
MASTER THESIS

Micha de Rijk

Codenames: a practical application for
modelling word association

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. David Mareček, PhD.
Dr. Gosse Bouma

Study programme: Computer Science
Study branch: Computational Linguistics

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Here I want to thank everyone who helped me on the road to completing this
thesis. I would not have managed it without your help, support and encourage-
ment.

First, I would like to thank my local supervisor David Mareček for his patience
and excitement for this thesis and for all the invaluable feedback and ideas he
gave me throughout. I would also like to thank Gosse Bouma, my supervisor
from Groningen, for his interesting suggestions.

I am grateful to all my friends who supported me throughout my time in
Prague. I would like to thank Mei for the adventurous hikes, studying together
for difficult exams and keeping me sane when times were tough. Thank you
Nastya for your much needed advice and skepticism, you taught me a lot about
myself. I would also like to thank Akshay for sharing his experiences with me
and the many games of pool, you made me feel much better about myself. I am
thankful to Rupal for the many walks, always having time to talk and dragging
me to new places. Lastly, I want to thank my dear friend Taico for believing in
me and providing the work space in which most of this thesis was written.

ii

Title: Codenames: a practical application for modelling word association

Author: Micha de Rijk

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. David Mareček, PhD., Institute of Formal and Applied Lin-
guistics, Dr. Gosse Bouma, Faculty of Arts

Abstract: Word association is an important part of human language. Many
techniques for capturing semantic relations between words exist, but their ability
to model word associations is rarely tested. We introduce the game of Codenames
with one human player as a word association task to evaluate how well a language
model captures this information. We establish the baseline f-score of 0.362 and
explore the performance of several collocations and word embedding models on
this task. Our best model uses fastText word embeddings and achieves an f-score
of 0.789 for Czech and 0.751 for English.

Keywords: computational word association, codenames, pointwise mutual infor-
mation, word embeddings

iii

Contents

1 Introduction 3
1.1 Word association . 3
1.2 Codenames . 4

1.2.1 A single human player . 6
1.3 Structure of the thesis . 6

2 Background & Literature 7
2.1 Word embeddings . 7
2.2 Information theory measures . 8
2.3 Association databases . 9

2.3.1 WordNet . 9
2.3.2 University of South Florida Free Association Norms 10

2.4 Previous work on computational word association 10

3 Methods 12
3.1 Game . 12

3.1.1 Hint filter . 12
3.2 Word embeddings . 13
3.3 Collocations . 14

3.3.1 Sentence-level bigrams . 15
3.4 Dependency-level collocations . 16

3.4.1 Low frequency words . 16
3.5 Aggregation . 18

3.5.1 CombinedMax . 19
3.5.2 MeanDiff . 20
3.5.3 Gensim - most similar . 20
3.5.4 Top-n . 21

3.6 Example game . 21

4 Implementation 26
4.1 Login . 26
4.2 Menu . 27
4.3 Game . 28

4.3.1 AI names . 29
4.4 Hall of Fame . 29

4.4.1 Lexicon . 30
4.5 Collocations . 30

5 Results 32
5.1 Baseline . 32

5.1.1 Distribution of decisions 33
5.2 Initial models . 34

5.2.1 Word embeddings . 34
5.2.2 Collocations . 35
5.2.3 Distribution of decisions 35

1

5.3 Improved models . 36
5.4 Analysis of similarity scores . 38

5.4.1 PMI experiment . 38
5.4.2 Annotator results . 38
5.4.3 Empirical results for PMI 41
5.4.4 Empirical results for cosine similarity 43
5.4.5 Empirical thresholds . 46

5.5 Ensemble models . 48
5.5.1 Threshold models . 48
5.5.2 Combined models . 50

6 Conclusion 53
6.1 Future Work . 54

Bibliography 55

List of Figures 56

List of Tables 58

List of Abbreviations 59

A Attachments 60
A.1 Lexicon for Czech . 60
A.2 Lexicon for English . 63
A.3 Similarity scores . 65
A.4 Distribution of decisions . 69

2

1. Introduction
In recent years a lot of progress has been made in the field of distributional
semantics. Since the introduction of word embeddings many improvements and
variations have been made to try to capture as much information as possible.
While word embeddings are great at capturing semantic similarity, human word
association is not limited to this type of relation alone. The words ice and cream
in a collocate such as ice cream and co-hyponyms like knife and fork are just as
well associated with one another as synonyms such as autumn and fall.

It would be useful to know whether our current language models such as word
embeddings and collocations can adequately capture these associations. For this
purpose we introduce a new word association task called Codenames, based on a
popular word association game of the same name.

We are aware of one earlier attempt in this area by Obrtĺık [2018]. We improve
upon their work by simplifying the task to a game with only one human player
and a word association model. To show whether such a task is a good test of a
language model, we build several models that try to capture these associations
using different techniques and evaluate their performance on the task.

Our aim is to 1) turn the game of Codenames into a word association task
suitable for the evaluation of computational models of word association and 2)
evaluate the performance of several baseline models.

We cover the different types of word associations more extensively in Sec-
tion 1.1. The basics of the game are discussed in Section 1.2 along with the
simplification to one human player. The structure of this thesis is explained in
Section 1.3.

1.1 Word association
Word association is the mental network through which we associate words words
with one another. Words can be associated in several ways:

• Synonym: A synonym is a word that expresses the same concept as an-
other word. For example boat and ship, which are both used to denote a
vessel for traveling on water.

• Hypernym: We say that A is a hypernym of B if A describes a set of
concepts that B belongs to. For example, fruit is a hypernym of apple
because apple belongs to the set of objects described by the word fruit.

• Hyponym: The opposite of a hypernym. A is a hyponym of B if A belongs
to the set of concepts expressed by B. The word apple is a hyponym of fruit,
because apple is a type of fruit.

• Co-hyponym: The co-hyponym relation refers to words that have a hy-
pernym in common such as knife and fork which are both hyponyms of the
word utensil.

3

• Meronym: A meronym is a word that is a part or member of another. For
example, sentence is a meronym of text, because a sentence is usually part
of a text.

• Holonym: A holonym is the opposite of a meronym. Text is a holonym of
the word sentence.

• Collocate: A collocation is a set of words that co-occur together more
often than would be expected by random chance. The individual memebers
of such a set are called collocates. For example, the individual words code
and source are collocates because of their frequent co-occurrence in the
compound word source code.

Word associations can vary in strength based on the direction of association.
For example, the word Eiffel would be very strongly related to the word tower :
when someone says Eiffel, tower immediately springs to mind. However, this
relation does not hold as strongly when inverted. If someone says tower, words
like building and tall spring to mind much more quickly than Eiffel. Similarly,
brick is related to tower, but not to Eiffel. As such, word association cannot be
treated as a symmetric relation.

Modelling these different types of word associations computationally is very
challenging. There are many ways in which words can be associated. Gathering
all of these associations for each individual word in a language is an immense
task. In fact, we argue that it is infeasible to encode all such relations in manually
constructed ontologies and databases. (see Section 2.3 for more discussion on this
topic)

As a result, we will have to use a different source for our relations and find a
way to extract them that does not require manual annotation. There exist several
unsupervised methods which solve this problem using large amounts of text as a
source. We explore two of these methods in this thesis, namely word embeddings
and collocations.

1.2 Codenames
The task of word association is the retrieval of associated lexical items in response
to a word prompt. In order to make this task more appealing to participants, we
test word association in the context of a word association game called Codenames.

Codenames is a word association board game created by Vlaada Chvátil. 1

It is played in two teams of 2 or more players, each team has one spymaster and
one or more agents. The game board consists of 25 cards with a word written
on it. There are nine cards that belong to the team that starts the game, eight
that belong to the opposing team, seven neutral cards and one assassin card,
which loses the game for the team that selects it. Both spymasters get to see
which cards belong to which team, but the agents do not. Each turn one of the
spymasters gives a hint2 to their agents for one or more cards that belong to
their team. The spymaster also gives a number that signals to how many of their

1https://czechgames.com/en/codenames/
2Hints are referred to as clues in the board game

4

https://czechgames.com/en/codenames/

own cards the hint is related. The agents then proceeds to guess cards until they
select one that does not belong to their team or they voluntarily end their turn
because they do not see any more cards that are related to the hints that their
spymaster has given.

The goal of the game is to turn over all of the cards that belong to your team.
As a spymaster you help achieve this goal by giving hints to your agents that are
as associated with your own cards and unambiguous as possible. As an agent you
will try to turn over as many cards of your own team using the hints given by
your spymaster, without selecting any cards that do not belong to your team and
avoiding the assassin at all cost. The game ends when either team has turned
over all of their cards, in which case that team wins, or one of the teams has
selected the assassin in which case that team loses.

Figure 1.1: A regular game of Codenames3

A regular game of Codenames along with the board pieces used to play the
game can be seen in Figure 1.1. The blue and red spy cards are used to cover
words that have been selected during the game. In the picture the spymaster is
holding the card that shows which cards belong to which team. The blue lights
on the side of the card indicate that the blue team starts the game and therefore
has 9 cards to turn over while the red team has only 8 cards they need to turn
over in order to win the game.

There are some restrictions to the hint that the spymaster can give:

– The hint has to be one word. In other words, any word with a space or
hyphen is invalid. The compound word checkpoint is a valid hint, even
though it consists of two separate morphemes check and point. The words
part-time and lottery ticket are not.

– The hint cannot contain part of a compound word that is on the board. If
one of the cards on the table that has not been selected yet is snowman, it
disallows hints such as snow, man and snowball.

– The hint cannot be any morphologically related form of a visible word on

5

the board. If one of the on the table is fly and it has not been selected yet,
it disallows hints such as fly, flown, flight and butterfly.

The game has some additional rules that we will not explain here because we
do not use them in our implementation of the game. The rules that are excluded
either complicate the analysis of the results without good reason or make the
game less enjoyable to play, which contradicts the purpose of using a game to
increase the willingness of participants to take part in the experiment.

Now for the part of the game that is most relevant for this thesis: the hints.
The aim of the spymaster is to provide hints that are related to the cards belonging
to their team. When playing the game with other people, it can already be
exciting to give a good hint for multiple words, say mozart, 3, and even more
so to correctly guess symphony, concert and piano when you get this hint as an
agent. What if we could build a computational model that gives such hints?

The game is available in many languages, but we focus our efforts on En-
glish and Czech because these languages are well represented in our group of
participants.

1.2.1 A single human player
There also exists a two player variant, which is detailed in the rule book of the
board game.4 We adapt this two player version into a version for one human
player and one AI by replacing the player who plays as spymaster by an AI who
selects hints using a word association model.

The game is made more regular by putting the AI and the player on the same
team and introducing a dummy team that opposes them. The dummy team turns
over one of their own cards during their turn and then passes the game back to
the player.

In this variant, the player is always on the starting team. This way they start
with 9 cards instead of 8, which means they will have to guess more cards so we
get more data. This also makes the game more regular by not randomly letting
either the dummy or the player’s team start, which would introduce another
unnecessary factor that we would have to take into account during the analysis.

1.3 Structure of the thesis
We first discuss the theoretical background necessary for the Codenames word as-
sociation task in Chapter 2, such as the rules of the game and different approaches
to computational models of word association. We then discuss the structure of
our models, including data used and relevant techniques such as aggregation in
Chapter 3. In Chapter 4 we give a brief overview of the application and the impli-
cations that some implementation details have for our experiments. In Chapter 5
we provide a detailed analysis of the performance of several collocation and word
embedding models, a comparison between collocation methods based on sentence-
level and dependency-level bigrams and two attempts at a good ensemble model.
In Chapter 6 we provide a concise overview of our findings and mention several
promising directions for future research.

4https://czechgames.com/files/rules/codenames-rules-en.pdf

6

https://czechgames.com/files/rules/codenames-rules-en.pdf

2. Background & Literature
In this section we introduce the theoretical background on which our models
are based. We first introduce the notions of word embeddings in Section 2.1
and pointwise mutual information in Section 2.2. We then discuss two manual
approaches of encoding word association in Section 2.3 and conclude with a sum-
mary of a similar work by Obrtĺık [2018] who explored a word embedding model
for Codenames with two human players in Section 2.4.

2.1 Word embeddings
We start with a fixed vocabulary V, with n = |V |. For every word in V we can
create a one-hot encoding, which is an n-dimensional vector with many 0s and one
1 representing the word. These one-hot encodings do not have any overlapping
1s amongst each other in any of the dimensions. However, many words are
semantically related, like dog and cat, since they are both animals. The idea is to
condense these one-hot vectors into a shorter d-dimensional vector. These vectors
are called word embeddings.

To create such word embeddings efficiently, Mikolov et al. [2013] introduce
the skip-gram model with negative sampling. Since then many additions to this
technique have been proposed, such as adding topic information [Liu et al., 2015]
or deriving the embeddings from dependency-based contexts [Levy and Goldberg,
2014]. For our word association model we use word embeddings enriched with
subword information as described by Bojanowski et al. [2017]. This method
is called fastText and adapts the skip-gram model with negative sampling to
represent a word as a combination of the character n-grams it contains.

w(t)

Input Hidden layer Output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 2.1: Schematic of a skip-gram model, adapted from Mikolov et al. [2013]

The original skip-gram model works by training a network with one hidden
layer and a softmax layer to perform a multi-class classification task. For a given
input word w, the task is to predict for each word in the vocabulary the probability
that this word occurs in the context of w. Figure 2.1 provides a general picture
of a skip-gram model. The input is represented by w(t), the word at position t in

7

the training corpus. The hidden layer is the d-dimensional vector that we want
to train and w(t − 2), w(t − 1), w(t + 1) and w(t + 2) represent the surrounding
words that the model has to predict.

