

NN

Ы

Neut

Dat

1. Get **features** from lemma, POS, suffixes (+morph. properties & their combinations, possibly context)

```
Wort
ort
rt
t
NN
Pl
Neut
Dat
```


- 1. Get **features** from lemma, POS, suffixes (+morph. properties & their combinations, possibly context)
- 2. Predict edit scripts using Logistic regression

- Get **features** from lemma, POS, suffixes (+morph. properties & their combinations, possibly context)
- 2. Predict edit scripts using Logistic regression
- 3. Use them as rules to obtain **form** from lemma

• CoNLL 2009 data: varying morphology richness & tagsets

• CoNLL 2009 data: varying morphology richness & tagsets

• CoNLL 2009 data: varying morphology richness & tagsets

· Works well even on unseen forms: suffixes help

CoNLL 2009 data: varying morphology richness & tagsets

- Works well even on unseen forms: suffixes help
 - over-generalization errors, e.g. torpedo + VBN = torpedone
 - German: syntax-sensitive morphology

Flect vs. a dictionary from the same data

• English: Dictionary gets OK relatively soon

Flect vs. a dictionary from the same data

- English: Dictionary gets OK relatively soon
- · Czech: Dictionary fails on unknown forms, our system works

Flect in English Surface Realization

- TectoMT English Round-trip (PCEDT 2.0 Sect. 22+23)
 - analyzed and regenerated sentences compared to originals

Variant	BLEU (%)
Baseline (MorphoDiTa)	73.55
Flect alone	77.04
MorphoDiTa + Flect as a backoff	77.47

A*-search/Perceptron Sentence Planning

- Our generator learns alignments jointly
 - training from pairs: MR + sentence
 - with sentence planning (MR \rightarrow deep syntax trees)

MR inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=Italian)

text

X is an italian restaurant in the riverside area.

A two-step setup:

• Input: a meaning representation

- Input: a meaning representation
- 1. sentence planning
 - · statistical, our main focus
 - expanding + ranking candidate sentence plans
 - A*-like search

- · Input: a meaning representation
- 1. sentence planning
 - · statistical, our main focus
 - expanding + ranking candidate sentence plans
 - A*-like search
- Intermediate: sentence plan (deep syntax trees)

- Input: a meaning representation
- 1. sentence planning
 - · statistical, our main focus
 - expanding + ranking candidate sentence plans
 - A*-like search
- Intermediate: sentence plan (deep syntax trees)
- 2. surface realization
 - reusing Treex/TectoMT realizer
 - · (mostly) rule-based pipeline

A two-step setup:

- Input: a meaning representation
- 1. sentence planning
 - · statistical, our main focus
 - expanding + ranking candidate sentence plans
 - A*-like search
- Intermediate: sentence plan (deep syntax trees)
- 2. surface realization
 - reusing Treex/TectoMT realizer
 - (mostly) rule-based pipeline
- Output: plain text sentence

sentence

- A*-style search
 - "finding the path" from empty tree to full sentence plan tree
 - expand the most promising candidate sentence plan in each step
 - stop when candidates don't improve for a while

- A*-style search
 - "finding the path" from empty tree to full sentence plan tree
 - expand the most promising candidate sentence plan in each step
 - stop when candidates don't improve for a while
- · Using two subcomponents:
 - · candidate generator
 - · churning out candidate sentence plan trees
 - given an incomplete candidate tree, add node(s)

- A*-style search
 - "finding the path" from empty tree to full sentence plan tree
 - expand the most promising candidate sentence plan in each step
 - stop when candidates don't improve for a while
- Using two subcomponents:
 - candidate generator
 - · churning out candidate sentence plan trees
 - given an incomplete candidate tree, add node(s)
 - scorer/ranker for the candidates
 - · influences which candidate trees will be expanded

