Natural Language Generation

for Spoken Dialogue Systems

Ondrej Dusek

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

May 14t 2015

Ondrej Dusek Natural Language Generation

Overview

Outline of this talk

1. Introduction to NLG

a) Textbook NLG pipeline
b) How real systems differ

2. Examples of real NLG systems
3. Our NLG system

a) Structure
b) Experiments
¢) How to improve?

Ondrej Dusek Natural Language Generation

Introduction to NLG

Introduction

Objective of NLG

Given (whatever) input and a communication goal, create a
natural language string that is well-formed and human-like.

+ Desired properties: variation, simplicity, trainability (?)

Usage

+ Spoken dialogue systems

+ Machine translation

+ Short texts: Personalized letters, weather reports ...
« Summarization

+ Question answering in knowledge bases

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)
[Input]

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)
[Input]

J Content/text planning (“what to say”)

+ Content selection, basic ordering

[Content plan]

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)
[Input]

J Content/text planning (“what to say”)

+ Content selection, basic ordering

[Content plan]

| Sentence planning/microplanning (“middle ground”)

+ aggregation, lexical choice, referring...

[Sentence plan(s)]

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)
[Input]
J Content/text planning (“what to say”)

+ Content selection, basic ordering

[Content plan]
| Sentence planning/microplanning (“middle ground”)

+ aggregation, lexical choice, referring...

[Sentence plan(s)]
1 Surface realization (“how to say it”)

« linearization according to grammar

[Text]

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)

Inputs

« Communication goal (e.g. “inform user about search results”)

+ Knowledge base (e.g. list of matching entries in database,
weather report numbers etc.)

+ User model (constraints, e.g. user wants short answers)
+ Dialogue history (referring expressions, repetition)

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)

Inputs

« Communication goal (e.g. “inform user about search results”)

+ Knowledge base (e.g. list of matching entries in database,
weather report numbers etc.)

+ User model (constraints, e.g. user wants short answers)
+ Dialogue history (referring expressions, repetition)

Content planning

+ Content selection according to communication goal
+ Basic structuring (ordering)

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)

Sentence planning (micro-planning)

+ Word and syntax selection (e.g. choose templates)
« Dividing content into sentences

.

Aggregation (merging simple sentences)

.

Lexicalization

Referring expressions

Ondrej Dusek Natural Language Generation

Introduction to NLG | Textbook NLG Pipeline

Standard NLG Pipeline (Textbook)

Sentence planning (micro-planning)

+ Word and syntax selection (e.g. choose templates)
« Dividing content into sentences

.

Aggregation (merging simple sentences)

.

Lexicalization

Referring expressions

Surface realization

+ Creating linear text from (typically) structured input
+ Ensuring syntactic correctness

Ondrej Dusek Natural Language Generation

Introduction to NLG | Real NLG Systems

Real NLG Systems

Few systems implement the whole pipeline

+ Systems focused on content planning with trivial surface
realization

+ Surface-realization-only, word-order-only systems
+ One-step (holistic) approaches
+ SDS: content planning done by dialogue manager

Ondrej Dusek Natural Language Generation

Introduction to NLG | Real NLG Systems

Real NLG Systems

Few systems implement the whole pipeline

+ Systems focused on content planning with trivial surface
realization

+ Surface-realization-only, word-order-only systems
+ One-step (holistic) approaches
+ SDS: content planning done by dialogue manager

Approaches

« Templates, Grammars, Rules, Statistics, or a mix thereof

Ondrej Dusek Natural Language Generation

Introduction to NLG | Real NLG Systems

Real NLG Systems

Few systems implement the whole pipeline

+ Systems focused on content planning with trivial surface
realization

+ Surface-realization-only, word-order-only systems
+ One-step (holistic) approaches
+ SDS: content planning done by dialogue manager

Approaches

« Templates, Grammars, Rules, Statistics, or a mix thereof

Data representations

« Varied, custom-tailored, non-compatible

Ondrej Dusek Natural Language Generation

Example NLG Systems

+ Spoken Dialogue System in
the flight information
domain

+ Handcrafted generator +
overgeneration

« Statistical reranker
(RankBoost) trained on
hand-annotated sentence
plans

implicitconfirmiorgcity:NEWARK) |
implicit-confirmidestcity: DALLAS) |
implicit<onfirm{menth:9) |
implicit-confirmiday-number:1) |
request(depart-time) |

drej Dusek

Sentence planning

Trainable Sentence Planning: SPoT

P
H Sentence Planner H

N - Y
Diog _ E g :} E’ | RailPro
System| (| |4 AN : ”) Realizer
\ J —_ \ J

]
Sp-trees with associated DSyntSs

Text Plan

Chosen sp—tree with associated DSyniS

Alt Realization
0 What time would you like to travel on
September the 1st to Dallas from Newark?

5 Leaving on September the 1st. What time
would you like to travel from Newark to Dal-
las?

8 Leaving in September. Leaving on the Ist.
What time would you, traveling from Newark
to Dallas, like to leave?

Natural Language Generation

H
5

45 .