Negative sampling proposed by Mikolov et al. [2013] speeds up this process
significantly by simplifying the task to a binary classification task. We take a
set of positive words from the context, given a certain window size and we take
a subset of negative words that do not occur in the context, sampled randomly
from the vocabulary. These samples provide the supervised data for the binary
decision task that we use to train the model. The model gets an input word w
and has to predict for each word in the sample whether it occurs in the context
of w or not. Based on this task it learns a representation for each word, encoded
in the hidden layer of the network.

Bojanowski et al. [2017] expand on this by representing a word not as a single
vector, but through the sum of the vectors of its character n-grams. To obtain
these n-gram vectors, we start by adding symbols < and > to mark word bound-
aries to distinguish suffixes and prefixes from characters sequences that occur in
the middle of a word. We then extract all n-grams for 3 >= n <= 6 and learn the
vector representations for each character n − gram. After this we can calculate
a word vector by summing the vector representations of its individual character
n-grams.

The benefit of this approach is that the representations of character n-grams
are global and shared between all words, so we obtain more accurate representa-
tions for rare words.

2.2 Information theory measures
Pointwise mutual information (PMI) is a measure of assciation used to find
collocations, i.e. groups of two or more words that co-occur more often in a
text than would be expected from random chance. Given two words a, b, we
define p(a, b) as the probability that b occurs after a, we calculate this using
p(a, b) = count(a,b)∑

x,y∈T
count(x,y) , where T is the set of words seen in the text and

count(x, y) is the number of times y occurs after x. p(a) is the chance of see-
ing a word x in the text, we calculate this probability using p(a) = count(a)∑

x∈T
count(x) .

We then define the measure of pointwise mutual information as follows:

PMI(a, b) = log2
p(a, b)

p(a)p(b) (2.1)

Church and Hanks [1990] lay the ground work for computational word as-
sociation as a replacement for extracting word associations from participants in
psycholinguistic experiments. They use pointwise mutual information to extract
related words from the COBUILD corpus. They provide a thorough analysis of
the relations encoded by their model, but they lack an evaluation of their model
in regards to word associations made by humans.

Information theory offers several other measures of association that capture
the distributional characteristics of words in a text. Wettler and Rapp [1993]
explore several of these association measures and also evaluate their results by

8

comparing the predictions of their system to responses elicited from a group of
students. They do so for both English and German and their system achieves
performance comparable to that of the average individual in the group of students.

More recently, Enguix et al. [2014] have used a simple graph-based algorithm
to extract simple bigram counts. They filter the corpus to include only lemma-
tized adjectives, nouns and verbs and construct a graph with the words as nodes
and weighted edges. The weight of an edge is determined by the number of times
the two words (nodes) co-occur in the text. They compare the predictions made
by their system to responses elicited from a group of 100 students and achieve
impressive results: the associations made by the system overlap with associations
made by the group of students slightly more often than the associations made by
the average student of the group. The number of subjects that answered with the
prediction made by the system was 6.2 on average, while the number of other sub-
jects that come up with the answer of an average test person is 5.8. Associations
made by their system include frustration given anger and taste for bitter.

In this work we will continue the trend of using information theoretic measures
to model word association. We will use pointwise mutual information to extract
collocates from a large corpus of text. The novelty of our approach compared to
previous work is that we will evaluate the performance of these models on the
word association game Codenames.

2.3 Association databases
One of the interesting approaches for computational word association that we
considered is the use of ontologies and databases. We could rely completely on
the word associations provided by manually entered data to build our models.
We detail two of these approaches below.

2.3.1 WordNet
WordNet is a collection of synsets grouped into a semantic hierarchy. [University,
2010] A synset is a collection of one or more words with the same meaning, i.e.
synonyms. The synsets, hypernyms and hyponyms that WordNet captures can
provide good candidates for word association. Because of the information it
encodes, it excels at strict relations such as hypernyms, hyponyms, meronyms
and holonyms. This would be a great addition to our application and a fruitful
area for future research. For example when considering countries, continent would
be a useful hint when both Africa and are given Australia. However, it falls flat
when considering more free associations such as Frodo and ring, which cannot be
classified as either hypernym, hyponym, meronym or holonym and are thus not
captured in WordNet. We therefore prefer several data-driven methods such as
word embeddings and pointwise mutual information, which we explore in the rest
of the thesis.

WordNet is not suitable for our purposes because it does not capture as many
relations as we would like and is not as extensible as data-driven methods, which
might capture even pop culture references such as the relation between Frodo and
ring.

9

2.3.2 University of South Florida Free Association Norms
The University of South Florida Free Association Norms is a database of free
associations containing 72,000 word pairs collected from almost 750,000 responses
produced by over 6,000 participants. More than 5,000 stimulus words were tested.
[Nelson et al., 2004] While this is a great resource for human responses on word
association, it has too many gaps to be suitable for a computational model.
Even when we look at all the responses in addition to the 5,000 stimulus words,
words occur in the original Codenames board game such as Amazon, Greece and
horseshoe do not occur in the database at all. These gaps can only be filled by
repeating the experiment with these words as stimulus words. Moreover, this
database exists only for English, limiting the applicability of this approach for
other languages.

Although it is not suitable as a basis for a computational model, it is useful
as a resource on human word associations. The database of word associations
could be used to compare how similar the predictions made by a computational
model are to human-level associations. While we do not perform this particular
comparison in this thesis, it could serve as an interesting evaluation metric for
future work.

We find that ontologies and association databases have too many blind spots
and consistently fail to encode unorthodox or out-of-the-box relations that would
nonetheless be considered valid associations by humans. For example, the word
Frodo is present in neither WordNet nor the database of University of South
Florida Free Association Norms.

2.4 Previous work on computational word asso-
ciation

We are aware of one other paper in the computational word association literature.
Obrtĺık [2018] explores a word embedding model for Codenames in a setting with
two human players playing against each other with the same AI. Their model
is based on fastText word embeddings trained on the CWC-2011 which contains
more than 2.6 billion words. They use Gensim’s most similar method with several
combinations of the player’s own words as the positive words and the assassin as
negative word. The combinations consist of all possible permutations of the set
of words belonging to the player’s team. This way they can theoretically generate
a hint for up to 9 words. The highest number of target words they achieve is 6,
which the model attempted 9 times with an average of 2.2 cards guessed and an
accuracy of 60.74%. After using the most similar method, they select the best
possible hint by scoring each hint using a combination of weights for each type
of card, the number of co-occurrences and the cosine similarity for the hint and
each target word. They achieve a precision of 85.98% and for one word hints, a
precision of 71% for two word hints and 66.8% for three word hints. The precision
of their model across all hints was 72.9%.

The paper provides a thorough quantitative analysis of the model for Czech.
We expand on their work by considering both English and Czech and exploring a
wider range of models. We investigate a model based on dependency collocations
alongside alterations of the fastText word embeddings model. We also adapt the

10

game to a variant requiring only one human player by substituting the oppos-
ing team with a predictable, pre-programmed opponent in order to reduce the
complexity of the game.

11

3. Methods
In this chapter we present several different methods for generating hints and dis-
cuss what is needed to generate good hints for the game using these models. We
start with an explanation of the lexicon and hint filter in Section 3.1. We then
focus on the extraction of similarity scores from word embeddings in Section 3.2
and collocations in Section 3.3. We expand on our collocations method by limit-
ing the extraction of bigrams by words connected through dependency edges in
Section 3.4.

The task of a word association model is to provide the set of most related words
ordered by similarity for a given word. In the context of Codenames this notion
is extended to providing the most (un)related hint given a set of target words
(positive) and a set of words that the model must avoid hinting at (negative).
First we use the model to calculate similarity scores for each positive word and
negative word. Then we weight and aggregate them to arrive at a final score for
each possible hint. This process is described in Section 3.5 and several aggregation
methods are detailed. We conclude the chapter by providing an example game
that shows the different kinds of hints generated by each technique in Section 3.6.

3.1 Game
The board consists of 25 words, chosen randomly each game from a list of approx-
imately 400 words. This word list contains the 400 words used in the original
Czech and English board game. We provide these lists in Appendix A.1 and
Appendix A.2.

3.1.1 Hint filter
If we were allowed to give the hint houses for the word house, the problem of
generating good hints would become as simple as generating plural forms. For
this reason there exists a rule in the original board game to disallow hints that
are morphologically related to one of the words on the board.

To adhere to the morphological rules set out for the hint in the original board
game and avoid giving hints that violate the spirit of the game (such as plural
forms and other morphologically related words), we introduce a hint filter which
discards hints for which one or more of the following conditions is true:

• Length of hint is less than 3. (be or no)

• For every word on the board that has not been selected yet:

– Hint is part of word (horse is part of horseshoe)
– Word is part of hint (study is part of studying)
– The relative Levenshtein distance is more than 50%. The relative Lev-

enshtein distance for a word w and a hint h is defined in Equation 3.1.

12

Relative Levenshtein(h, w) = Levensthein(h, w)
max(|h|, |w|) (3.1)

For example for the word break and the hint broken, the Levenshtein distance
is 3, so the Relative Levenshtein distance will be 3/6 = 50%, which does not
cross the 50% threshold, so the hint is rejected. Using this metric in combination
with a minimum hint length of 3, we are able to detect almost all morphologically
related words. The only ones we have seen slip through in practice are mouse
and the hint mice. They go undetected because more than 50% of the letters
are different. The only other words for which this is the case that we are aware
of, are louse and lice and opus and opera. Of course this filter also catches some
hints that are not morphologically related and would have been valid otherwise.
Losing these hints is acceptable, because the heuristic has such a low error rate
and our models still find many hints that do pass the filter.

3.2 Word embeddings
Word embeddings capture semantic similarity, words that have a similar meaning
and occur in similar contexts are grouped together. It captures synonymy, which
makes it a useful model for word association.

We make use of pre-trained word vectors that were trained on Wikipedia using
the fastText method with default parameters as described in Bojanowski et al.
[2017]. These embeddings are available in many languages, which makes it easier
to build the same model for other languages.1

The pre-trained model provides over 2.5 million word embeddings for English
and 600,000 for Czech. We cut down on the size of this collection considerably
to limit the computation time needed to compare against all of these embeddings
when scoring a word. The model is ordered by frequency of the word in the
corpus that it was trained on (i.e. frequency of the word in Wikipedia). The
first ten thousand words are character sequences that occur often such as the, is
and talk. After this we start seeing nonwords like np , words belonging to other
languages like segunda and other obscure words that are no longer relevant for
a general purpose word association model. To avoid clutter, speed up the model
and to make sure that we do not include words that people might not know, we
limit the number of word embeddings in our model to 10, 000.

To further combat clutter and avoid giving hints that are invalid according to
the rules of the game, we filter out embeddings for words that do not adhere to
the following conditions:

– The word contains only alphabetical characters.

– The word occurs 50 or more times as a lemma in the CzEng corpus. Lemmas
are counted using the second column of the a-layer in CzEng.

We take the top 10,000 word embeddings after filtering, sorted according to
the unigram frequency in Wikipedia. Some words that are in the lexicon are

1https://github.com/facebookresearch/fastText/blob/master/docs/
pretrained-vectors.md

13

https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md

not in the top 10,000, for example the word octopus occurs at position 17,356,
so in reality we select word embeddings for the top 9,600 most frequent words
excluding the words in our lexicon and add to that the word embeddings of our
400 lexicon words.

Using this technique we generate one word embeddings file for Czech and one
for English, which we use in all the word embedding models that we test.

cosine similarity(a, b) =
∑n

i=1 AiBi√∑n
i=1 A2

i

√∑n
i=1 B2

i

(3.2)

For word embeddings we compute similarity scores using the cosine distance
between two words a and b, represented by word embeddings A and B. The
formula for this is given by Equation 3.2.

3.3 Collocations
A collocation is a group of two or more words that co-occur more often than
random chance. Although less strong than the semantic relatedness that word
embeddings capture, a collocation still captures a certain association between
words. We can see this when we look at the collocation Eiffel Tower. When we
see Eiffel, we quickly think Tower.

To find these collocations we need a large amount of text and a measure of
association. The text is taken from the CzEng 1.7 corpus.2 [Bojar et al., 2016]
CzEng is a large parallel corpus for Czech and English, containing roughly 57
million sentence pairs and over 600 million words. The corpus bundles a large
amount of data, including but not limited to text from subtitles, EU legislation,
fiction and web pages.

Each sentence is annotated with large amounts of syntactic and semantic
information. The annotation is separated into an analytical layer (a-layer) and
a tectogrammatical layer (t-layer). These tectogrammatical trees were created
automatically by Treex. http://ufal.mff.cuni.cz/treex The a-layer describes
the surface-level syntactic tree, including word form, lemma and morphological
tag. For the simple bigrams method that considers only words which occur one
after the other and the sentence-level bigrams method we use the lemmas from
the a-layer. The t-layer is a sparser tree which excludes function words so content
words are related through dependency edges directly. This is very useful for our
dependency-level bigrams method. The t-layer also includes for each node a t-
lemma, a functor (semantic role) and a formeme (morphosyntactic label).