- A*-style search
 - "finding the path" from empty tree to full sentence plan tree
 - expand the most promising candidate sentence plan in each step
 - stop when candidates don't improve for a while
- Using two subcomponents:
 - · candidate generator
 - · churning out candidate sentence plan trees
 - given an incomplete candidate tree, add node(s)
 - scorer/ranker for the candidates
 - influences which candidate trees will be expanded
- Training data = MR + sentence plan tree pairs
 - trees obtained by automatic parsing in Treex

- Combinations explode even for small trees
- Limiting "possible places"
 - a few simple rules
 - based on context (elements of current MR, parent node)

· a function:

sentence plan tree + MR \rightarrow real-valued score

describes the fitness of tree for MR

· a function:

sentence plan tree + MR \rightarrow real-valued score

· describes the fitness of tree for MR

Linear perceptron scorer (Collins & Duffy, 2002)

- score = weights · features (from tree and MR)
 - features elements of tree and MR
 - · presence of nodes, slots, values + combination
 - · tree size and shape, parent-child

a function:

sentence plan tree + MR ightarrow real-valued score

· describes the fitness of tree for MR

Linear perceptron scorer (Collins & Duffy, 2002)

- score = weights · features (from tree and MR)
 - features elements of tree and MR
 - presence of nodes, slots, values + combination
 - · tree size and shape, parent-child
- · training loop:
 - given MR, generate the best tree with current weights
 - update weights if generated tree ranks better than gold tree

a function:

sentence plan tree + MR ightarrow real-valued score

· describes the fitness of tree for MR

Linear perceptron scorer (Collins & Duffy, 2002)

- score = weights · features (from tree and MR)
 - features elements of tree and MR
 - presence of nodes, slots, values + combination
 - tree size and shape, parent-child
- training loop:
 - given MR, generate the best tree with current weights
 - update weights if generated tree ranks better than gold tree
- **update** = α · difference in features (gold—generated)
 - · want gold to score better next time

Scoring problem

- Features are global over the whole sentence plan tree
 - \rightarrow bigger trees tend to score better

Scoring problem

- Features are global over the whole sentence plan tree
 → bigger trees tend to score better
- But we score incomplete trees during the A* search
 - bigger incomplete trees are not always right
 - we need to promote "promising" incomplete trees

Scoring problem

- Features are global over the whole sentence plan tree
 → bigger trees tend to score better
- But we score incomplete trees during the A* search
 - bigger incomplete trees are not always right
 - we need to promote "promising" incomplete trees
- Scoring accuracy affects which paths are explored

Scoring problem

- Features are global over the whole sentence plan tree
 → bigger trees tend to score better
- But we score incomplete trees during the A* search
 - bigger incomplete trees are not always right
 - we need to promote "promising" incomplete trees
- Scoring accuracy affects which paths are explored

Sentence planner candidate generator A* search scorer sentence plan (deep syntax tree) Surface realizer rule-based pipeline sentence

Our improvements to the scorer

- Differing tree updates
- Future promise

- Additional perceptron update
 - performed with the regular one
 - using pairs of differing subtrees of gold and generated tree (starting from common subtree)
 - promoting promising paths, demoting dead-ends

- Additional perceptron update
 - performed with the regular one
 - using pairs of differing subtrees of gold and generated tree (starting from common subtree)
 - promoting promising paths, demoting dead-ends

- Additional perceptron update
 - performed with the regular one
 - using pairs of differing subtrees of gold and generated tree (starting from common subtree)
 - promoting promising paths, demoting dead-ends

adi:attr

- Additional perceptron update
 - performed with the regular one
 - using pairs of differing subtrees of gold and generated tree (starting from common subtree)
 - promoting promising paths, demoting dead-ends

Differing subtrees for update

adi:attr

- Additional perceptron update
 - performed with the regular one
 - using pairs of differing subtrees of gold and generated tree (starting from common subtree)
 - promoting promising paths, demoting dead-ends