(=

REB|
.85‘

U=—

Example NLG Systems = Sentence planning

Trainable Sentence Planning: Parameter Optimization

+ Requires a flexible handcrafed planner
+ No overgeneration
+ Adjusting its parameters “somehow”

Ondrej Dusek Natural Language Generation

u

Example NLG Systems = Sentence planning

Fal
Trainable Sentence Planning: Parameter Optimization

1 see, oh Chimichurri Grill is a latin american extra=2.50
place with sort of poor atmosphere. Although ~ ems=4.50
it doesn't have rather nasty food, its priceis ~ agree=3.50

. . 41 dollars. I suspect it's kind of alright. conse=4.75

+ Requires a flexible handcrafed planner open=425

. Did you say Ce-Cent’anni? [see, I mean, extra=4.75

° N o ove rge neration 1 Wf(zulddconsidfer 15 becaulfe it hgs gr(iiendly emS:S.ggS
. . . staff and tasty food, you know buddy. agree=6..

+ Adjusting its parameters “somehow” PR

Examples

+ Paiva&Evans: linguistic features annotated in corpus generated with
many parameter settings, correlation analysis

+ PERSONAGE-PE: personality traits connected to linguistic features via
machine learning

Ondrej Dusek Natural Language Generation

Example NLG Systems = Surface Realization

Grammar-based Realizers (90's): KPML, FUF/SURGE

KP M L (EXAMPLE

:NAME EX-SET-1
:TARGETFORM "It is raining cats and dogs."

« General purpose, :LOGICALFORM
. (A / AMBIENT-PROCESS :LEX RAIN
mult|l|ngual :TENSE PRESENT-CONTINUOUS :ACTEE
(C / OBJECT :LEX CATS-AND-DOGS :NUMBER MASS))
« Systemic Functional ’
Grammar

Natural Language Generation

Example NLG Systems = Surface Realization

Grammar-based Realizers (90's): KPML, FUF/SURGE

KP M L (EXAMPLE

:NAME EX-SET-1
:TARGETFORM "It is raining cats and dogs."

+ General purpose, {LOGICALFORM
. (A / AMBIENT-PROCESS :LEX RAIN
multlllngual :TENSE PRESENT-CONTINUOUS :ACTEE
(C / OBJECT :LEX CATS-AND-DOGS :NUMBER MASS))
« Systemic Functional)
Grammar Input Specification (1)
cat clause
type composite
FU F/SU RGE process relation posaeasive
tex “hand”
cat ETS_PTo
st [AT

+ General purpose I T |

« Functional Unification possessor |
vossessed
Grammar '

cat mp
lexr “drafi’

Output Sentence ($1): “She hands the draft to the editor”

Natural Language Generation

Example NLG Systems = Surface Realization

Grammar-based Realizer: OpenCCG

. General purpose &) XYY o= X
l'l'p FT ’ (<)Y X\Y = X
multi-lingua (>B) X/Y Y/ = X/zZ
- Combinatory Categorial (<B) YAZ X\Y = X\Z
G T X = Y/(Y\X)
rammar (<T) X = Y\(Y/X)
+ Used in several projects man - n
. . .. that F (n\n)/(Suorm=fin/NP)
With statistical Bob - np
enhancements SAW F (Stensempust.aformerin \NP) /0P
bi lten-lse:pr%:z info= r'} id= ;1 fomth idera) man that Bob saw
<Arg> £ ly num=sg det=the info=th 1 12 —_—
¥ hastrops creapest [konms 1denz] n (\n)/(s/me) e (s\ne)/np
<Prop> has- rel [id=n3] s/(s\np)
<Qf> £2 —_ B
<Airline> Ryanair [kon=+ id=n4] S/HP
n\n

Ondrej Dusek Natural Language Generation

Example NLG Systems

Surface Realization

Procedural Realizer: SimpleNLG

+ General purpose

+ English, adapted to several
other languages

+ Java implementation
(procedural)

Lexicon Texicon = new XMLLexicon("my-Texicon.xm1");
NLGFactory nlgFactory = new NLGFactory(lexicon);
Realiser realiser = new Realiser(lexicon);
SPhrasespec p = nlgFactory.createClause();
p.setsubject("mMary");

p.setverb("chase");

p.setobject("the monkey");

p.setFeature(Feature.TENSE, Tense.PAST);

String output = realiser.realiseSentence(p);
System.out.printTin(output);

>>> Mary chased the monkey.

fej Dusek

Natural Language Generation

Example NLG Systems = Surface Realization

Trainable Realizers: Overgenerate and Rank

+ Require a handcrafted realizer, e.g. CCG realizer
+ Input underspecified — more outputs possible
+ Overgenerate

+ Then use a statistical reranker

Ondrej Dusek Natural Language Generation

Example NLG Systems = Surface Realization

Trainable Realizers: Overgenerate and Rank

+ Require a handcrafted realizer, e.g. CCG realizer
+ Input underspecified — more outputs possible
+ Overgenerate

+ Then use a statistical reranker
+ Ranking according to:
+ n-gram models (NITROGEN, HALOGEN)
+ Tree models (XTAG grammar - FERGUS)
+ Predicted Text-to-Speech quality (Nakatsu and White)
+ Personality traits (extraversion, agreeableness... - CRAG)
+alignment (repeating words uttered by dialogue counterpart)

Ondrej Dusek Natural Language Generation

Example NLG Systems = Surface Realization

Trainable Realizers: Overgenerate and Rank

Require a handcrafted realizer, e.g. CCG realizer

.

Input underspecified — more outputs possible

.