For the measure of association we use pointwise mutual information (PMI).
To reiterate on Section 2.2, we define p(a, b) as the probability that b occurs after
a, we calculate this using p(a, b) = count(a,b)∑

x,y∈T
count(x,y) , where T is the set of words

seen in the text and count(x, y) is the number of times y occurs after x. p(a)
is the chance of seeing a word x in the text, we calculate this probability using
p(a) = count(a)∑

x∈T
count(x) . Equation 3.3 then shows the formula used to calculate PMI

scores for two words a and b.
2http://ufal.mff.cuni.cz/czeng/

14

http://ufal.mff.cuni.cz/treex
http://ufal.mff.cuni.cz/czeng/

PMI(a, b) = log2
p(a, b)

p(a)p(b) (3.3)

For practical purposes we make a slight modification to the definition of
count(x, y) and say that count(x, y) is the number of times y occurs before or
after x. This way the direction of the relation doesn’t matter for the association.
Eiffel will be just as related to tower as Arthur is to king. Even though it might
be feasible extract the direction of the relation from the syntactic makeup of the
collocate or its syntactic context, this falls outside of the scope of this thesis. We
instead choose to generalize and say that the co-occurrence of two words counts
equally towards either direction regardless of context.

PMI scores are relative and depend on the corpus that they are based on. A
PMI score of 10 based on data extracted from the Czech corpus does not imply
the same degree of similarity as a PMI score of 10 in the English corpus. An
example that demonstrates this point well is the fact that adding more ”junk”
data inflates the PMI scores. We take a corpus X and two words x and y, and
a corpus X’ which is the original corpus X plus a few more sentences that do
not contain x or y. In this case the PMI of x and y for corpus X’ will be higher
than the PMI of x and y for corpus X, even though the counts of x and y remain
the same. The reason for this is that the total count of unigrams and bigrams
increases, so p(x), py(y) and p(x, y) become smaller and the ratio between p(x, y)
and p(x) ∗ py(y) changes. As such, the PMI scores from two different corpora
cannot be compared with one another and we will compare the PMI values for
Czech and English separately.

3.3.1 Sentence-level bigrams
Experimentally we find that simple bigrams as described above do not form a
good model. Finding a good collocate for one word is easily done, but finding
good collocates for multiple words is rarely successful because there is too little
overlap between collocates. That what is a frequent collocate for one word, is
almost never a frequent collocate for another.

To solve this we propose a collocation model over sentence-level bigrams. We
define count(x, y) as the number of times y and x occur in the same sentence. This
provides a much broader scope for co-occurrences, which increases the chance of
overlapping collocates when trying to find a high scoring collocate for multiple
words.

The upside of sentence-level collocations is that the model contains more
bigrams which means we will discover bigrams we have not seen in the simple
bigrams method and for the bigrams we have seen before, we get PMI values that
are closer to the real distribution.

We first extract raw unigram and bigram frequencies of lemmas from the
CzEng a-layer. During this process we strip away any information other than the
raw alphabetic lemma. We consider only the unigrams and bigrams that contain
at least one word from the lexicon. We introduce a frequency cutoff into our
model, if a unigram has a lower frequency than this cutoff, we exclude it. In
our experiments we use a frequency cutoff of 1,000, which means the model does

15

Am I interrupting something ?

AuxV

Sb Obj

Figure 3.1: Example sentence with dependency annotations from CzEng

not consider hints that occur in less than one thousand times by themselves in
the corpus. This translates to a model which takes roughly the top 16,000 most
frequent words in CzEng.

The frequency cutoff is an important factor in the quality of the model. Setting
the cutoff too high results in a model that is too general and cannot accurately
target any particular word on the board. Setting the cutoff too low will result
in very obscure words entering the model, which is problematic if these words
fall outside the vocabulary of a player. A cutoff that is too low will also suffer
from data sparsity. For example if a word occurs only once or twice in the data,
it has a high PMI value for the words it co-occurs with, even though the real
distribution might be much different. In this case, the PMI value is most likely
not representative of the actual distribution.

After filtering we obtain a collocation model on which we can use pointwise
mutual information (PMI) to find collocates for the words from our lexicon. We
discuss the results of this method in Section 5.2.

3.4 Dependency-level collocations
A dependency is a syntactic relation between two words in a sentence. Each
word in a sentence can have only one incoming arc. Each sentence contains a
root node, usually the verb from which the dependency edges sprawl over the
rest of the words. We show an example a sentence with a dependency analysis
from CzEng in Figure 3.1.

For dependency-level bigrams we also consider the sentence level, but we re-
strict the bigrams to words between which there is a dependency relation. We
define count(x, y) as the number of times y and x occur in the same sentence and
have a dependency relation.

For the dependency-level collocations we consider words from the t-layer and
ignore special t-layer words starting with a hash sign (#). We apply the same
filtering as described for the lemmas from the sentence-level bigrams. On top of
this, we strip away information about reflexivity of verbs from the lemmas which
is encoded with se and si.

The dependency-level collocations are bidirectional, the hint can be both the
dependent as well as the head of the dependency relation. Whether the direction
of the dependency relation plays a role in quality of the model, would be an
interesting direction for future research.

3.4.1 Low frequency words
The sentence-level collocations contain more than 218 million bigrams for Czech
and 516 million for English, while the dependency-level collocations contains only

16

Unigram Dependency-level Sentence-level
Lexicon word frequency hints hints

muchomůrka 155 137 690
koloběžka 141 69 963
karbańık 117 93 565
plasteĺına 104 63 562
vodńık 103 57 297
ptakopysk 81 60 327
krápńık 75 90 554
lochneska 65 42 319
sněženka 39 24 106
kamion 2 4 12

Table 3.1: List of 10 least frequent Czech lexicon words in CzEng. Unigram
frequencies is the unigram count of the lexicon word in CzEng, sentence-level hints
is the number of unique hints for this word in the sentence-level collocations model
and dependency-level hints is the number of unique hints in the dependency-level
collocations model.

18.2 million bigrams for Czech and 34.9 million for English in comparison. Al-
though this might not be significant for words with a large number of bigrams,
we expect it to have a large impact on words with low representation in the data.

In Table 3.1 we can see the number of possible hints that the dependency and
sentence-level models can give for the least frequent words in CzEng. We can see
that the dependency-level collocations have a much smaller hint space to work
with than the sentence-level collocations. For example, for the word lochneska,
there are only 42 unique hints to choose from in the dependency model while the
sentence-level collocations model offers over 300 unique possibilities. In general,
the sentence-level collocations model offers 5-10 times more options than the
dependency-level collocations. When we inspect the number of edges counted
for each bigram, the sentence-level model also has 5-10 times more data to work
with. While this data sparsity might not have much influence on the words with
large frequencies, it is likely that it will be hard for the model to target more than
one word at a time if it only has 4 hints to choose from for the word kamion. As
such, we expect the sentence-level collocations model to perform better than the
dependency model for Czech.

In Table 3.2 we can see that the sparsity problem is much less bad for English
than it is for Czech. The lowest ranking word platypus already has more possible
hints in the dependency model (67) than 6 of the low frequency words from
the Czech model. All other words have more than 100 possible hints that the
model will consider when it occurs in a game, which should be enough to find an
adequate hint to target a word on its own. However, we expect that the model
will still have problems when looking for hints that are associated with more than
one of these words, because it is unlikely that two spaces of 100-200 words will
contain much overlap, if any at all.

17

Unigram Dependency-level Sentence-level
Lexicon word frequency hints hints

skyscraper 599 361 1770
snowman 591 229 935
roulette 582 179 1382
leprechaun 567 204 857
horseshoe 548 275 1670
bugle 444 210 1132
kiwi 367 148 1170
aztec 328 130 944
himalayas 322 144 883
platypus 98 67 351

Table 3.2: List of 10 least frequent English lexicon words in CzEng. Unigram
frequencies is the unigram count of the lexicon word in CzEng, sentence-level hints
is the number of unique hints for this word in the sentence-level collocations model
and dependency-level hints is the number of unique hints in the dependency-level
collocations model.

3.5 Aggregation
Now that we have a way to obtain the similarity scores for each word on the
board in relation to each possible hint, we have to find a way to aggregate these
similarity scores into one number which we will call the aggregate score. We
also sometimes refer to aggregation as weighting, because of the weights that are
applied to the similarity scores when they are fed to the aggregation method.

Our general strategy will be to split the similarity scores into four groups:
own, enemy, neutral and assassin. Each containing the similarity scores for the
hint and a word from the player’s own cards, the enemy’s cards, the neutral cards
or the assassin cards respectively. Another categorization we will make is a more
simple one. We divide the words on the board into positive and negative words,
where the player’s own words are the positive words and the negative words the
combination of enemy, neutral and assassin words.

The simplest aggregation method is to sum the similarity scores for all the
positive words. This works well, because the more related a word is to the hint,
the more it contributes to the aggregated score.

The problem with this is the fact that we don’t take the negative scores into
account at all. For a hint with 3 positive words with a score of 10, there might
also be a negative word with a score of 15. This is problematic, because a player
will be very likely to choose the negative word over one of the positive words, thus
making an incorrect decision and wasting a turn. Or worse yet, losing the game
when the negative word is the assassin. This last point reveals an important
point in the decision making process: selecting certain types of cards is worse
than others. Thus, when choosing a hint, we should also factor the type of card
into the equation.

For this purpose we introduce weights. These weights consist of four integers,
one for player, enemy, neutral and assassin scores. The similarity scores for each
category are multiplied by their category-specific weight before they are fed to

18

the aggregation method. For example, if the model is considering the hint apple,
and there is the positive word pie which has a PMI score of 14.051 for apple, and
a bad word tasty, let’s say the assassin, with a similarity score of 9.468. Now
we apply the weights, say 1 for positive words, and 2 for negative words. The
similarity score of the assassin in relation to the hint becomes 18.936 instead of
9.468, and the score for the positive word stays 14.051. The aggregation method
can now decide that 18.936 > 14.051 and reject the hint, because the risk that
the player will select the assassin is too high.

similarity score(hint, word) ∗ weight (3.4)

Equation 3.4 shows the formula for computing the scores that function as
input to the aggregation methods, where similarity score is a function producing
similarity scores between two words and weight is the degree to which we would
like to avoid cards of the category that the word falls into.

In the next sections we show several weighting schemes which can be applied
to the relatedness scores of the models (PMI and cosine distance) to find the
best hint in a game. The different weighting schemes are different functions for
aggregating the similarity scores of the words in a game given a potential hint.

The procedure for finding good hints is straightforward. For all the words in
a model we do the following:

• compute similarity scores between the hint and the words on the board,

• multiply each similarity score by the weight of the category that the word
falls into,

• aggregate them using an aggregation function.

We use the same weights for all our models, the positive words are multiplied
by 1, the negative words by 1.2, the neutral words by 1 and the assassin by 2. We
would really like to avoid the assassin, because this ends the game immediately,
hurting our recall considerably. We also like to avoid clicking enemy cards because
it costs the player a turn. Clicking a neutral card is actually quite okay because
it is nearly equivalent to getting a new hint by ending the turn and we also get
to eliminate another card from play without penalty.

Different aggregation functions give different priority to these positive and
negative scores. We discuss several aggregation functions and their pros and cons.
Combined max score is discussed in Section 3.5.1, mean difference in Section 3.5.2,
Gensim’s most similar method in Section 3.5.3 and top n in Section 3.5.4.

3.5.1 CombinedMax

CombinedMax(P, N) =
P∑
x

⎧⎨⎩x if x ≥ max(N)
0 otherwise

(3.5)

Equation 3.5 shows the formula for CombinedMax for arguments P and N where

19

P is the list of similarity scores for positive words and N is the list of similarity
scores for negative words.

To calculate CombinedMax we first determine a threshold by taking the max-
imum similarity score from the list of negative words. We then sum the scores
from the list of positive words that are above the threshold to get the aggregate
score. This way a hint only scores high if it relates to many words that are more
similar to the hint than the most similar negative word. This implicit negative
threshold is the most distinctive feature of this model.

This method is very sensitive to the weights we apply to the negative words.
If we set the weights too high, this method is very good at finding the blind spots
in a model. For example, for a collocations model it might find a hint for which
there is one positive word with a high PMI score while the rest of the scores are
zero. The reason why this happens is that when the weights are high, there are
very few positive words that can cross the implicit negative threshold. Therefore
the reward for the model to find a hint for which all but one positive word have
a PMI value of zero, is very high.

3.5.2 MeanDiff

MeanDiff(P, N) =
∑P

x x

|P |
−

∑N
y y

|N |
(3.6)

Equation 3.6 shows the formula for mean difference for arguments P and N
where P is the list of similarity scores for positive words, N is the list of similarity
scores for negative words.

The good part about this method is that it prioritizes . However, if there
is a lot of variance with either the class of positive and negative words, mean
difference does not account for situations where there is a one negative word
that has a really high similarity score with the hint and overshadows the positive
words leading the player to click an incorrect card. As such it is not so good
at the start of the game when the mean can obscure negative words with high
similarity if it is surrounded by many negative words with low similarity to the
hint. Near the end of the game this method becomes a lot better, because each
peak in similarity of individual words is reflected more strongly in the mean of
either class.

3.5.3 Gensim - most similar
This weighting method is the odd one out, because it does not exactly aggregate
the similarity scores of the positive and negative words. Rather, the most similar
method in Gensim works by performing vector arithmetic, adding the embeddings
of the positive words to each other and subtracting the negative vectors. The
method then returns the words whose vectors are closest to the resulting point.

This method performs well at targeting positive words. However, because
it subtracts negative vectors and quite literally tries to ”stay away” from the
negative words, it can easily suffer from one simple mistake: including too many
negative words. In other words, it assigns too much weight to negative words and
starts generating hints that are specifically not referring to negative words, rather

20

than providing hints that refer are similar to the positive words. To resolve this
issue we let it take only the assassin word into account for the negative words.