A*/Perceptron: Future promise estimate

• Further score boost for incomplete trees

A*/Perceptron: Future promise estimate

- · Further score boost for incomplete trees
- Using the expected number of children of a node

A*/Perceptron: Future promise estimate

- · Further score boost for incomplete trees
- Using the expected number of children of a node

Future promise:

"how many children are missing to meet the expectation"

- · floored at zero, summed over the whole tree
- Added to scores, used to select next expansion path

A*/Perceptron Sentence Planner: Results

Setup	BLEU	NIST
perceptron scorer	54.24	4.643
+ differing subtree updates	58.70*	4.876
+ future promise	59.89*	5.231

* both improvements statistically significant

A*/Perceptron Sentence Planner: Results

Setup	BLEU	NIST
perceptron scorer	54.24	4.643
+ differing subtree updates	58.70*	4.876
+ future promise	59.89*	5.231

- * both improvements statistically significant
- Overall, lower scores than Mairesse et al.'s ~ 67% BLEU

A*/Perceptron Sentence Planner: Results

Setup	BLEU	NIST
perceptron scorer	54.24	4.643
+ differing subtree updates	58.70*	4.876
+ future promise	59.89*	5.231

- * both improvements statistically significant
- Overall, lower scores than Mairesse et al.'s ~ 67% BLEU
- But our problem is harder:
 - · we learn alignments jointly
 - our generator has to decide when to stop (whether all required information is included)

A*/Perceptron Example Outputs

Input DA	inform(name=X-name, type=placetoeat, pricerange=moderate,
	eattype=restaurant)
Reference	X is a restaurant that offers moderate price range.
Generated	X is a restaurant in the moderate price range.
Input DA	inform(name=X-name, type=placetoeat, area=X-area,
	pricerange=moderate, eattype=restaurant)
Reference	X is a moderately priced restaurant in X.
Generated	X is a restaurant in the X area.
Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant,
	area=riverside, food=French)
Reference	X is a French restaurant on the riverside.
Generated	X is a French restaurant in the riverside area which serves French food.

- · Mostly fluent and relevant
 - · sometimes identical to reference, more often original
- · Problems in some cases:
 - information missing / repeated / superfluous

• Main generator: seq2seq with attention (Bahdanau et al., 2015)

inform name X-name inform eattype restaurant

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
 - Encoder LSTM RNN: encode DA into hidden states

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
 - Encoder LSTM RNN: encode DA into hidden states
 - Decoder LSTM RNN: generate output tokens
 - attention model: weighing encoder hidden states

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + n-best list reranker

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + n-best list reranker
 - to penalize missing/superfluous information in outputs

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - · classify DA from output

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + *n*-best list **reranker**
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

- Main generator: seq2seq with attention (Bahdanau et al., 2015)
- + beam search, *n*-best list outputs
- + n-best list reranker
 - to penalize missing/superfluous information in outputs
 - classify DA from output, compare to input DA

- generator may not cover the input DA perfectly
 - missing / superfluous information

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

1-hot DA representation

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

- 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)

- generator may not cover the input DA perfectly
 - missing / superfluous information
 - we want to penalize such cases
- check whether output conforms to the input DA + rerank
 - LSTM RNN encoder + sigmoid classification layer

- 1-hot DA representation
- penalty = Hamming distance from input DA (on 1-hot vectors)

BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST

- BAGEL dataset (Mairesse et al., 2010):
 202 DAs / 404 sentences, restaurant information
 - much less data than previous seq2seq methods
 - partially delexicalized (names, phone numbers \rightarrow "X")
 - manual alignment provided, but we do not use it
- 10-fold cross-validation
 - automatic metrics: BLEU, NIST
 - manual evaluation: semantic errors on 20% data (missing/irrelevant/repeated)

BAGEL Seq2seq Results

rev

Setup	BLEU	NIST	ERR
Mairesse et al. (2010) - alignments	\sim 67	-	0
Our A*/perceptron	59.89	5.231	30