Overgenerate

Then use a statistical reranker
Ranking according to:
+ n-gram models (NITROGEN, HALOGEN)
+ Tree models (XTAG grammar - FERGUS)
+ Predicted Text-to-Speech quality (Nakatsu and White)
+ Personality traits (extraversion, agreeableness... - CRAG)
+alignment (repeating words uttered by dialogue counterpart)

+ Provides variance, but at a greater computational cost

Ondrej Dusek Natural Language Generation

Example NLG Systems = Surface Realization

Trainable Realizers: Syntax-Based

+ StuMaBa: general realizer based on SVMs
+ Pipeline:

|} Deep syntax/semantics

J surface syntax

} linearization

J} morphologization

Ondrej Dusek Natural Language Generation

Example NLG Systems = Holistic NLG Approaches U

F\RL

Holistic NLG

Holistic NLG

+ Only one stage - no distinction
+ “Good enough” for limited domains, also in SDS

Ondrej Dusek Natural Language Generation

Example NLG Systems = Holistic NLG Approaches

Holistic NLG

Holistic NLG

+ Only one stage - no distinction
+ “Good enough” for limited domains, also in SDS

Template-based systems

+ Most common, also in commercial NLG systems

+ Simple, straightforward, reliable (custom-tailored for domain)
+ Lack generality and variation, difficult to maintain

« Enhancements for more complex utterances: rules

Ondrej Dusek Natural Language Generation

Example NLG Systems = Holistic NLG Approaches

Example: Templates

+ Just filling variables into slots
+ Possibly a few enhancements, e. g. articles

inform(pricerange="{pricerange}"): {user} shared {object-owner}'s {=album} {title}
'It is in the {pricerange} price range.' Motify user of a dose friend sharing content

affirmQ&inform(task="find")
&inform(pricerange="{pricerange}"): {user} is female. {ob

'ok, you are Tlooking for something in the'
+ ' {pricerange} price range.'

{user} sdiels {=album} ,{title}" ufivatele {object-owner} v | x

. . {user} sdiela {object-owner} ufvatele {=album}{title}
affirmQ&inform(area="{area}"): :) ’ ’ y v|x

'ok, you want something in the {area} area."'

+ New translation

affirmQ&inform(food="{food}")
&inform(pricerange="{pricerange}"):

'ok, you want something with the {food} food' Face bOOk tem plates
+ ' in the {pricerange} price range.'

inform(food="None") :

'I do not have any information'
+ ' about the type of food.'

Alex (English restaurant
domain)

Natural Language Generation

Example NLG Systems = Holistic NLG Approaches

Statistical Holistic NLG

« Limited domain

+ Based on supervised learning
(typically: MR + sentence + alignment)

« Typically: phrase-based

Ondrej Dusek Natural Language Generation

Example NLG Systems = Holistic NLG Approaches U

F\RL

Statistical Holistic NLG

+ Limited domain
+ Based on supervised learning
(typically: MR + sentence + alignment)

+ Typically: phrase-based ro—

our RULE — (CONDITION DIRECTIVE)

player CONDITION — (bowner TEAM {UNUM})
Examples Teast - our

the — UNUM — 4

+ BAGEL: Bayesian networks s
+ semantic stacks, ordering

+ Angeli et al.: log-linear model
+ records \ fields \ templates

« WASP~1: Synchronous CFGs
+ noisy channel, similar to MT

Ondrej Dusek Natural Language Generation

Our System = Overview

Our experiments: Two-Step NLG for SDS

Learning from unaligned data

+ Typical NLG training:

a) requires detailed alignments
of MR elements and words/phrases
b) uses a separate alignment step

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=ltalian)

alignment

X is an italian restaurant in the riverside area .
text

Ondrej Dusek Natural Language Generation

Our System = Overview

Our experiments: Two-Step NLG for SDS

Learning from unaligned data

+ Typical NLG training:

a) requires detailed alignments
of MR elements and words/phrases
b) uses a separate alignment step

+ Our generator learns alignments jointly

+ (with sentence planning)
+ training from pairs: MR + sentence

MR

inform(name=X, type=placetoeat, eattype=restaurant, area=riverside, food=lItalian)

X is an italian restaurant in the riverside area .

text

Ondrej Dusek Natural Language Generation

u

Our System = Workflow / data formats

F\RL

Overall workflow of our generator

* Input: a MR

+ here - dialogue acts: “inform” + slot-value pairs
+ other formats possible

Ondrej Dusek Natural Language Generation

u

Our System = Workflow / data formats

F\RL

Overall workflow of our generator

* Input: a MR

+ here - dialogue acts: “inform” + slot-value pairs
+ other formats possible

+ Step 1. - sentence planning

« statistical, our main focus

Ondrej Dusek Natural Language Generation

Our System = Workflow / data formats

Overall workflow of our generator

* Input: a MR
+ here - dialogue acts: “inform” + slot-value pairs
+ other formats possible

+ Step 1. - sentence planning

« statistical, our main focus

+ Sentence plan: deep-syntax dependency trees
+ based on TectoMT's t-layer, but very simplified
+ two attributes per tree node: t-lemma + formeme
+ using surface word order