3.5.4 Top-n
The top-n (n ∈ 1, 2, 3) methods are an adaptation of the CombinedMax function.
The formula is the same, except for the fact that P is restricted to the n highest
values in P. The distributional characteristics of these functions is very interesting,
because you have some control over its behaviour by setting n. If we take the
Top1 method, we will simply get the hint with the highest similarity score among
all pairs of hint and target word. This results in hints with very large similarity
scores which are usually highly associative. The Top2 method is generally more
mixed, with one hint with a high similarity score and one hint with a moderate
similarity score. And if we look at the Top3 method, we often get three words with
moderately high similarity scores. Of course there is a lot of variation depending
on the number of words still on the board.

The top-n methods are still similar to CombinedMax in the sense that they
only have an upperbound n and no lower bound. A top-n is also allowed to give
hints for less than n words, as long as n >= 1.

3.6 Example game
In this section we provide an example game in order to show the type of hints
generated by each technique. We include examples from the sentence-level and
dependency-level collocations method with CombinedMax aggregation as well as
a word embeddings model with the CombinedMax aggregation method.

ice jam fish moon america
pit change trunk lion shakespeare
chick wind marble nail casino
cricket field mount snow limousine
day racket buck yard witch

Dependency-level Sentence-level Word
collocations collocations embedding

Hint cream sweeten frost
Target 1 ice 15.501 jam 11.693 snow 0.547
Target 2 jam 7.575 snow 10.718 ice 0.376
Target 3 chick 6.942 ice 10.508 wind 0.358

Table 3.3: Board state at the start of turn 1 and hints and target words with
their similarity scores for each model used in the example game. The player’s
cards are marked with blue, the cards of the dummy team are marked with red,
the neutral cards with yellow and the assassin with black.

The game starts with the board shown in Table 3.3. In each turn in the
simulation, we eliminate the positive word which the AI tried to hint at most for
each method, removing one neutral card as if the player had mistakenly selected

21

it and one enemy card to simulate the opposing dummy team taking a turn. Even
though the player would play with only one of these models in a real game, we
eliminate all of the most hinted cards to avoid situations where a model gives
a hint targeting the same word again in the next turn, which would make the
example much less informative.

On the first turn the word embedding model gives the hint frost, the sentence-
level collocations model gives the hint sweeten and the dependency-level colloca-
tions model gives the hint cream. In Table 3.3 we can see that the first target of
the dependency-level collocations model is ice which has a very high PMI value
of 15.501 because ice cream is such a strong collocate. The second and third
target word jam and chick are much less related according to the model with
PMI values of 7.575 and 6.942.

For the sentence-level collocations model the PMI values calculated by the
model are arguably less representative of the strength of the relation between the
hint and the target word. The hint sweeten is clearly related to jam, because
jam is usually sweet. The model ranks it as most related among the target words
with a PMI score of 11.693. However, the second target word snow has a score
of 10.718 and ice has a score of 10.508, while snow and ice are clearly not as
related to sweeten as jam is, since neither of them are sweet. In fact, one might
argue that they are not related to the word sweeten at all. Ice could be related
to sweeten through the word ice cream, which is most likely the model assigned
such a high similarity score to this word pair, because the model looks for words
co-occurring in the same sentence. However, people have a much harder time
associating words through indirect relations than direct relations, so this is not
a good hint. This is one of the flaws inherent to the sentence-level collocations
model, it often gives hints that are too indirect.

The word embeddings model tried to hint at the words snow, ice and wind
using the hint frost with similarity scores of 0.547, 0.376 and 0.358. Although it
is debatable whether wind can be frosty, ice and snow are undoubtedly related to
frost and likely be easily recognized by the player in the context of a real game.

fish moon america
pit change trunk lion shakespeare
chick wind marble casino
cricket field mount
day racket buck yard witch

Dependency-level Sentence-level Word
collocations collocations embedding

Hint tough ghetto quartet
Target 1 racket 10.113 racket 7.784 chick 0.291
Target 2 chick 8.790 shakespeare 7.656 wind 0.280
Target 3 day 6.584 chick 7.098 shakespeare 0.275

Table 3.4: Board state at the start of turn 2 and hints and target words with
their similarity scores for each model used in the example game.

The (simulated) player clicks the card snow based on the hint frost, jam based

22

on the hint sweeten and ice based on the hint cream. The player then selects the
neutral card limousine which ends the turn. The opposing team turns over the
card nail and passes the game back to the player, resulting in the board state in
Table 3.4.

In the following turn the models generate the hints tough, ghetto and quartet
shown in Table 3.4. The hint tough generated by the dependency model is an
interesting hint, because it is an adjective. When an adjective expresses a clear
concept such as sweet or green, they form great hints for multiple target words
such as cake and candy or apple and grass. However, when the adjectives are
more vague, for example the word tough, it becomes much more difficult for the
player to find good associations. The target words racket, chick and day are only
tangentially related to the word tough and require individual consideration in
order to be picked up by the player as potential targets. Only when putting the
collocations together, tough racket, tough chick, tough day, does it become clear
that the words might be related.

For the sentence-level hint ghetto we also see relations with the target words
racket, Shakespeare and chick which are not immediately obvious, which makes
guessing them correctly very difficult. While both racket and a chick are likely
to be present in a ghetto, these are not the first associations that one would
make. Whether ghetto is related to Shakespeare depends mostly on someone’s
familiarity with modern interpretations of Shakespeare’s work, rather than their
command of the English language. This example highlights how difficult it can
be to give appropriate hints. Two words which might be related to one person,
say someone knowledgeable about Shakespeare, might not be at all obvious to
a second person. Similarly, if the hint is a very difficult word that the player
does not know, it is hard to make associations. Of course these issues can be
sidestepped by providing only the most clear hints which will be obvious to any
regular English speaker. Building the models in such a way that they make
associations that rely on common knowledge rather than specialized knowledge,
is one of the more important parts of this task.

The word embedding model also provides a hint with relatively low similarity
scores in regards to the target words. The hint is quartet and targets the words
chick, wind and Shakespeare. We do not see how any of these words can be related
to the hint.

The main reason that these hints are not as good as we would like them
to be for any of the models, is because of the aggregation method used. The
CombinedMax method selects the hint with the largest sum of PMI scores for
the player’s own words. A side effect of this is that the model often prefers a
hint that targets multiple words with only moderate PMI scores over a hint that
targets one word with a high PMI score. This is one of the reasons we introduced
the Top1, Top2 and Top3 aggregation methods, which restrict the number of PMI
scores that are taken into account to the best 1, 2 or 3 target words.

For turn 3 the words that are eliminated are racket, chick, trunk and buck,
resulting in the board shown in Table 3.5.

In Table 3.5 we can see that all models target roughly the same set of words
in this turn, with Shakespeare being the number one target word for all models
and day being the second target word for the sentence-level collocations and
word embedding model and the third word for the dependency-level collocations

23

fish moon america
pit change lion shakespeare

wind marble casino
cricket field mount
day yard witch

Dependency-level Sentence-level Word
collocations collocations embedding

Hint hooray hooray edition
Target 1 shakespeare 10.732 shakespeare 8.237 shakespeare 0.269
Target 2 america 6.690 day 5.058 day 0.265
Target 3 day 5.122 wind 5.039 america 0.265

Table 3.5: Board state at the start of turn 3 and hints and target words with
their similarity scores for each model used in the example game.

model. The two collocation models use the same hint, hooray, to target the word
Shakespeare, probably because the word hooray occurs a lot in texts written by
Shakespeare and not so much in other texts. Similarly, hooray is likely related to
day through the word birthday. This is a very indirect relation, evidenced by the
low PMI scores of 5.122 and 5.058 and does not make for a good hint.

The word embedding model takes a different approach and gives the hint
edition, targeting the words Shakespeare, day and America. The similarity scores
are once again low, because of the CombinedMax aggregation method. The word
edition could be applied to an interpretation of a work from Shakespeare, e.g. a
novel edition of Hamlet, but this association is far-fetched and we doubt that any
player would pick up on this in a real game.

moon america
change lion
wind marble casino

cricket field mount
day yard witch

Dependency-level Sentence-level Word
collocations collocations embedding

Hint reclaim oman annually
Target 1 america 7.568 america 7.669 day 0.390
Target 2 wind 7.128 wind 5.813 america 0.282
Target 3 day 6.341 day 4.984 wind 0.190

Table 3.6: Board state at the start of turn 4 and hints and target words with
their similarity scores for each model used in the example game.

For turn 4 we eliminate the words Shakespeare, pit and fish from the board,
resulting in the layout shown in Fable 3.6.

In this turn the word embedding model gives the hint annually, the sentence-
level collocations model gives the hint oman and the dependency-level collocations

24

model gives the hint reclaim. In Table 3.6 we can see that the dependency-level
collocations model tried to hint at the words America, wind and day with PMI
values of 7.568, 7.128 and 6.341 respectively.

The sentence-level model tries to target America by using another country as
a hint, in this case Oman. This is a behaviour we observe often in our models.
When a country or capital is present on the board and part of the player’s own
cards, the model will give another country or capital name as hint.

The word embedding model is the only one that manages to provide a hint
with a decent similarity score, annually, which has a cosine distance of 0.390 in
regards to the target word day. Although the inflection of annually is unnecessary,
the word annual is still a good hint for the word day since both of them refer to
measurements of time.

moon
change
wind marble casino

cricket mount
yard witch

Dependency-level Sentence-level Word
collocations collocations embedding

Hint gust gust turbine
Target 1 wind 15.502 wind 13.142 wind 0.540

Table 3.7: Board state at the start of turn 5 and hints and target words with
their similarity scores for each model used in the example game.

For the fifth and last turn we eliminate the words day, America, lion and field
from the board, resulting in the layout shown in Fable 3.7.

On the last turn we can see a good example of what happens when our models
generate hints for only one word. They will generate a hint with the largest
similarity score to the target word that they can find. In the case of the word
wind, the highest cosine distance is achieved by the word turbine in our word
embedding model as seen in Table 3.7. Surprisingly the context of wind and
turbine are so similar that turbine has the highest cosine similarity with wind.
The collocate wind turbine because the collocation models both choose another
word, gust, with PMI values of 15.502 and 13.142 for the dependency-level and
sentence-level bigram methods respectively. When looking at the PMI values of
wind and turbine (13.842 for dependency-level and 11.777 for sentence-level) we
can see that the collocation models did consider the option, but judged gust to
be more related. The phrase a gust of wind is most likely a stronger collocate
than wind turbine. Gust occurs only in the context of gust of wind while turbines
are not only wind-related.

25

4. Implementation
The code for the application is available on GitHub.1 It includes code for run-
ning the web application, generating models and the anonymized data from our
experiments.

We have built a web application implementing a singleplayer version of the
game Codenames, where we use several NLP models to generate hints for the
player. We use a combination of vanilla HTML, CSS and Javascript for the front-
end. The back-end consists of a PHP endpoint and a standalone Python process
for each model to produce hints. We use Python 3.6 and the word embedding
models are queried using Gensim [Řeh̊uřek and Sojka, 2010].2

One of the benefits of implementing the game as a web application is that it is
easily accessible to users, participants can play the game from the comfort of their
own home, which makes it easier to gather data. A major focus while designing
the application was to increase the number of games played, so we can collect
more data. One of the strategies is to make the game as engaging as possible,
which we achieve by adapting the ruleset of the original game slightly as detailed
in Section 1.2.1. Additionally, users cannot start new games before finishing old
ones. This way users are discouraged from leaving games when things do not go
their way, which might leave us with many incomplete games and skew our data.

4.1 Login

Figure 4.1: Login screen

The login screen asks the player for a username, their language setting and
a checkbox to make sure we can use the data we collect. The username is a
nickname used for displaying a user’s scores in the Hall of Fame and is tied to a
unique identifier which is used to identify a user internally in the application. If
a user logs in with the same nickname, the games they play will be tied to the
same internal identifier. While this method of authentication proved adequate for
our small group of participants, it is not suitable for larger applications because
it allows users to login as other players. The effects of this type of abuse are
limited, because the only actions someone can take when they login to someone
else’s account, would be to play a game. For the affected player this can only

1https://github.com/mderijk/codenames
2https://radimrehurek.com/gensim/

26

https://github.com/mderijk/codenames
https://radimrehurek.com/gensim/

have positive consequences: if the game goes well, they get another high score in
the Hall of Fame. If the game goes poorly, the score is unlikely to show up in
the top 10 provided by the Hall of Fame at all. For data collection and research
this is more of an issue, because it makes it harder to analyze the performance of
individual users. We do not perform this type of analysis in this thesis, therefore
this has no effect on our results. For future work however, it is recommended to
change the method of authentication. To protect players’ identities the published
results on GitHub are anonymized: information about usernames is excluded
from the data.

4.2 Menu

Figure 4.2: Menu screen

After logging in, the menu screen is shown. This screen provides an expla-
nation of the game, showing the different card types on the right. The player
can also start a new game (or resume one if they are in the middle of a game),
view the Hall of Fame and change their settings. The settings page shows the
username of the logged in user and provides the option to change the language
of the game.