BAGEL Seq2seq Results

	_				
	_	Setup	BLEU	NIST	ERR
rev		Mairesse et al. (2010) - alignments	\sim 67	-	0
p		Our A*/perceptron	59.89	5.231	30
	d	Greedy with trees	55.29	5.144	20
	wo-step:	+ Beam search (beam size 100)	58.59	5.293	28
	//O	+ Reranker (beam size 5)	60.77	5.487	24
	Į.	(beam size 10)	60.93	5.510	25
nc		+ Reranker (beam size 100)	60.44	5.514	19
		Greedy into strings	52.54	5.052	37
		+ Beam search (beam size 100)	55.84	5.228	32
	ıτ	+ Reranker (beam size 5)	61.18	5.507	27
	joint	(beam size 10)	62.40	5.614	21
	· ·	+ Reranker (beam size 100)	62.76	5.669	19

Sample Outputs on the BAGEL set

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=riverside, food=French)
Reference	X is a French restaurant on the riverside.
Greedy with trees	X is a restaurant providing french and continental and by the river.
+ Beam search	X is a restaurant that serves french takeaway. [riverside]
+ Reranker	X is a french restaurant in the riverside area.
Greedy into strings	X is a restaurant in the riverside that serves italian food. [French]
+ Beam search	X is a restaurant in the riverside that serves italian food. [French]
+ Reranker	X is a restaurant in the riverside area that serves french food.

Sample Outputs on the BAGEL set

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, area=citycentre, near=X-near, food="Chinese takeaway", food=Japanese)
Reference	X is a Chinese takeaway and Japanese restaurant in the city centre near X.
Greedy with trees	X is a restaurant offering chinese takeaway in the centre of town near X. [Japanese]
+ Beam search	X is a restaurant and japanese food and chinese takeaway.
+ Reranker	X is a restaurant serving japanese food in the centre of the city that offers chinese takeaway.
Greedy into strings	X is a restaurant offering italian and indian takeaway in the city centre area near X. [Japanese, Chinese]
+ Beam search	X is a restaurant that serves fusion chinese takeaway in the riverside area near X. [Japanese, citycentre]
+ Reranker	X is a japanese restaurant in the city centre near X providing chinese food. [takeaway]

Sample Outputs on the BAGEL set

Input DA	inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near, food=Continental, food=French)
Reference	X is a French and Continental restaurant near X.
Greedy with trees	X is a french restaurant that serves french food and near X. [Continental]
+ Beam search	X is a french restaurant that serves french food and near X. [Continental]
+ Reranker	X is a restaurant serving french and continental food near X.
Greedy into strings	X is a french and continental style restaurant near X.
+ Beam search	X is a french and continental style restaurant near X.
+ Reranker	X is a restaurant providing french and continental food, near X.

Collecting Context-aware Data via CrowdFlower

1. Get natural user utterances in calls to a live dialogue system

Collecting Context-aware Data via CrowdFlower

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms

You want a connection – your departure stop is *Marble Hill*, and you want to go to *Roosevelt Island*. Ask how long the journey will take. Ask about a schedule afterwards. Then modify your query: Ask for a ride at six o'clock in the evening. Ask for a connection by bus. Do as if you changed your mind: Say that your destination stop is *City Hall*.

You are searching for transit options leaving from *Houston Street* with the destination of *Marble Hill*. When you are offered a schedule, ask about the time of arrival at your destination. Then ask for a connection after that. Modify your query: Request information about an alternative at six p.m. and state that you prefer to go by bus.

Tell the system that you want to travel from *Park Place* to *Inwood*. When you are offered a trip, ask about the time needed. Then ask for another alternative. Change your search: Ask about a ride at 6 o'clock p.m. and tell the system that you would rather use the bus.