+ Step 2. - surface realization

+ reusing Treex/TectoMT English synthesis (rule-based)

u

F\RL

Ondrej Dusek Natural Language Generation

Our System = Workflow / data formats

Overall workflow of our generator

* Input: a MR

+ here - dialogue acts: “inform” + slot-value pairs
+ other formats possible

+ Step 1. - sentence planning

« statistical, our main focus

+ Sentence plan: deep-syntax dependency trees

+ based on TectoMT's t-layer, but very simplified
+ two attributes per tree node: t-lemma + formeme
+ using surface word order

+ Step 2. - surface realization

+ reusing Treex/TectoMT English synthesis (rule-based)

+ Output: plain text sentence

u

F\RL

Ondrej Dusek Natural Language Generation

Our System = Workflow / data formats

Data structures used

inform(name=X, type=placetoeat,
eattype=restaurant, area=riverside, food=ltalian)

o
t-tree
%
be
v:fin
X-name restaurant
n:subj n:obj
italian area

adj:attr n:in+X

riverside
n:attr

X is an italian restaurant in the riverside area .

Our System = Two-step architecture

Why we keep the two-step approach

+ It makes the 1st - statistical - task simpler

+ no need to worry about morphology
+ this will be more important for Czech (and similar)

Ondrej Dusek Natural Language Generation

Our System = Two-step architecture

Why we keep the two-step approach

+ It makes the 1st - statistical - task simpler
+ no need to worry about morphology
+ this will be more important for Czech (and similar)
+ The 2nd step - rule based - can ensure grammatical
correctness

+ orat least it's more straightforward to fix when it doesn't

Ondrej Dusek Natural Language Generation

Our System = Two-step architecture

Why we keep the two-step approach

+ It makes the 1st - statistical - task simpler

+ no need to worry about morphology
+ this will be more important for Czech (and similar)

+ The 2nd step - rule based - can ensure grammatical
correctness
+ orat least it's more straightforward to fix when it doesn't
+ The realizer is (relatively) easy to implement and
domain-independent

+ +why not use it if we have it already in Treex/TectoMT

Ondrej Dusek Natural Language Generation

Our System = Two-step architecture

Downside of the two-step approach

+ We need to analyze training sentences into deep trees

Ondrej Dusek Natural Language Generation

Our System = Two-step architecture

Downside of the two-step approach

+ We need to analyze training sentences into deep trees

+ but we can do it easily using Treex
- t-layer analysis implemented for several languages
+ automatic annotation is good enough

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - overall

+ Two main components:

- candidate generator:
- churning out more and more sentence plan trees
« scorer/ranker for the candidates

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - overall

+ Two main components:

- candidate generator:
- churning out more and more sentence plan trees
« scorer/ranker for the candidates

+ A*-style search

+ incrementally finding the path

« from an empty tree
« to a full sentence plan tree which contains all information

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - overall

+ Two main components:

- candidate generator:
- churning out more and more sentence plan trees
« scorer/ranker for the candidates

+ A*-style search

+ incrementally finding the path

« from an empty tree
« to a full sentence plan tree which contains all information

+ using open_set, close_set - heaps sorted by score

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - workflow

+ Init: open_set = {empty tree}, close_set =@

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - workflow

+ Init: open_set = {empty tree}, close_set =@
» Loop:

1. gettop-scoring C < open_set
put C — close_set

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - workflow

+ Init: open_set = {empty tree}, close_set =@
» Loop:

1. gettop-scoring C < open_set
put C — close_set
2. € = candidate generator successors(C)
« viable trees, C + some node(s)
» Cmay be empty

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - workflow

+ Init: open_set = {empty tree}, close_set =@
» Loop:

1. gettop-scoring C < open_set
put C — close_set
2. € = candidate generator successors(C)
« viable trees, C + some node(s)
» Cmay be empty
3. scoreC’ V€' € C
put C' — open_set

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Sentence planner - workflow

+ Init: open_set = {empty tree}, close_set =@
» Loop:

1. gettop-scoring C < open_set
put C — close_set
2. € = candidate generator successors(C)
« viable trees, C + some node(s)
» Cmay be empty
3. scoreC’ V€' € C
put C' — open_set
4. check if top score(open_set) > top score(close_set)

+ Stopif:

a) close_set has better top score than open_set
for d consecutive iterations
b) there's nothing left on the open list (unlikely)

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

o, (o} (o}
t-tree t-tree t-tree
(&) - - -
t-tree e ° (o) (o)
be recommend serve
v:fin v:fin v:fin

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

(o} (o} (o}
t-tree t-tree t-tree
(&) o) - -
t-tree e (o) (o) (o)
be recommend serve
v:fin v:fin v:fin

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

Q, Q, Q,
t-tree t-tree t-tree
[}
t-tree
° v: f| n f| n V: f|n
be
v:fin
X-name restaurant restaurant
n:subj n:subj n:obj

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

Q, Q, Q,
t-tree t-tree t-tree
[}
t-tree
° Vi f| n f| n V: f|n
be
v:fin
X-name restaurant restaurant
n:subj n:subj n:obj

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator

+ Given a candidate plan tree, generate its successors
by adding 1 node (at every possible place)

[} [©) Q.
t-tree t-tree t-tree
be —s be be
v:fin v:fin\. v:fin\
X-name X-name restaurant X-name bar
n:subj n:subj n:obj n:subj n:obj

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator - limiting the space

+ Number of candidates very high even for small domains
+ We need to lower the number of “possible” successors

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Candidate generator - limiting the space

+ Number of candidates very high even for small domains

+ We need to lower the number of “possible” successors
+ Limiting by things seen in training data:

1.

t-lemma + formeme combination

2. parent-child combination
3.
4. treesize

number of children

« +atdepth levels
+ +giveninput MR
“weak” compatibility with input MR:
* nodes seen with current slot-values
“strong” compatibility with input MR:
« required slot-values for each node
(minimum seen in training data)

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Scorer

« afunction:
sentence plan tree t, MR m — real-valued score

- describes the fitness of t for m

Dusek Natural Language Generation

Our System = Sentence planner

Scorer

« afunction:
sentence plan tree t, MR m — real-valued score

- describes the fitness of t for m

Basic perceptron scorer

- score = w' -feat(t,m)

Dusek Natural Language Generation

Our System = Sentence planner

Scorer

« afunction:
sentence plan tree t, MR m — real-valued score

- describes the fitness of t for m

Basic perceptron scorer

- score = w' -feat(t,m)
+ Training:

+ given m, generate the best tree t;,, with current weights
+ update weights if top # ts0iq (gold-standard)

Dusek Natural Language Generation

Our System = Sentence planner

Scorer

« afunction:
sentence plan tree t, MR m — real-valued score

- describes the fitness of t for m

Basic perceptron scorer
- score = w' -feat(t,m)
+ Training:

+ given m, generate the best tree t;,, with current weights
+ update weights if top # ts0iq (gold-standard)

+ Update: w = w + « - (feat(tgoiq, m) — feat(tiop, m))

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees
+ + demoting subtrees of wrong generation outputs

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees
+ + demoting subtrees of wrong generation outputs
+ Update: find common subtree, start from it and update using

i i
pairs of subtrees t; ;. tiy,

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees
+ + demoting subtrees of wrong generation outputs
+ Update: find common subtree, start from it and update using
pairs of subtrees tgo,d, thop
Gold standard (fgo): Top generated f:
(6] o
ttree

be \
v:fin be
v:fin
restaurant
n: subj n:obj restaurant
¥ n: subj / n:obj
range

:in+X cheap italian

adj:attr adj:attr
price
n:attr

moderate
adj:attr

t- iree

Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees

+ + demoting subtrees of wrong generation outputs
+ Update: find common subtree, start from it and update using
pairs of subtrees t;, ;. tiop

g
Gold standard (fy):
e

t-tree

Top generated f:

Q@
t-tree

[
be ot Common
v:fin be subtree
v:fin (t,)
X restaurant o o
n:subj n:obj X restaurant
n:subj n:obj
P
range ./
:in+X cheap italian
adj:attr adj:attr
price
n:attr
moderate
adj:attr

Dusek Natural Language Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees
+ + demoting subtrees of wrong generation outputs
+ Update: find common subtree, start from it and update using
pairs of subtrees t/ . ti,,

g
Gold standard (tyq): Top generated f,:
[}
t-tree .
t-tree
[
be
be
o Q v:fin
X restaurant
X restaurant
n:subj n:obj
P
range
Gin+X cheap italian

adj:attr adj:attr

price
N 1
n:attr p thop

gold : :
moderate Differing subtrees for update
adj:attr

Dusek Natural age Generation

Our System = Sentence planner

Differing subtree updates

+ Features are global — bigger trees score better
+ need to promote “promising” incomplete trees
+ — promoting subtrees of gold-standard trees
+ + demoting subtrees of wrong generation outputs
+ Update: find common subtree, start from it and update using
pairs of subtrees t/ . ti,,

g
Gold standard (tyq): Top generated f,:
[}
t-tree .
t-tree
[
be
be
o Q v:fin
X restaurant
X restaurant
n:subj n:obj
P
range
iin+X cheap italian

adj:attr adj:attr

price
n:attr

moderate
adj:attr

+ regular full update

Natural Language Generation

Our System = Sentence planner

Future promise estimate

+ Further boost for incomplete trees

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Future promise estimate

+ Further boost for incomplete trees
+ Using expected number of children E.(n) of a node

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Future promise estimate

+ Further boost for incomplete trees
+ Using expected number of children E.(n) of a node

+ Future promise:
“how many children are missing to meet the expectation”

fc = Z max{0, Ec(n) — c(n)}

net

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Future promise estimate

+ Further boost for incomplete trees
+ Using expected number of children E.(n) of a node

+ Future promise:
“how many children are missing to meet the expectation”

fc = Z max{0, Ec(n) — c(n)}

net

+ over the whole tree
+ + multiplied by feature sum
+ +weighted

Ondrej Dusek Natural Language Generation

Our System = Sentence planner

Future promise estimate

+ Further boost for incomplete trees
+ Using expected number of children E.(n) of a node

+ Future promise:
“how many children are missing to meet the expectation”

fc = Z max{0, Ec(n) — c(n)}

net

+ over the whole tree
+ + multiplied by feature sum
+ +weighted

« used on the open_set, not close_set

+ not for perceptron updates, not for stopping generation

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realizer overview

+ English synthesis pipeline from Treex/TectoMT
+ domain-independent

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realizer overview

+ English synthesis pipeline from Treex/TectoMT
+ domain-independent

+ Mostly simple, single-purpose, rule-based modules (blocks)
« Word inflection: statistical (Flect)