27

Figure 4.3: Game screen

4.3 Game
Figure 4.3 shows an example game. We use blue for the players own cards, red
for the enemy team’s cards, yellow for the neutral cards and black to indicate the
assassin. Gray cards have not been selected by the player yet and can be of any
type. The status bar on the top right shows the name of the AI that generates
the hints. On the bottom left the player can see the current hint as well as a
history of the previous hints provided by the AI. On the bottom right we show
the current turn, the score that the player would achieve if they guessed all of
their cards in this turn and the number of own cards that the player has left. The
end turn allows the player to end their turn without selecting an incorrect card
and the return to menu button allows the user to navigate back to the menu, in
case they want to take another look at the explanation of the game or the Hall
of Fame.

In Figure 4.4 we see what the game looks like when it has ended. The game
players are informed of their win or loss. They can exit the game by clicking the
exit game button. The type of the cards that the player did not click is revealed
at the end of the game and shown by a coloured strip in the upper left corner of
the card. The mapping between colours and types is the same as for the clicked
cards.

28

Figure 4.4: Game end screen

4.3.1 AI names
The player is informed which AI it is playing with during the game. Each AI is
indicated with a unique number. We do not name the AI using real names, words,
or descriptions such as ”word embeddings” or ”collocations” to avoid influencing
how players make decisions. We want to avoid players associating the AI with
things they know, because they might change their associations based on this.

Players who played the game frequently report that they were able to recog-
nize the AIs based on the hints that they give. This effect is expected, because
something similar happens when someone plays the game in real life with the
same people multiple times. One gradually learns what kind of hints other peo-
ple give. The same happened with our AI and some of the players that played
the game. It is important to note that this might affect the results somewhat.

4.4 Hall of Fame
The Hall of Fame provides a simple overview of the top 10 high scores among
all players for each AI, ordered by score and then alphabetically by username.
Figure 4.5 shows what the Hall of Fame might look like. The username of the
logged in user is displayed in bold, in this case test.

29

Figure 4.5: Hall of Fame screen

4.4.1 Lexicon
The original lexicons are the 400 words used in the original Czech and English
board game. We provide these lists in Appendix A.1 and Appendix A.2.

For our implementation we make two important exceptions to ensure com-
patibility with the word embeddings model. For English we removed 4 entries
containing spaces: ice cream, Loch Ness, New York and scuba diver. The ratio-
nale behind this is that it is difficult to compute similarity scores for multi-word
expressions. For example, our pre-trained word embeddings only contain word
vectors for single words not for multi-word expressions.

For Czech we had to remove one word (špageta), because it did not occur in
our word embeddings model at all. The reason for this is that people rarely speak
of a single slice of spaghetti (špageta), so it likely never occurred in the data that
the fastText models were trained on.

4.5 Collocations
On the implementation level we perform several simplifications to speed up the
generation of the collocations model. count(a) is computed as normal, for each
word a that appears in the corpus we count all unigram occurrences. For the
bigram count count(a, b), we restrict the input by only considering pairs a, b such
that a appears in the lexicon, which reduces the space complexity of the bigrams
from O(n2) to O(c · n). We also check for a ̸= b, because the rules of the game
do not allow us to use the word itself as a hint.

However, during this optimization we also mistakenly changed the way we
compute p(a, b) = count(a,b)∑

x,y∈T
count(x,y) to p(a, b) = count(a,b)∑

x∈L,y∈T
count(x,y) , where T is the

set of words seen in the text and L is the set of words found in the lexicon. Now∑
x∈L,y∈T count(x, y) is a much lower number than ∑

x,y∈T count(x, y).
This value depends on the size of T and L, the text from our corpus and the

lexicon, which are both fixed. As such this part of the formula is a constant and

30

Constant
Collocate 18 million 182 million
extinguisher 14.382 11.998
peat 13.614 11.230
brigade 12.216 9.832
phaser 11.702 9.318
stoke 11.697 9.314
extinguish 11.515 9.131
picket 11.388 9.005
crackle 11.337 8.953
frost 11.273 8.890
cannon 11.172 8.788

Table 4.1: Hints and their PMI values for the word fire generated using two
dependency-level collocation models with different constants in the denominator
of p(a, b).

the actual formula we are looking at is:

PMI(a, b) = log2
count(a, b)
p(a)p(b) (4.1)

Eliminating this multiplicative constant affects the PMI values produced by
the function. Because of the properties of log functions, this multiplicative con-
stant translates to an additive constant. As such all PMI values are shifted by
some constant, which means the relative ordering of two words a, b by their PMI
values does not change.

In Table 4.1 we show an example of collocates found for the word fire using the
dependency-level collocations model and an adapted version that uses a constant
that is 10 times as large as the denominator of p(a, b) for the model we built.
We can see that the ordering of the words is preserved and even the absolute
difference between the PMI scores is the same.

If our model would generate candidates for only one target word, this would
have had no effect. However, when we sum the similarity scores of two words in
our aggregation method and compare them against a candidate hint that sums
three words, it does have an effect. For example, consider a hint jazz which has
two target words with PMI values 4 and 5 and a hint caramel with three target
words with PMI values of 1, 2 and 3. In the default case jazz would receive an
aggregate score of 9 and beat caramel which would have an aggregate score of
6. Now, if we increase all PMI values by 4 we get 8 + 9 = 17 for jazz which is
smaller than 5 + 6 + 7 = 18. And suddenly caramel has a higher score than jazz.

Because the additive constant is positive, our model is biased towards hints
targeting more than one word, because it includes the positive constant more
often in the sum of the PMI values than a hint that target fewer words. This
could have influenced the performance of the Top2 and Top3 dependency models
that we see in Section 5.3.

31

5. Results
In this chapter we perform both quantitative and qualitative analysis of our mod-
els. We used an iterative approach in the design of our methods, so we will dedi-
cate one section to each iteration of models. First we establish a baseline for our
models in Section 5.1 by Monte Carlo simulation. Then we analyze the results
of the first test run in Section 5.2 and discuss the improvements we made to our
models in Section 5.3. Next, we analyze the PMI scores using both manual an-
notation as well as empirical data in Section 5.4 and derive several thresholds for
PMI and cosine similarity. The results of the models built using these thresholds
are covered in Section 5.5.1. Finally, we discuss the performance of a combination
of a word embedding and collocation model in Section 5.5.2. A comprehensive
overview of all results can be found in the conclusion in Table 6.1.

5.1 Baseline
In this section we establish the baseline precision, recall and f-score for the sin-
gleplayer variant of Codenames.

The true positives are the cards clicked by the player that were their own,
false positives are the cards that the player clicked which were not their own, and
the false negatives are the player’s cards that they did not click at the end of the
game.

We also provide average win rate and chance to die by assassin for complete-
ness. Although these statistics are useful, they also demand much more data in
order to arrive at a meaningful approximation. As such they are less suitable for
our purposes since gathering this data would require a lot of time. We therefore
do not consider these metrics for the rest of our models. By using precision, recall
and f-score on the decision level instead of win and loss rate at the game level, we
are able to provide more accurate metrics and evaluate models using much fewer
games.

The baseline is set by a scenario in which hints do not provide any help to
the player whatsoever, which is equivalent to the situation where there are no
hints at all and cards are chosen randomly by the player. The end turn button
that is present in the game is not modeled as a possible action, because a player
clicking cards randomly does not gain any additional information from getting a
new hint, while the opposing team does have the opportunity of turning over an
additional card.

We perform a Monte Carlo simulation of playing the game by repeatedly
selecting cards at random. We simulate 10 million games in this way, from which
we obtain the results displayed in Table 5.1.

Win rate Assassin loss Precision Recall F-score

Baseline 0.39% 45.43% 0.389 0.339 0.362

Table 5.1: Average win rate, chance to lose by clicking the assassin, precision,
recall and f-score achieved by randomly clicking cards until the game ends.

32

The baseline for the win rate, the chance to win the game by selecting cards at
random, is 0.39% as seen in Table 5.1. This is a very low number, on average this
means the player wins only one game out of more than 250 games. The baseline
precision, recall and f-score are 0.389, 0.39 and 0.362 respectively.

If the generated hints provide any semantic meaning related to the player’s
words more so than to the other team’s words, then we would expect the average
win rate to be higher than the baseline.‘The same can be said for precision, recall
and f-score.

Even though the evaluation of our model is task-specific and limited to a
subset of only 400 words (the lexicon) for each language, we hypothesize that
the results generalize well to other word association tasks. The word embeddings
capture semantic similarity for the whole language and the collocation counts can
be generated for all words in a corpus instead of limiting them to the words in
the lexicon.

5.1.1 Distribution of decisions

Game start Random
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure 5.1: Percentage of own, enemy, neutral and assassin cards at the start of
the game versus the distribution of cards clicked by the player during the game
when selecting cards randomly.

The number of the cards at the start of the game is 9, 8, 7 and 1 for own,
enemy, neutral and assassin cards respectively. However, because the opposing
team selects one of their own cards in their turn, the chance for the player to
select one of the enemy’s cards is lower than 32% in practice. We therefore also
establish a baseline for the percentage of own, enemy, neutral and assassin cards
clicked by the player through Monte Carlo simulation, using the same method-
ology described in Section 5.1. The results of this simulation can be found in

33

Figure 5.1, contrasted with the distribution of the card types at the start of the
game.

We see that the chance that the player clicks on one of their own cards is
38.95% on average. The average chance to click on an enemy card is much lower
with 23.92%, because the opposing team reduces the number of enemy cards in
each of their turns. The chance to click on a neutral or an assassin card are
31.33% and 5.80% respectively. In conclusion, the chance for the player to select
one of the enemy team’s cards is significantly lower, because of the actions of the
dummy team and the chance for the player to select one of their own cards, a
neutral card or an assassin card is slightly higher. We will use the distribution
obtained by random selection of cards as a baseline for the analysis of player
decisions in the rest of this chapter.

5.2 Initial models
The results for our initial models are shown in Table 5.2. All of our models
perform above the baseline, which means they are better than random chance.

Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Sentence-level collocations
CombinedMax 0.507 0.490 0.498 0.500 0.466 0.482

Dependency-level col.
CombinedMax 0.629 0.654 0.641 0.547 0.497 0.521
MeanDiff 0.575 0.636 0.604 0.546 0.544 0.545

Word embeddings
most similar 0.616 0.753 0.677 0.563 0.607 0.584
CombinedMax 0.558 0.578 0.568 0.567 0.606 0.586

Table 5.2: Micro-averaged precision, recall and f-score for our initial models,
including baseline. Highest precision, recall and f-score are marked in bold sepa-
rately for each combination of language and setup with more than one aggregation
method.

5.2.1 Word embeddings
We observe that the word embeddings with the most similar method are signifi-
cantly better for Czech than for English in all aspects. They are more accurate
with a precision of 0.616 versus 0.563 and players manage to select a much larger
portion of their own cards in a game with a recall of 0.753 and 0.607 respectively.
This in turn leads to Czech having a much higher f-score (0.677) for this method
than English (0.584).

34

We do not observe this effect for the CombinedMax aggregation method.
Rather, for CombinedMax the results are slightly higher for English than for
Czech with a precision of 0.567 and 0.558, recall of 0.606 and 0.578 and an f-score
of 0.586 and 0.568 respectively. The word embedding models are the best across
the board, with the most similar method achieving an f-score of 0.677 for Czech
and the CombinedMax method achieving an f-score of 0.586.

5.2.2 Collocations
We observe a clear language effect in the results with Czech having f-scores of
0.641 and 0.604 for CombinedMax and MeanDiff respectively, contrasted with
English which has f-scores of 0.521 and 0.545 for these methods. While it was
unclear for the word embeddings why one method did not have this effect, we can
see here that the effect also favours Czech and in this case it does so for both of
the methods. Therefore we hypothesize that this is caused by the fact that our
group of English speaking players consists mostly of second language learners,
while most of the players for Czech were native speakers.

The dependency-level collocations outperform the sentence-level collocations.
The sentence-level bigram method performs worse than the dependency-level col-
locations for both languages with f-scores of 0.500 and 0.482. Even though we
expected that the lack of data for the dependency model might hurt its per-
formance, it seems that the constraints on the bigrams lead to more accurate
results.

We continue testing with collocations from dependency relations, because they
give the most promising results. Although the model with sentence-level colloca-
tions contains many more bigrams, dependencies seem to capture more accurate
relations between words thus producing better hints.

5.2.3 Distribution of decisions

Baseline Dependency
CM

Dependency
MeanDiff

Sentence
CM

WE
CM

WE
Most similar

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure 5.2: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level collocations model with
CombinedMax and MeanDifference aggregation, the sentence-level collocations
model with CombinedMax and the word embeddings model with CombinedMax
and most similar aggregation for Czech

35

Baseline Dependency
CM

Dependency
MeanDiff

Sentence
CM

WE
CM

WE
Most similar

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure 5.3: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level collocations model with
CombinedMax and MeanDifference aggregation, the sentence-level collocations
model with CombinedMax and the word embeddings model with CombinedMax
and most similar aggregation for English

In Figure 5.2 and Figure 5.3 we can see that the distribution of decisions taken
is similar to the baseline distribution for almost all models. Only the distribu-
tions for the Czech dependency model with MeanDiff aggregation and the Czech
sentence-level collocations model are markedly different. The neutral are clicked
less frequent than the enemy cards, which is suprising, especially given the weights
of 1.2 for enemy and 1 for neutral cards that we use for each model. One would
expect the enemy cards to be clicked less frequently and the neutral cards more
often. These two models show distributions similar to the one observed at the
start of the game, which we saw in Figure 5.1. We hypothesize that this is due
to the quality of the models, because sentence-level collocations perform quite
bad in comparison to for example word embeddings, which do in fact show a
lower percentage of enemy cards clicked than neutral cards when compared to
the baseline.