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs

- 3. Collect natural language paraphrases for the response DAs
 - interface designed to support entrainment
 - · context at hand
 - · minimal slot description
 - short instructions

- 1. Get natural user utterances in calls to a live dialogue system
 - record calls to live Alex SDS, task descriptions use varying synonyms
 - manual transcription + reparsing using Alex SLU
- 2. Generate possible response DAs for the user utterances
 - using simple rule-based bigram policy
- 3. Collect natural language paraphrases for the response DAs
 - interface designed to support entrainment
 - · context at hand
 - · minimal slot description
 - · short instructions
 - checks: contents + spelling, automatic + manual
 - ca. 20% overhead (repeated job submission)

Handcrafted simple rule-based bigram policy

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance

what about a connection by bus

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information

what about a connection by bus

▶ = = 990

- Handcrafted simple rule-based bigram policy
- All possible replies for a single context utterance
 - confirmation
 - answer
 - apology
 - request for additional information
- In a real dialogue, the correct reply would depend on longer history, but here we try them all

Entrainment Dataset Summary

Size

total response paraphrases	5,577
unique (delex.) context + response DA	1,859
unique (delex.) context	552
unique (delex.) context with min. 2 occurrences	119
unique response DA	83
unique response DA types	6
unique slots	13

Entrainment

Syntactic	\sim 59%
Lexical	\sim 31%
Both	\sim 19%

 subjective, based on word & phrase reuse, word order, pronouns

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
<i>n</i> -gram match reranker	68.68	7.577

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ <i>n</i> -gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker

- Dataset: public transport information
 - 5.5k paraphrases for 1.8k DA-context combinations
 - delexicalized

Setup	BLEU	NIST
Baseline (context not used)	66.41	7.037
n-gram match reranker	68.68	7.577
Prepending context	63.87	6.456
+ n-gram match reranker	69.26	7.772
Context encoder	63.08	6.818
+ <i>n</i> -gram match reranker	69.17	7.596

- Human pairwise preference ranking (crowdsourced)
 - baseline × prepending context + n-gram match reranker
 - context-aware preferred in 52.5% cases (significant)

Entrainment Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
<i>n</i> -gram match reranker	You want <u>a later</u> connection.
Prepending context + n-gram match reranker	You want <u>a later</u> connection.
Context encoder + n-gram match reranker	You want a later option.

Entrainment Output Examples

Context	is there a later option
Input DA	iconfirm(alternative=next)
Baseline	Next connection.
n-gram match reranker	You want <u>a later</u> connection.
Prepending context + <i>n</i> -gram match reranker	You want <u>a later</u> connection.
Context encoder + <i>n</i> -gram match reranker	You want <u>a later option</u> .

Context Input DA	i need to find a bus connection inform_no_match(vehicle=bus)
Baseline n-gram match reranker	No bus found, sorry. I did not find a bus route.
Prepending context + <i>n</i> -gram match reranker	I'm sorry, I cannot find a bus connection.
Context encoder + <i>n</i> -gram match reranker	I'm sorry, I cannot find a bus connection.

Entrainment Output Examples (2)

Context	i rather take the bus
Input DA	inform(vehicle=bus, departure_time=8:01am, direction=Cathedral Parkway, from_stop=Bowling Green, line=M15)
Baseline	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
n-gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.
Prepending context + <i>n</i> -gram match reranker	You can <u>take the M15 bus</u> from Bowling Green to Cathedral Parkway at 8:01am.
Context encoder + n-gram match reranker	At 8:01am by bus line M15 from Bowling Green to Cathedral Parkway.

Virtually no non-English NLG datasets available

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- ightarrow Translating an English set (restaurants, Wen et al. 2015)

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization

inform(name="Fog Harbor Fish House", price_range=cheap, area="Civic Center") Fog Harbor Fish House is cheap and it is located in Civic Center.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization

inform(name="X-name", price_range=X-pricerange, area="X-area") X-name is X-pricerange and it is located in X-area.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda is expensive and it is located in Hradčany.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)
 - 3. translation by hired translators

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda je **levná** (cheap) a nachází se na Hradčanech.