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realizer overview

+ English synthesis pipeline from Treex/TectoMT
+ domain-independent
+ Mostly simple, single-purpose, rule-based modules (blocks)
« Word inflection: statistical (Flect)
+ Gradual transformation of deep trees into surface dependency

trees
+ Surface trees are then simply linearized

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realizer overview

+ English synthesis pipeline from Treex/TectoMT
+ domain-independent

+ Mostly simple, single-purpose, rule-based modules (blocks)
« Word inflection: statistical (Flect)

+ Gradual transformation of deep trees into surface dependency
trees

+ Surface trees are then simply linearized

+ Works OK: analysis — synthesis on our data = 89.79% BLEU

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan)

a-tree
zone=en_stepl

cat window
non
°

t-tree
zone=en_gen /
Jjump
/v fin \.

cat window
n:subj n:through+X

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) Y iree
+ Determine morphological agreement zone=en_step2

cat window

Sb Adv
°

t-tree
zone=en_gen /
Jjump
/v fin \.

cat window
n:subj n:through+X

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) R ree
+ Determine morphological agreement zone=en_step3
+ Add prepositions and conjunctions

jump

[\

cat through

Sb AuxP
°

t-tree

zone en_gen &
window
jump Adv

/vf.n\

cat window
n:subj n:through+X

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) Nree

+ Determine morphological agreement zone=en_step4
+ Add prepositions and conjunctions

+ Add articles fump

cat through

Sb AuxP
°
t-tree

zone=en_gen }V
the indow
jump AuxA [Adv

/vf.n\

cat window the
n:subj n:through+X AuxA

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) R ree

+ Determine morphological agreement zone=en_steps
+ Add prepositions and conjunctions

+ Add articles e

+ Compound verb forms (add auxiliaries) !Al\xj\\

cat have jump through

o !Sb AuxV Obj AuxP

t-tree

zone en_gen x
the window
jump AuxA

N F

cat window the
n:subj n:through+X AuxA

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan)

+ Determine morphological agreement

+ Add prepositions and conjunctions

+ Add articles

« Compound verb forms (add auxiliaries)
+ Punctuation

°
t-tree
zone=en_gen

7

jump
/v fin \.
cat window
n:subj n:through+X

Ondrej Dusek

a—~
a-tree~~_

zone=en_step6

would
!Auxv\y\Q AuxK

cat have jump through
!Sb AuxV Obj AuxP

the window
AuxA zAdv
the
AuxA

Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) ;\t\ree\
+ Determine morphological agreement zone=en step7
+ Add prepositions and conjunctions

+ Add articles would

+ Compound verb forms (add auxiliaries) A“XV\ AuxK
+ Punctuation \

« Word inflection cats have jumped through

°
t-tree

zone=en_gen \p
the window
jump AuxA

N P

cat window the
n:subj n:through+X AuxA

z AuxV Obj AuxP

Ondrej Dusek Natural Language Generation

Our System = Surface realizer

Surface realization example

+ Realizer steps (simplified):

+ Copy the deep tree (sentence plan) ;\t\ree\
+ Determine morphological agreement zone=en steps
+ Add prepositions and conjunctions

+ Add articles would

+ Compound verb forms (add auxiliaries) A“XV\ AuxK
+ Punctuation \

« Word inflection cats have jumped through
+ Capitalization o

t-tree

zone=en_gen \p
The window
jump AuxA

N P

cat window the
n:subj n:through+X AuxA

z AuxV Obj AuxP

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - data set

+ Restaurant recommendations from the BAGEL generator
+ restaurant location, food type, etc.

+ 404 utterances for 202 input dialogue acts (DAs)

+ two paraphrases for each DA

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - data set

+ Restaurant recommendations from the BAGEL generator
+ restaurant location, food type, etc.

+ 404 utterances for 202 input dialogue acts (DAs)

+ two paraphrases for each DA

+ Alignment provided, but we don't use it

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - data set

+ Restaurant recommendations from the BAGEL generator
+ restaurant location, food type, etc.

+ 404 utterances for 202 input dialogue acts (DAs)

+ two paraphrases for each DA

+ Alignment provided, but we don't use it
+ “Non-enumerable” information replaced by “X” symbol

+ restaurant names, postcodes, phone numbers etc.

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - features

+ Tailored for the input MR format

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - features

+ Tailored for the input MR format
+ Basic feature types:

+ tree properties (size, depth...)

« tree +input DA (nodes per slot-value pair...)

+ node features

« input DA feautres (slots, values, pairs of slots)
+ node +input DA features

+ repeat features (repeated nodes/slots/values)
+ dependency features (parent-child)

+ siblings features (+DA)

+ bigram features (+DA)

Ondrej Dusek Natural Language Generation

Our System = Experiments

Experiments - features

+ Tailored for the input MR format
+ Basic feature types:

+ tree properties (size, depth...)

« tree +input DA (nodes per slot-value pair...)