When we graph the distribution of decisions for our other methods, we observe
the same relative ordering between the percentage of own, enemy, neutral and
assassin cards clicked by the player. The only useful information we can gather
from these graphs is that a method performs better if the percentage of own cards
selected is higher. We can observe the exact same information from a model’s
precision. Because the distribution between selected enemy, neutral and assassin
cards is not significantly different from the baseline for any of the methods other
than the two mentioned above, we do not discuss the distribution of decisions for
any of the other models. The remaining graphs can be found in appendix A.4.

5.3 Improved models
In this section we improve our dependency and word embedding models by intro-
ducing new aggregation methods. We start with the Top1 method, which always
tries to find a hint for only one word. It is not possible to win the game this
way through association alone, because the maximum number of hints a player
can get is 8, by ending their turn 7 times in a game. Even though this is not as

36

fun for our participants, it provides a useful baseline. We also test a Top2 and a
Top3 model, each trying to give hints for 2 and 3 words respectively.

At this point we introduce a number that shows to how many target words
the hint relates. We show this number to the player together with the hint in
all models other than the initial models we saw in Section 5.2. At first glance
the computation of these numbers appears easy for our Top1, 2 and 3 models.
However, for models that try to give hints for multiple words it might be the case
that they do not manage to find a hint for the intended amount of words. In such
cases the number provided by the model will reflect the actual number of words
that it has managed to target with the given hint.

During testing we notice a major effect of knowing the number of words that
the AI is hinting at. The player now knows when they have exhausted a hint and
can stop using it. If the hint was only for one word and the player has selected
this card, they will now press the end turn button to gain a new hint whereas
previously they might have continued guessing using the same hint. In addition
to this, we consider a Top3 model that gives the hint glass, 2. When showing
a lower number of cards than expected, an observant player might deduce that
the third word that they consider most associated to the hint is most likely a
bad card which they should not click, even in future turns. As we can see, the
information that the model has not managed to find a hint for the target amount
of words can be very valuable to the player.

Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Sentence-level collocations
CombinedMax 0.507 0.490 0.498 0.500 0.466 0.482

Dependency-level col.
CombinedMax 0.629 0.654 0.641 0.547 0.497 0.521
MeanDiff 0.575 0.636 0.604 0.546 0.544 0.545
Top1 0.722 0.633 0.675 0.693 0.678 0.685
Top2 0.621 0.778 0.691 0.646 0.711 0.677
Top3 0.552 0.644 0.595 0.655 0.611 0.632

Word embeddings
most similar 0.616 0.753 0.677 0.563 0.607 0.584
CombinedMax 0.558 0.578 0.568 0.567 0.606 0.586
Top1 0.789 0.789 0.789 0.768 0.735 0.751
Top2 0.608 0.690 0.647 0.614 0.735 0.669
Top3 0.574 0.626 0.599 0.667 0.786 0.722

Table 5.3: Micro-averaged precision, recall and f-score for our improved mod-
els. Highest precision, recall and f-score are marked in bold separately for each
combination of language and setup with more than one aggregation method.

We can see that the Top1 and 2 models provide a significant improvement over

37

the previous dependency models with f-scores of 0.675 and 0.691 for Czech versus
the previous f-score of 0.641 for CombinedMax and 0.604 for MeanDiff and f-scores
of 0.685 and 0.677 versus the previous f-scores of 0.521 and 0.545 for English. For
English the Top3 model performs much better than the previous model with an
f-score of 0.632, but for Czech it does not. The Top2 dependency model achieves
a noteworthy recall of 0.778 for Czech and 0.711 for English compared to the
other dependency models. In this case high recall means that players on average
get much closer to turning over all of their cards and winning the game.

The Top1 models achieve the highest precision across the board. This is not
surprising, it is easy to give one good hint for one word, but much harder to give
a good hint for two or more words and still have the player guess both of them.

For the word embedding models we see that the Top1 model performed best
for both Czech and English with f-scores of 0.789 and 0.751 respectively. The
Czech Top3 model performs poorly similar to the dependency models. However,
the English Top3 model performs very well in comparison with an f-score of 0.722
and a recall of 0.786. The Top2 word embedding models are considerably worse
than their Top1 counterpart, contrary to what we see for the dependency models.
We observe across all models that the Top1 model has higher precision than recall
and for the Top2 and Top3 models this relation swaps and the recall is higher
than the precision. The only anomaly is the English Top3 dependency model
which has a precision of 0.655 and a recall of 0.611. Curiously, its precision is
much higher than for the Czech model (0.552).

5.4 Analysis of similarity scores

5.4.1 PMI experiment
To get a better idea of the way PMI values behave, we perform a small experiment
using the simple bigram model described in Section 3.3. We generate a list of 100
examples with a uniform distribution of PMI values between 0 and 16. This list of
bigrams is then shuffled and presented to two annotators without similarity scores.
For each bigram the annotators mark the word pair as related or unrelated. We
then analyze the results by finding the best cutoff point for both datasets. We
perform the experiment for both English and Czech. Both annotators are Czech
native speakers and speak English as a second language.

To select the bigrams we take one word from the word list used for the original
board game1 and a hint which can be any word in the model and generate PMI
scores for these combinations. We then choose 100 examples by selecting the
bigram which has a PMI value closest to 100 evenly spread points in the interval
of 0 and 16.

5.4.2 Annotator results
The annotators agree in 62 and 55 percent of the cases (for Czech and English
respectively), that two words are not related. But, out of the 38 and 45 cases
that either one of them says that the two words are related, only in 17 and 21

1For Czech there is one exception, the word velikonoce is used but not part of the original
word list

38

Figure 5.4: Number of incorrectly classified instances for each possible threshold
value, given the judgments made by annotator 1 and 2 for 100 Czech bigrams

Figure 5.5: Number of incorrectly classified instances for each possible threshold
value, given the judgments made by annotator 1 and 2 for 100 English bigrams

39

Czech English
Annotator Best threshold Mistakes Best threshold Mistakes
Annotator 1 14.221 17% 8.727 25%
Annotator 2 10.667 30% 10.668 29%

Table 5.4: Thresholds with lowest number of wrongly classified bigrams using the
annotators classification as gold standard.

Annotator 1
Annotator 2 Not related Related

Not related 62 2
Related 19 17

Table 5.5: Confusion matrix showing the annotator (dis)agreements for Czech.

Annotator 1
Annotator 2 Not related Related

Not related 55 8
Related 16 21

Table 5.6: Confusion matrix showing the annotator (dis)agreements for English.

cases do both of them say that the words are related. What’s more, in the case
of Czech, one of the annotators said for 19 cases that it was related where the
other annotator said that they were not related, while the reverse is true for only
2 cases. We explain this phenomenon using the idea of a mental threshold: a
person considers two words to be related if their similarity is above a certain
threshold and as not related if the items are not similar enough. We can explain
the fact that one of the annotators considered almost twice as many words to
be related as the other annotator, by assuming that they put the threshold for
relatedness much higher. The fact that the two annotators disagree much more
for English (16 and 8) can be explained by the fact that both annotators are not
native speakers of English.

Another thing we learnt from this experiment is that the simple bigram model
is very noisy. When we inspect the data used for the experiment, we sometimes
see completely unrelated words like cotton and single that receive very high PMI
scores. This is reflected in Figures 5.4 and 5.5 where we plot the number of
incorrectly classified instances for each possible threshold value. We can see that
for English many mistakes still remain, regardless of where we put the threshold
for both annotators, while for Czech only one of the annotators approaches a
reasonable number of 17 mistakes. Until we take a look at Table 5.5 where we see
that annotator 1 made only 19 related judgments for Czech, which means that
the largest achievable number of mistakes by placing the threshold anywhere on
the scale, is 19. For English we see something similar, with 25 mistakes out of
29 words marked as related. Annotator 2 performs only markedly better with 30
mistakes out of 36 relations for Czech and 29 mistakes out of 37 related words
for English.

The reason for this is not that our annotators are bad at associating words,
rather our simple bigrams model is terrible at providing accurate similarity scores

40

for a word pair. We therefore conclude that while the experiment setup is useful,
we cannot say more about the thresholds for relatedness because the computa-
tional model used was not good enough at capturing the strength of associations.

5.4.3 Empirical results for PMI
We would like to build a model that can give hints for 1, 2 and 3 words depending
on the situation. Naturally, we would like to prioritize hints that target more
words, so we propose a threshold model which gives hints using the Top3 model
while these hints score above some threshold and switches to the Top2 model
when no hint from the Top3 model passes this threshold anymore. Similarly, it
will switch to the Top1 model if the score threshold for the Top2 model can no
longer be surpassed by any hint. In order to build this model we will first need
to determine adequate thresholds. We will define this threshold as the lowest
acceptable similarity score of the first n positive words in relation to the hint.
If the first n positive words do not cross this threshold, we switch to the next
method with n = n − 1. The Top1 model is the last model in this sequence
and acts as a fallback: if there are no hints that cross the threshold for the other
models, we use the Top1 model. As such we do not need to determine a threshold
for this model. To determine these thresholds we will study the decisions made
by players playing with the Top1, 2 and 3 dependency models. We take the
data from all games played before October 30th and plot the PMI scores of words
selected by players in these games in figures 5.6, 5.7 and 5.8. We do not show or
discuss all figures here, because most of them show similar trends. The remaining
figures can be found in appendix A.3.

Figure 5.6 shows the PMI scores for each card clicked by players in a game
where the hints were generated by the Czech Top1 dependency model. The hinted
cards are the cards with a word that belongs to the player and that was targeted
by the AI with the hint given in the turn that the player selected the card. The
positive cards are words that were clicked by the player and belonged to their
team, but that were not hinted at during the turn that they were selected. The
negative cards are words that were selected by the player, but do not belong their
team at all, which can be either an enemy, neutral or assassin card.

The cards that the player selected which were not hinted at by the AI can be
split into two categories: words for which the model either correctly or incorrectly
predicted a PMI score of 0 and words for which the model predicted, hopefully
correctly, a PMI value above 0.

For the second class of words it means that our weights have failed to an extent.
They did not adequately protect against giving hints with high association with
the negative cards. However, the remedy is simple: we can improve our weights
or, instead of using relative negative thresholds, we can introduce an absolute
negative threshold to prevent the model from giving these hints. An attempt
to introduce such a threshold is made in Section 5.5.1 where we introduce the
concept of threshold models.

The problem of words for which the PMI score is 0, is more difficult to solve.
There are three reasons why a player can select a card with a PMI of 0 in relation
to the hint: 1) the player got a hint related to this card in a previous turn, 2) the
model incorrectly predicted that the word and hint are not associated or 3) the

41

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.6: Similarity scores for each card clicked by players across several test
games for the Czech Top1 dependency model

player selected the card even though the word is not associated with the hint. The
last and least likely point is something we cannot change, people make mistakes
which does not say anything about the quality of our model. The first point
addresses what we will call accidental hits where a player selects a card that
is related based on a previous hint. While they are not as good as direct hits
where the player selects a word directly based on the current hint, the decisions
are still a results of associations that the player makes on the hints provided by
the model. Therefore they are not a reason of concern.

Now we shift our focus to the second case where the model incorrectly pre-
dicts an association between a word and the current hint. These misses are
problematic because the similarity scores are not representative of the word asso-
ciation made by the player, and by proxy the word associations made by humans.
They indicate a potential blind spot in our model for the PMI scores: we might
not have enough data to accurately model the level of association between these
words. This might be the case for words with a low frequency in our corpus, such
as kamion for Czech (2 occurrences) and platypus for English (98 occurrences) as
mentioned in Section 3.4.

We see the same trend across all methods: the cards with high PMI scores are
the ones that were hinted at by the model. And there are a considerable amount
of them for each model, which means that the model provides hints that the
player understands, which explains why they perform better than the baseline as
seen in Section 5.3.

We do not observe any major differences between Czech and English when it

42

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.7: Similarity scores for each card clicked by players across several test
games for the Czech Top3 dependency model

comes to the PMI scores of cards selected by the player.
The PMI scores of hinted cards that were not clicked are not as interesting,

because they will always be high since the model selects the hint with the highest
PMI values. Similarly, one would have to make very strong assumptions about
the intent of the player in order to draw reasonable conclusions from the cards
that were not clicked by the player. While it is reasonable to assume that the
player considers the cards they click to be ”related”, not clicking a card does
not necessarily imply a ”not related” judgment. Players often wait with clicking
a card that they think is related, because they are not certain and want to get
more information from the next hint. Other times players simply glance over one
of the words while searching the board for words related to the hint. For these
reasons we cannot assume that not clicking a card means that the player judged
it as unrelated, which is why we do not show graphs of PMI scores for cards that
were not clicked by the player.

5.4.4 Empirical results for cosine similarity
Similar to what we did for dependencies and PMI, we also show graphs of the co-
sine similarities for several games played using the Top1, 2 and 3 word embedding
models.

The first thing to note is that these graphs are different from the graphs with
PMI scores for they do not start with a sequence of zero values. Cosine similarity
is a similarity metric which produces more gradual results in comparison to PMI.

43

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.8: Similarity scores for each card clicked by players across several test
games for the English Top3 dependency model

While it is very easy for PMI to be 0, which happens when two words never occur
close together in a text, cosine similarity can only be 0 when two words are at
opposite ends of the modelled space in all dimensions, which is very unlikely.