- Virtually no non-English NLG datasets available
- Collecting Czech data via crowdsourcing is not an option
 - no Czech speakers on platforms
- → Translating an English set (restaurants, Wen et al. 2015)
 - 1. delexicalization
 - 2. localizing restaurant names, landmarks, etc., to Prague
 - (random combinations, names require inflection)
 - 3. translation by hired translators
 - 4. automatic & manual checks

inform(name="Ferdinanda", price_range=expensive, area="Hradčany") Ferdinanda je drahá a nachází se na Hradčanech.

- 3rd generator mode
 - compromise between full 2-step/joint setups

- 3rd generator mode
 - compromise between full 2-step/joint setups

idea: let the seq2seq model decide everything...

- 3rd generator mode
 - compromise between full 2-step/joint setups

idea: let the seq2seq model decide everything... but for complex morphological inflection

- 3rd generator mode
 - compromise between full 2-step/joint setups
- idea: let the seq2seq model decide everything... but for complex morphological inflection
 - generating into list of interleaved morph. tags and lemmas

- 3rd generator mode
 - · compromise between full 2-step/joint setups

idea: let the seq2seq model decide everything... but for complex morphological inflection

- generating into list of interleaved morph. tags and lemmas
- · postprocessing:
 - MorphoDiTa dictionary
 - · list of surface forms for names

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')

inform(name="X-name", price_range=X-pricerange, area="X-area") X-name je X-pricerange a nachází se v X-area. X-name is X-pricerange and it is located in X-area.

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs

inform(name="X-name", price_range=X-pricerange, area="X-area") X-name je X-pricerange a nachází se v X-area. X-name is X-pricerange and it is located in X-area.

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs

inform(name="Café Savoy", price_range=cheap, area="Smíchov") X-name je X-pricerange a nachází se na X-area. X-name is X-pricerange and it is located in X-area.

- Different slot values exhibit different morphological behavior
 - Ananta je levná vs. BarBar je levný ('<name> is cheap')
- Some values require a specific sentence structure
 - v Karlíně vs. na Smíchově ('in <neighborhood>')
- → Keep values in input DAs (don't delexicalize)
 - still generating delexicalized outputs
 - ! This is proof-of-concept
 - exploiting small number of lexical values
 - real world: morphological properties / character embeddings

```
inform(name="Café Savoy", price_range=cheap, area="Smíchov") X-name je X-pricerange a nachází se na X-area. X-name is X-pricerange and it is located in X-area.
```


Full Czech Restaurants BLEU/NIST Results

Setup

	vetup		BLEU	NIST
input DAs	generator mode lexicalization		DLLO	11131
delexicalized	joint (direct to strings)	random most frequent n-gram LM RNN LM	13.47 19.31 19.40 19.54	3.442 4.346 4.274 4.273
	lemma-tag	random most frequent n-gram LM RNN LM	17.18 18.22 17.95 18.51	3.985 4.162 4.132 4.162
	two-step with t-trees	random most frequent n-gram LM RNN LM	14.93 16.16 16.13 16.39	3.784 3.969 3.970 3.974
	joint (direct to strings)	random most frequent n-gram LM RNN LM	12.56 17.82 17.85 17.93	3.300 4.164 4.082 4.094
lexically informed	lemma-tag	random most frequent n-gram LM RNN LM	19.96 20.86 20.54 21.18	4.306 4.427 4.399 4.448
	two-step with t-trees	random most frequent n-gram LM RNN LM	16.13 17.15 17.24 17.62	3.919 4.073 4.078 4.112
				4.0

- understandable Czech
- some fluency errors
- · semantic errors very rare

- lexically informed better
- two-step with trees worse
 - RNN lexicalization best

Selected setups based on BLEU/NIST (7 out of 24)

- Selected setups based on BLEU/NIST (7 out of 24)
- WMT-style multi-way relative comparisons