+ node features

« input DA feautres (slots, values, pairs of slots)
+ node +input DA features

+ repeat features (repeated nodes/slots/values)
+ dependency features (parent-child)

+ siblings features (+DA)

+ bigram features (+DA)

« Typical case: counts over whole tree

« normalized

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ Using 10-fold cross-validation, measuring BLEU/NIST

+ training DAs never used for testing
+ using 2 paraphrases for BLEU/NIST measurements

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ Using 10-fold cross-validation, measuring BLEU/NIST

+ training DAs never used for testing
+ using 2 paraphrases for BLEU/NIST measurements

Setup BLEU NIST
basic perceptron 54.24 4.643
+diff-tree updates 58.70 4.876
+ future promise 59.89 5.231

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ Using 10-fold cross-validation, measuring BLEU/NIST

+ training DAs never used for testing
+ using 2 paraphrases for BLEU/NIST measurements

Setup BLEU NIST
basic perceptron 54.24 4.643
+diff-tree updates 58.70 4.876
+ future promise 59.89 5.231

« less than BAGEL's ~ 67% BLEU

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ Using 10-fold cross-validation, measuring BLEU/NIST

+ training DAs never used for testing
+ using 2 paraphrases for BLEU/NIST measurements

Setup BLEU NIST
basic perceptron 54.24 4.643
+diff-tree updates 58.70 4.876
+ future promise 59.89 5.231

+ less than BAGEL's ~ 67% BLEU
« But:
« we do not use alignments

+ our generator has to know when to stop (whether all
information is already included)

Ondrej Dusek Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near,
food=Continental, food=French)

Reference X is a French and continental restaurant near X.

Generated Xis a French and continental restaurant near X.

fej Dusek Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near,
food=Continental, food=French)

Reference Xis a French and continental restaurant near X.

Generated Xis a French and continental restaurant near X.

Input DA inform(name=X-name, type=placetoeat, area=riverside, near=X-near,
eattype=restaurant)

Reference Xrestaurantis near X on the riverside.

Generated Xis arestaurantin the riverside area near X.

Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near,
food=Continental, food=French)

Reference Xis a French and continental restaurant near X.

Generated Xis a French and continental restaurant near X.

Input DA inform(name=X-name, type=placetoeat, area=riverside, near=X-near,
eattype=restaurant)

Reference Xrestaurantis near X on the riverside.

Generated Xis arestaurantin the riverside area near X.

Input DA inform(name=X-name, type=placetoeat, area=X-area,
pricerange=moderate, eattype=restaurant)

Reference Xis a moderately priced restaurantin X.

Generated Xis arestaurantin the X area.

Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant, near=X-near,
food=Continental, food=French)

Reference Xis a French and continental restaurant near X.

Generated Xis a French and continental restaurant near X.

Input DA inform(name=X-name, type=placetoeat, area=riverside, near=X-near,
eattype=restaurant)

Reference Xrestaurantis near X on the riverside.

Generated Xis arestaurantin the riverside area near X.

Input DA inform(name=X-name, type=placetoeat, area=X-area,
pricerange=moderate, eattype=restaurant)

Reference Xis a moderately priced restaurantin X.

Generated Xis arestaurantin the X area.

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=riverside, food=French)

Reference Xis a French restaurant on the riverside.

Generated Xis a French restaurant in the riverside area which serves French food.

Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
pricerange=moderate, area=X-area, food=Contemporary,
food=English)

Reference Xis a moderately priced English contemporary restaurant in X.

Generated Xis an English restaurant in the X area which serves expensive food

in the moderate price range located in X.

Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
pricerange=moderate, area=X-area, food=Contemporary,
food=English)

Reference Xis a moderately priced English contemporary restaurant in X.

Generated Xis an English restaurant in the X area which serves expensive food

in the moderate price range located in X.

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=citycentre, near=X-near, food=“Chinese takeaway”,
food=Japanese)

Reference Xis a Chinese takeaway and Japanese restaurant in the city centre near X.

Generated Xis a Japanese restaurant in the centre of town near X and X.

fej Dusek Natural Language Generation

Our System = Results

Example Outputs

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
pricerange=moderate, area=X-area, food=Contemporary,
food=English)

Reference Xis a moderately priced English contemporary restaurant in X.

Generated Xis an English restaurant in the X area which serves expensive food

in the moderate price range located in X.

Input DA inform(name=X-name, type=placetoeat, eattype=restaurant,
area=citycentre, near=X-near, food=“Chinese takeaway”,
food=Japanese)

Reference Xis a Chinese takeaway and Japanese restaurant in the city centre near X.

Generated Xis a Japanese restaurant in the centre of town near X and X.

Input DA inform(name=X-name, type=placetoeat, pricerange=moderate,
eattype=restaurant)

Reference Xis a restaurant that offers moderate price range.

Generated Xis a restaurant in the moderate price range.

fej Dusek Natural Language Generation

Our System = Results

Results

+ The outputs are mostly fluent and meaningful/relevant

« Sometimes identical to reference
+ More often original (unseen) paraphrases

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ The outputs are mostly fluent and meaningful/relevant

« Sometimes identical to reference
+ More often original (unseen) paraphrases

+ Alignment can be learnt together with sentence planning

Ondrej Dusek Natural Language Generation

Our System = Results

Results

+ The outputs are mostly fluent and meaningful/relevant

« Sometimes identical to reference
+ More often original (unseen) paraphrases

+ Alignment can be learnt together with sentence planning

- Differing tree updates + future promise bring significant
improvements

Ondrej Dusek Natural Language Generation

Our System = Results

Results

.

The outputs are mostly fluent and meaningful/relevant
« Sometimes identical to reference
+ More often original (unseen) paraphrases

Alignment can be learnt together with sentence planning

Differing tree updates + future promise bring significant
improvements
Errors:

+ information missing

« information is repeated
« irrelevant information

— Scoring should be improved (?)