In Figure 5.9 and 5.12 we can see that the Top1 model for Czech and English
behave the same. Even though we have many more data points for English than
for Czech, we have one block of only hinted cards on the right and a block of
negative cards with some positive cards mixed in on the left. What is so special
about this is that, unlike the other models, for Top1 the cutoff point is clean. On
one side there are only positive and negative cards and on the other side there
are only hinted cards. This means that there was never a situation in which
the model generated a hint with high similarity scores for negative cards and
the player clicked on these cards. The Top1 model seems to be much better at
selecting hints where only the target words have high similarity scores.

The right side of these graphs is clearly what we want: the player almost
always clicks on one of their own cards which were hinted at by the model. The
left side is what we don’t want: the player clicking on incorrect cards or sometimes
on correct cards that the model did not hint at.

These negative instances cannot be explained by out of turn selection of words
by the player. While this is a valid reason for positive instances with low similarity
score with the current hint, one would also expect to see negative words with high
similarity scores if this was the case. Because we do not see such instances in the
graph, we conclude that these negative instances must be caused by some other
factor.

44

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.9: Similarity scores for each card clicked by players across several test
games for the Czech Top1 word embedding model

This leaves us with two possibilities. Either the player selects negative in-
stances with low similarity scores because the player sees them as very related,
which means the similarity scores are incorrect. Or, alternatively, the player
deems these negative instances to be only slightly related, but selects them be-
cause they do not see better alternatives. In this case improving our hints in such
a way that they are more obvious to the player would increase the performance
of our models. One such approach would be to find better hints with higher simi-
larity scores to the words, which means improving our model. Another approach
would be to make sure we only give hints above a certain threshold, which ensures
that the gap in similarity between the hint and positive and negative words is
always large enough. We explore this second approach in Section 5.5.1.

The idea of the threshold models is that we avoid hints with word similarity
scores below the threshold. If all hints given by the model are hints for which all
n target words cross this threshold, we expect the overall distribution of clicked
cards to get closer to the results on the right side of the graph. We would then
expect the player to mostly click cards that both belong to their team and are
hinted at by the model.

The Top2 models are unique because they have the highest amount of positive
and hinted cards interspersed throughout the block of negative cards in compar-
ison to the other models. In Figure 5.10 and A.5 we can see that there are many
words with low similarity scores that were selected by the player and were in
fact part of their team. One possible explanation for this is that there are many
cases where the model generates a hint, but the player is not certain about the

45

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.10: Similarity scores for each card clicked by players across several test
games for the Czech Top2 word embedding model

association between the word and the hint and selects the word at a later turn.
In Figure 5.11 we see something that we have not seen before, the block of

hinted cards is regularly interrupted by negative cards. While these instances are
also visible to a limited extent in the other figures, they never extend above a
cosine similarity of 0.4. For the Czech Top3 model the highest negative instance
has a similarity score of 0.530. A similar outlier of 0.484 is present for the English
model in Figure A.4. We suggest that these outliers exist because it is more
difficult to hint at 3 words and not at any of the negative cards than it is to hint
at only 1 card while avoiding the negative ones.

5.4.5 Empirical thresholds

Czech English
Word Word

Method Dependency embeddings Dependency embeddings
Top3 9.299 0.282 6.946 0.350
Top2 10.811 0.387 9.653 0.371

Table 5.7: Empirically derived thresholds for dependency and word embedding
models generating hints for 3 and 2 words in Czech and English.

We choose thresholds by selecting the lowest value of the leftmost block of 4
or more hinted and positive cards in each graph. The resulting thresholds can be

46

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.11: Similarity scores for each card clicked by players across several test
games for the Czech Top3 word embedding model

found in Table 5.7. The difference in the thresholds taken for Czech and English
is quite large for the dependency model. This is expected, because the PMI scores
that these thresholds are based on were not extracted from the same text. Even
though CzEng is a parallel corpus, the different distributional characteristics of
the two languages lead to two separate PMI scales. When inspecting the data we
can see that the PMI values for Czech are structurally higher than the ones for
English. For example for the Top3 dependency model, the consecutive block of
hinted cards on the right goes from 9.701 to 18.199 for Czech, while it starts at
6.946 and ends at 15.866 for English.

When comparing between methods, the difference between the thresholds for
Top3 and Top2 for the English dependency model (6.946 and 9.653) is very large
compared to Czech (9.299 and 10.811), while the difference in thresholds for the
English word embeddings model (0.350 and 0.371) is quite small compared to
Czech (0.282 and 0.387). It is difficult to explain these differences, other than the
idea that more data might produce more regular thresholds. As to the quality of
the thresholds, this will become clear when we test these models in Section 5.5.1.

The similarity scores for word embeddings are normalized. As such, the
threshold for Top2 for Czech and English (0.371 and 0.387) are more compa-
rable for this method. It is likely that some value between 0.371 and 0.387 is the
optimal threshold for a Top3 word embeddings model.

47

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.12: Similarity scores for each card clicked by players across several test
games for the English Top1 word embedding model

5.5 Ensemble models

5.5.1 Threshold models
We experiment with an ensemble model for both dependencies and word embed-
dings using the thresholds determined in the previous section. A model consists
of three submodels which we have already tested individually so we can see if
there is an improvement. Hints are chosen by querying the Top3, Top2 and Top1
models in that order and selecting the first hint from the model that passes its
respective threshold, defaulting to the Top1 model if none of the thresholds are
passed. The TopN dependency model uses the Top3, Top2 and Top1 dependency
models with thresholds of 9.299 and 10.811 for Czech and 6.946 and 9.653 for
English. The TopN word embeddings model uses the Top3, Top2 and Top1 de-
pendency models with thresholds of 0.282 and 0.387 for Czech and 0.350 and
0.371 for English.

Table 5.8 shows the results of the TopN models and the individual models.
The dependency model performed very poorly with an f-score of 0.591 for Czech
and 0.519 for English. It did not manage to outperform even the worst indi-
vidual model, which was the Top3 model with f-scores of 0.595 and 0.632. The
performance of the English model is exceptionally bad when contrasted with the
performance of its worst submodel (0.519 and 0.632) and performs much worse
than the Czech model in this regard (0.591 and 0.595). We hypothesize that the
low threshold for the English Top3 model, the worst performing model, has con-
tributed significantly to this poor performance. The Czech model has a higher

48

Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Dependency-level col.
Top1 0.722 0.633 0.675 0.693 0.678 0.685
Top2 0.621 0.778 0.691 0.646 0.711 0.677
Top3 0.552 0.644 0.595 0.655 0.611 0.632
TopN 0.598 0.585 0.591 0.570 0.476 0.519

Word embeddings
Top1 0.789 0.789 0.789 0.768 0.735 0.751
Top2 0.608 0.690 0.647 0.614 0.735 0.669
Top3 0.574 0.626 0.599 0.667 0.786 0.722
TopN 0.673 0.623 0.647 0.738 0.679 0.707

Table 5.8: Micro-averaged precision, recall and f-score for the top-n dependency
and word embedding models. Highest precision, recall and f-score are marked in
bold separately for each combination of language and setup with more than one
aggregation method.

threshold and a much smaller gap between the threshold of the Top3 and Top2
model as mentioned in Section 5.4.5. In addition, we can say that the ensemble
method has not had the desired effect. While we would expect from an ensemble
method that it would perform equally or better than the worst performing model,
our English dependency model performed much worse than the worst individual
model.

For word embeddings the picture looks slightly better. The TopN models
perform worse than the best individual model with an f-score of 0.647 versus 0.789
for Czech and 0.707 versus 0.751 for English, but better than the worst individual
model (0.599 and 0.669). While this performance is certainly better than that
of the TopN dependency model, it does not improve over the best individual
model in any way. When we look at Figure 5.13 we see that the threshold model
did not prevent the player from selecting cards with low similarity scores. The
graph looks similar in shape and distribution to Figure 5.11 which we were trying
to improve on. The number of positive cards selected that were not hinted at
in the current turn is much higher, which explains why the model has a higher
precision than the Top2 and 3 models. Therefore we conclude that the threshold
system successfully improves the precision of the model. However, this happened
at the cost of recall. And it still performs worse than the Top1 model across all
statistics.

All TopN models suffered in terms of recall when compared to the individ-
ual models. None of the TopN models has higher recall than the lowest recall
of the submodels that it is built from. Precision on the other hand increased
considerably in comparison to the Top3 and Top2 models.

We suspect that the thresholds we have set for the word embedding models

49

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure 5.13: Similarity scores for each card clicked by players across several games
for the Czech TopN word embedding model

are better than the ones for the dependency models. Furthermore, the threshold
model might be better suited for word embeddings in general than for colloca-
tions, because the cosine similarity is a normalized scale and pointwise mutual
information is not. However, the threshold model did not live up to expectations,
because it did not prevent the player from clicking on cards with low similarity
scores in regards to the hint.

To conclude, the threshold dependency model performed worse than even
a baseline expectation of an ensemble model for English. The threshold word
embedding model achieved moderate results, performing within the range of the
best and worst submodels that it contains. As such, we conclude that thresholds
are not a good method for ensembling.

The threshold models do not behave the way we expected them to; they do
not solve the problem of words with low similarity scores being clicked by the
player.

We suspect that the selected thresholds are far from optimal and a linear ap-
proach might achieve better results. Finding a good way to combine the Top1, 2,
3 methods to achieve the same or better performance than either of the individual
methods is an interesting direction for future research.

5.5.2 Combined models
Lastly, we would like to test a model that combines both dependency collocations
and word embedding models. Since the threshold system turned out to be a poor

50

ensembling method, we have to consider a new way in which we can combine
our models. One method is to find a mapping between PMI values and cosine
similarity. However, one of these measures is normalized and the other is not and
their scales are radically different, so this relationship can be hard to find through
trial-and-error, and is in the worst case non-linear. Instead we choose to perform
ensembling through mutual agreement, where we let both models predict hints,
until one of the models gives a hint that the other model has also predicted for
the current board state.

We expect an ensemble model that combines word embeddings and colloca-
tions to perform better than the individual models, because they both model very
different things. Word embeddings capture similarity while collocations usually
capture other types of relations. Combining the best of both models should lead
to better results.

We test an ensemble model that combines the TopN dependency and TopN
word embedding models described in Section 5.5.1 through mutual agreement for
Czech and English.

Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Dependency-level col.
TopN 0.598 0.585 0.591 0.570 0.476 0.519

Word embeddings
TopN 0.673 0.623 0.647 0.738 0.679 0.707

Dep. collocations & WE
TopN - mutual 0.642 0.678 0.659 0.711 0.697 0.704

Table 5.9: Micro-averaged precision, recall and f-score for the combined TopN
dependency and word embedding model.

In Table 5.9 we can see the results of combining dependency and word em-
bedding models by finding hints through mutual agreement between models. The
combined model performed similarly to the best models included in them with
an f-score of 0.659 for Czech and 0.704 for English. The f-score of the TopN
word embedding model is slightly lower for Czech (0.647) and slightly higher for
English (0.707).

Although these results are promising, they do not significantly improve the
results of the models they combine. The model is successful at mimicking the
performance of the best internal model, but it does not select either or depending
on what is best in a given situation. This is due to the ensembling method used.
As such, more research on good ensembling methods is needed to find models
that do improve above the performance of their internal parts.

In Table 5.10 we show the number of games played and number of decisions
made for each model. The number of decisions for a model is the sum of all the
cards clicked by players in all the games played with that model.

51

Player decisions
Setup CZ EN

Aggregation #G #D #G #D
Sentence-level collocations

CombinedMax 17 148 62 520
Dependency-level col.

CombinedMax 17 159 68 556
MeanDiff 18 179 67 601
Top1 10 79 10 88
Top2 11 124 10 99
Top3 10 105 10 84
TopN 10 92 10 86

Word embeddings
most similar 22 242 65 630
CombinedMax 25 233 77 741
Top1 10 90 13 112
Top2 14 143 13 140
Top3 11 108 13 138
TopN 10 98 11 103

Dep. collocations & WE
TopN - mutual 10 95 11 97

Table 5.10: Number of games played and number of decisions made for all models
tested.

52

6. Conclusion

Player decisions
Setup CZ EN

Aggregation P R F1 P R F1

Random
Baseline 0.389 0.339 0.362 0.389 0.339 0.362

Sentence-level collocations
CombinedMax 0.507 0.490 0.498 0.500 0.466 0.482

Dependency-level col.
CombinedMax 0.629 0.654 0.641 0.547 0.497 0.521
MeanDiff 0.575 0.636 0.604 0.546 0.544 0.545
Top1 0.722 0.633 0.675 0.693 0.678 0.685
Top2 0.621 0.778 0.691 0.646 0.711 0.677
Top3 0.552 0.644 0.595 0.655 0.611 0.632
TopN 0.598 0.585 0.591 0.570 0.476 0.519

Word embeddings
most similar 0.616 0.753 0.677 0.563 0.607 0.584
CombinedMax 0.558 0.578 0.568 0.567 0.606 0.586
Top1 0.789 0.789 0.789 0.768 0.735 0.751
Top2 0.608 0.690 0.647 0.614 0.735 0.669
Top3 0.574 0.626 0.599 0.667 0.786 0.722
TopN 0.673 0.623 0.647 0.738 0.679 0.707

Dep. collocations & WE
TopN - mutual 0.642 0.678 0.659 0.711 0.697 0.704

Table 6.1: Micro-averaged precision, recall and f-score for all models tested, in-
cluding baseline. Highest precision, recall and f-score are marked in bold sepa-
rately for each combination of language and setup with more than one aggregation
method.