- Selected setups based on BLEU/NIST (7 out of 24)
- WMT-style multi-way relative comparisons
- overall preference (no criteria)

- Selected setups based on BLEU/NIST (7 out of 24)
- WMT-style multi-way relative comparisons
- overall preference (no criteria)
- TrueSkillTM, bootstrap clustering

input DAs	Setup generator mode	lexicalization	True Skill	Rank	BLEU
delexicalized	joint (direct to strings)	RNN LM	0.511	1	19.54
delexicalized lexically informed lexically informed	lemma-tag lemma-tag lemma-tag	RNN LM RNN LM most frequent	0.479 0.464 0.462	2-4 2-4 2-4	18.51 21.18 20.86
lexically informed	joint (direct to strings)	RNN LM	0.413	5	17.93
lexically informed lexically informed	two-step with t-trees lemma-tag	RNN LM <i>n</i> -gram LM	0.343 0.329	6-7 6-7	17.62 20.54

Czech Output Examples (1)

Input DA	inform(name="Švejk Restaurant", near=Stromovka, price_range=cheap)	
Reference	Restaurace Švejk je poblíž Stromovky a nabízí nízké ceny. Švejk Restaurant is near Stromovka and it offers low prices.	
Best BLEU/NIST	<i>Restaurace Švejk je levná restaurace, poblíž Stromovky.</i> Švejk Restaurant is a cheap _{fem} restaurant _{fem} , near Stromovka.	
Most preferred	<i>Restaurace Švejk je <mark>levná</mark> podnik blízko Stromovky</i> Švejk Restaurant is a cheap _{fem} place _{inan} close to Stromovka	
Input DA	inform(name="U Konšelů", phone=X-phone)	
Reference	Do U Konšelů můžete zavolat na telefonu 242817033. to U Konšelů you can call on the phone 242817033.	
Best BLEU/NIST	Cenu do restaurace U Konšelů můžete volat na číslo 242817033. price to the restaurant U Konšelů you can call the number 242817033.	
Most preferred	Telefonní číslo U Konšelů je 242817033. the phone number of U Konšelů is 242817033.	
Input DA	inform_no_match(area=Vinohrady)	
Reference	Lituji, ale v lokalitě Vinohrad se nenachází žádné I am sorry but in the area of Vinohrady are not located any restaurace. restaurants	
Best BLEU/NIST	Na Vinohradech nejsou žádné restaurace vhodné pro děti. in Vinohrady there are no restaurants appropriate for children.	
Most preferred	V Vinohrad nejsou žádné takové restaurace. in Vinohradygen there are no such restaurants.	

Czech Output Examples (2)

Input DA	inform(type=restaurant, good_for_meal=dont_care, count=3)
Reference	Jsou zde 3 restaurace, které jsou vhodné pro jakékoli jídlo there are 3 restaurants _{nom} that are suitable for any meal
Best BLEU/NIST	Našla jsem 3 restaurací, které jsou vhodné pro jakékoli jídlo. I found 3 restaurants _{gen} , which are suitable for any meal.
Most preferred	<i>V nabídce je 3 <mark>restaurací, které nabízí všechny druhy jídel.</mark></i> on the list are 3 restaurants _{gen} , that offer all kinds of meals.
Input DA	inform(area=Hradčany, type=restaurant, kids_allowed=no, count=2)
Reference	V lokalitě Hradčan jsem našla 2 restaurace, které nedovolují in the area of Hradčany I found 2 restaurants, which do not allow vstup dětem. entry to children.
Best BLEU/NIST	V oblasti Hradčan se nabízí 2 restaurace, které nejsou in the area of Hradčany offer themselves 2 restaurants, which are not vhodné pro dětí. appropriate for children.
Most preferred	Na Hradčany se nehodí 2 restaurace, které nejsou vhodné for Hradčany are not suitable 2 restaurants, which are not appropriate pro dětí. for children.