Ondrej Dusek Natural Language Generation

Our System = Conclusion

What to do to make it better?

+ Larger training set - better weight estimates
+ Refine features?

+ Using neural networks

+ no need for sophisticated features
+ probably will be faster

Ondrej Dusek Natural Language Generation

odusek@ufal.mff.cuni.cz

Our System = Conclusion

What to do to make it better?

+ Larger training set - better weight estimates
+ Refine features?

+ Using neural networks

+ no need for sophisticated features
+ probably will be faster

+ Any suggestions?

Ondrej Dusek Natural Language Generation

odusek@ufal.mff.cuni.cz

Our System = Conclusion

What to do to make it better?

+ Larger training set - better weight estimates
+ Refine features?

+ Using neural networks

+ no need for sophisticated features
+ probably will be faster

+ Any suggestions?

Thank you for your attention

Contact me:
odusek@ufal.mff.cuni.cz, office 424

Ondrej Dusek Natural Language Generation

odusek@ufal.mff.cuni.cz

References

References

Angeli Angeli, G. et al. 2010. A Simple Domain-Independent Probabilistic Approach to Generation. EMNLP

BAGEL Mairesse, F. et al. 2010. Phrase-based statistical language generation using graphical models and active
learning. ACL

CRAG Isard, A. et al. 2006. Individuality and alignment in generated dialogues. INLG

FERGUS Bangalore, S. and Rambow, O. 2000. Exploiting a probabilistic hierarchical model for generation. COLING

Flect Dusek, O. and Jurcicek, F. 2013. Robust Multilingual Statistical Morphological Generation Models. ACL-SRW

FUF/SURGE Elhadad, M. and Robin, J. 1996. An overview of SURGE: A reusable comprehensive syntactic realization
component.

http://www.cs.bgu.ac.i1/surge/

HALOGEN Langkilde-Geary, I. 2002. An empirical verification of coverage and correctness for a general-purpose
sentence generator. INLG

KPML Bateman, J. A. 1997. Enabling technology for multilingual natural language generation: the KPML
development environment. Natural Language Engineering
http://purl.org/net/kpml

OpenCCG White, M. and Baldrige, J. 2003. Adapting Chart Realization to CCG. ENLG
Moore, J. et al. 2004. Generating Tailored, Comparative Descriptions in Spoken Dialogue. FLAIRS
http://openccg.sourceforge.net/

Nakatsu&White Nakatsu, C. and White, M. 2006. Learning to say it well: reranking realizations by predicted synthesis
quality. COLING-ACL

NITROGEN Langkilde, I. and Knight, K. 1998. Generation that exploits corpus-based statistical knowledge. ACL-COLING

Natural Lan

http://www.cs.bgu.ac.il/surge/
http://purl.org/net/kpml
http://openccg.sourceforge.net/

References

References

Paiva&Evans Paiva, D. S. and Evans, R. 2005. Empirically-based control of natural language generation. ACL

PERSONAGE-PE Mairesse, F. and Walker, M. 2008. Trainable generation of big-five personality styles through data-driven
parameter estimation. ACL

RL-NLG Rieser, V. and Lemon, 0. 2010. Natural language generation as planning under uncertainty for spoken
dialogue systems. EMNLP

SimpleNLG ~ Gatt, A. and Reiter, E. 2009. SimpleNLG: A realisation engine for practical applications. ENLG
SPoT Walker, M. et al. 2001. SPoT: A trainable sentence planner. NAACL

StuMaBa Bohnet, B. et al. 2010. Broad coverage multilingual deep sentence generation with a stochastic multi-level
realizer. COLING

TectoMT Zabokrtsky, Z. et al. 2008. TectoMT: highly modular MT system with tectogrammatics used as transfer layer.

wMT
Textbook Reiter, E. and Dale, R. 2000. Building natural language generation systems. Cambridge Univ. Press
Treex Popel, M. and Zabokrtsky, Z. 2010. TectoMT: modular NLP framework. IceTAL

http://ufal.cz/treex

WASP—1 Wong, Y. W. and Mooney, R. 2007. Generation by inverting a semantic parser that uses statistical machine
translation. NAACL-HLT

Further Links

C. DiMarco's slides: https://cs.uwaterloo.ca/~jchampai/Cohenclass.en.pdf

F. Mairesse's slides: http://people.csail.mit.edu/francois/research/papers/ART-NLG.pdf
J. Moore's NLG course: http://www.inf.ed.ac.uk/teaching/courses/nlg/

NLG Systems Wiki: http://www.nlg-wiki.org

Wikipedia: http://en.wikipedia.org/wiki/Natural_language_generation

Natural Lan

http://ufal.cz/treex
https://cs.uwaterloo.ca/~jchampai/CohenClass.en.pdf
http://people.csail.mit.edu/francois/research/papers/ART-NLG.pdf
http://www.inf.ed.ac.uk/teaching/courses/nlg/
http://www.nlg-wiki.org
http://en.wikipedia.org/wiki/Natural_language_generation

	Overview
	Introduction to NLG
	Textbook NLG Pipeline
	Real NLG Systems

	Example NLG Systems
	Sentence planning
	Surface Realization
	Holistic NLG Approaches

	Our System
	Overview
	Workflow / data formats
	Two-step architecture
	Sentence planner
	Surface realizer
	Experiments
	Results
	Conclusion

	References