We have provided both a theoretical and a practical framework for the evalua-
tion of computational models of word association. We started out by establishing
a baseline for the task of Codenames with a single human player. After this we
explored several methods all of which performed well above the baseline f-score
of 0.362. The restriction of dependency-level bigrams proved a definite improve-
ment over broad sentence-level bigrams for the collocation model, beating the
sentence-level collocations model with an f-score of 0.641 versus 0.498 for Czech
and 0.521 versus 0.482 for English.

Large improvements to our model were made by aggregating the similarity
scores of the words on the board and weighting them more cleverly, as well as
the introduction of the number of target words which was presented to the player
alongside the hint. Our best dependency models achieved an f-score of 0.691 for
Czech and 0.685 for English. The word embedding models based on the same
aggregation technique in turn outclassed these models with f-scores of 0.789 and

53

0.751 for Czech and English respectively. The model that got closest to helping
the player turn over all their cards, was the Top2 dependency model for Czech
with a recall of 0.778. For English the best model in this regard was the Top3
word embeddings model with a recall of 0.786. We made several attempts to
build ensemble models that combine the best performing models to boost their
performance. We were not successful in this regard, our TopN dependency model
achieved f-scores of 0.591 and 0.519 for Czech and English respectively. The
TopN word embeddings performed better, with an f-score of 0.647 for Czech and
0.707 for English, but neither outperformed the best individual top-n model for
their respective language. A final attempt at combining dependency and word
embedding models by finding hints through mutual agreement between models,
performed similarly to the best models included in them with an f-score of 0.659
for Czech and 0.704 for English. Although these results are promising, we believe
that many better ensembling methods still remain.

We have shown that both dependency-level collocation models and word em-
bedding models can provide hints of considerable quality, given the right con-
straints. Dependency models manage to capture several types of relations be-
tween words which the player is able to pick up on, while the word embedding
models excel at finding semantically similar hints.

6.1 Future Work
We have provided an overview of only the most basic methods and we believe
that many improvements can still be made to achieve better performance on
the Codenames word association task. For example by finding better ensemble
methods to combine models that give hints for a different number of words, as
well as successfully combining models of different types such as collocation and
word embedding models. Introducing an extra weighting step into the pipeline
might also prove useful, such as multiplying the final score of a possible hint by
the log of its frequency in the CzEng corpus, similar to the method described in
Obrtĺık [2018].

The methods we use are themselves simple baselines for the technique that
they are based on. There exist many more measures of association other than
pointwise mutual information and there have been many improvements in recent
years over the FastText word embeddings that we tested, many of which might
surpass our best word embedding models when compared. This could be a fruitful
direction for future research.

The same framework can be used to analyze the effect of time taken between
receiving the word prompt and making a decision. We did not incorporate any
timing mechanism in our application, so it is not possible to extract this type of
information from our dataset. However, it is easy to modify the application and
record this data as well, so this is nonetheless an interesting avenue for future
work.

While this thesis was mainly focussed on the computational side of word
association, it must be noted that a human baseline for the Codenames word
association task would be very useful to give more context to the results achieved
on this task. Similarly, comparing the predictions made by the models to human-
level word associations would also be a useful direction in this area.

54

Bibliography
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-

ing word vectors with subword information. Transactions of the Association
for Computational Linguistics, 5:135–146, 2017. ISSN 2307-387X.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Libovický, Michal Novák,
Martin Popel, Roman Sudarikov, and Dušan Varǐs. CzEng 1.6: Enlarged
Czech-English Parallel Corpus with Processing Tools Dockered. In Petr So-
jka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech, and
Dialogue: 19th International Conference, TSD 2016, number 9924 in Lecture
Notes in Computer Science, pages 231–238, Cham / Heidelberg / New York
/ Dordrecht / London, 2016. Masaryk University, Springer International Pub-
lishing. ISBN 978-3-319-45509-9.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography. Computational linguistics, 16(1):22–29, 1990.

Gemma Bel Enguix, Reinhard Rapp, and Michael Zock. A graph-based approach
for computing free word associations. In LREC, pages 3027–3033, 2014.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 302–308, 2014.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word embed-
dings. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

Douglas L Nelson, Cathy L McEvoy, and Thomas A Schreiber. The university
of south florida free association, rhyme, and word fragment norms. Behavior
Research Methods, Instruments, & Computers, 36(3):402–407, 2004.

Petr Obrtĺık. Computer as an intelligent partner in the word-association game
codenames. Master’s thesis, Brno University of Technology, Brno, 2018.

Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:
//is.muni.cz/publication/884893/en.

Princeton University. ”About WordNet.” WordNet, 2010. URL https://
wordnet.princeton.edu/.

Manfred Wettler and Reinhard Rapp. Computation of word associations based
on co-occurrences of words in large corpora. In VERY LARGE CORPORA:
ACADEMIC AND INDUSTRIAL PERSPECTIVES, 1993.

55

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/

List of Figures

1.1 A regular game of Codenames . 5

2.1 Schematic of a skip-gram model, adapted from Mikolov et al. [2013] 7

3.1 Example sentence with dependency annotations from CzEng . . . 16

4.1 Login screen . 26
4.2 Menu screen . 27
4.3 Game screen . 28
4.4 Game end screen . 29
4.5 Hall of Fame screen . 30

5.1 Percentage of own, enemy, neutral and assassin cards at the start
of the game versus the distribution of cards clicked by the player
during the game when selecting cards randomly. 33

5.2 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the initial Czech models . . . 35

5.3 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the initial English models . . 36

5.4 list of figures text . 39
5.5 Number of incorrectly classified instances for each possible thresh-

old value, given the judgments made by annotator 1 and 2 for 100
English bigrams . 39

5.6 Similarity scores for each card clicked by players across several test
games for the Czech Top1 dependency model 42

5.7 Similarity scores for each card clicked by players across several test
games for the Czech Top3 dependency model 43

5.8 Similarity scores for each card clicked by players across several test
games for the English Top3 dependency model 44

5.9 Similarity scores for each card clicked by players across several test
games for the Czech Top1 word embedding model 45

5.10 Similarity scores for each card clicked by players across several test
games for the Czech Top2 word embedding model 46

5.11 Similarity scores for each card clicked by players across several test
games for the Czech Top3 word embedding model 47

5.12 Similarity scores for each card clicked by players across several test
games for the English Top1 word embedding model 48

5.13 Similarity scores for each card clicked by players across several
games for the Czech TopN word embedding model 50

A.1 Similarity scores for each card clicked by players across several test
games for the Czech Top2 dependency model 65

A.2 Similarity scores for each card clicked by players across several test
games for the English Top1 dependency model 66

A.3 Similarity scores for each card clicked by players across several test
games for the English Top2 dependency model 66

56

A.4 Similarity scores for each card clicked by players across several test
games for the English Top3 word embedding model 67

A.5 Similarity scores for each card clicked by players across several test
games for the English Top2 word embedding model 67

A.6 Similarity scores for each card clicked by players across all games
for the English topN word embedding model 68

A.7 Similarity scores for each card clicked by players across all games
for the Czech topN dependency model 68

A.8 Similarity scores for each card clicked by players across all games
for the English topN dependency model 69

A.9 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the word embeddings model
with Top1, Top2 and Top3 aggregation methods for Czech 69

A.10 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the word embeddings model
with Top1, Top2 and Top3 aggregation methods for English . . . 70

A.11 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level colloca-
tions model with Top1, Top2 and Top3 aggregation methods for
Czech . 70

A.12 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level colloca-
tions model with Top1, Top2 and Top3 aggregation methods for
English . 71

A.13 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level colloca-
tions threshold model and the word embeddings threshold model
for both Czech and English . 71

A.14 Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the combination model based
on the dependency-level collocations and word embeddings thresh-
old models for both Czech and English 72

57

List of Tables

3.1 List of 10 least frequent Czech lexicon words in CzEng 17
3.2 List of 10 least frequent English lexicon words in CzEng 18
3.3 Board state at the start of turn 1 and hints and target words with

their similarity scores for each model used in the example game . 21
3.4 Board state at the start of turn 2 and hints and target words with

their similarity scores for each model used in the example game . 22
3.5 Board state at the start of turn 3 and hints and target words with

their similarity scores for each model used in the example game . 24
3.6 Board state at the start of turn 4 and hints and target words with

their similarity scores for each model used in the example game . 24
3.7 Board state at the start of turn 5 and hints and target words with

their similarity scores for each model used in the example game . 25

4.1 Hints and their PMI values for the word fire 31

5.1 Average win rate, chance to lose by clicking the assassin, precision,
recall and f-score achieved by randomly clicking cards until the
game ends. 32

5.2 Micro-averaged precision, recall and f-score for our initial models . 34
5.3 Micro-averaged precision, recall and f-score for our improved models 37
5.4 Thresholds with lowest number of wrongly classified bigrams using

the annotators classification as gold standard. 40
5.5 Confusion matrix showing the annotator (dis)agreements for Czech. 40
5.6 Confusion matrix showing the annotator (dis)agreements for English. 40
5.7 Empirically derived thresholds for dependency and word embed-

ding models generating hints for 3 and 2 words in Czech and English. 46
5.8 Micro-averaged precision, recall and f-score for the top-n depen-

dency and word embedding models 49
5.9 Micro-averaged precision, recall and f-score for the combined de-

pendency and word embedding model 51
5.10 Number of games played and number of decisions made for all

models tested . 52

6.1 Micro-averaged precision, recall and f-score for all models tested . 53

58

List of Abbreviations
CM Combined maximum
MD Mean difference
PMI Pointwse Mutual Information
WE Word Embeddings

59

A. Attachments

A.1 Lexicon for Czech

AFRIKA AMERIČAN AMERIKA ANDĚL
ANGLIE ASIE ATLET AUSTRÁLIE
AUTO AUTOBUS BAČKORA BANÁN
BANKÉŘ BASA BÁSNÍK BERLÍN
BETON BIOLOG BOTA BRAMBORA
BRÁNA BRATISLAVA BRATR BRAZÍLIE
BŘICHO BRNO BROUK BRÝLE
BUBLINA BUŇKA ČARODĚJ ČECH
ČEPICE ČERT CESTA CESTOVATEL
CHLÉB CHOBOTNICE ČÍNA CIRKUS
CIZINEC ČOČKA ČOKOLÁDA CUKR
DĚLNÍK DĚLO DÉMON DÉŠŤ
DIAMANT DINOSAURUS DÍTĚ DOKTOR
DRAK DRÁT DŘEVO DUB
DUCH DŮM DVEŘE DÝKA
DŽUNGLE FIGURKA FILM FILOZOF
FLÉTNA FOTBALISTA FRANCIE FYZIK
GUMA HÁK HEREC HLAS
HLAVA HLÍNA HLINÍK HODINKY
HOKEJISTA HOLANĎAN HORA HOSPODA
HOUBA HRA HRAD HŘBITOV
HŘEBEN HŘEBÍK HRNEC HUDBA
HŮL HVĚZDA ITÁLIE JABLKO
JÁDRO JARO JAZYK JEDNOROŽEC
JEHLA JEŘÁB JESKYNĚ JEŠTĚRKA
JEZDEC JEŽEK JEZERO KABÁT
KAKTUS KALHOTY KAMARÁD KÁMEN
KAMION KANADA KAPR KARBANÍK
KARTA KARTÁČ KENTAUR KEŘ
KINO KLADIVO KLAUN KLÁVESNICE
KLAVÍR KLEŠTĚ KLÍČ KLIKA
KLOBOUK KLOKAN KMEN KNEDLÍK
KNIHA KNIHOVNA KNÍR KOČKA
KOLEJ KOLENO KOLO KOLOBĚŽKA
KOMETA KOMÍN KONEV KONÍK
KOŘEN KOŘENÍ KORUNA KOŠ
KOSA KOŠILE KOSMONAUT KOSTKA
KOULE KOUZLO KRÁL KRÁPNÍK

60

KRÁVA KŘÍŽ KROKODÝL KUŘE
KVĚTINA KYTARA KYVADLO LÁHEV
LAMPA LASER LÁSKA LÁTKA
LÁVA LED LES LETADLO
LÉTO LEV LIMONÁDA LIŠKA
LIST LÍZÁTKO LOCHNESKA LOKOMOTIVA
LONDÝN LOPATA LOS LOUKA
LUPIČ LŽÍCE MAĎAR MARS
MASO MATEMATIK MATKA MEČ
MEDVĚD MELOUN MĚSÍC MĚSTO
MÍČ MÍR MLÉKO MOŘE
MOSKVA MOTORKA MOTÝLEK MOUKA
MRAKODRAP MRAVENEC MRÁZ MRKEV
MUCHOMŮRKA MYŠ NÁDRAŽÍ NĚMECKO
NEMOC NEMOCNICE NEPŘÍTEL NETOPÝR
NINJA NOC NOHA NOS
NŮŽ OBCHOD OBR OHEŇ
OKNO OKO OMÁČKA OREL
ORGÁN OSTROV OTEC OVCE
PANÁK PÁNEV PANNA PAPÍR
PAPOUŠEK PAŘÍŽ PARK PARNÍK
PAS PAVOUK PEC PEKING
PES PILA PISTOLE PIVO
PLACKA PLANETA PLAST PLÁŠŤ
PLASTELÍNA PLOT PLYN POČÍTAČ
PODNIKATEL PODVODNÍK PODZIM POEZIE
POHÁDKA PÓL POLE POLÉVKA
POLICISTA POMERANČ PONOŽKA POPEL
POUŠŤ PRÁCE PRACH PRAČKA
PRAHA PRASE PREZIDENT PRINCEZNA
PRODAVAČ PROGRAMÁTOR PROVAZ PRSTEN
PTAKOPYSK RÁDIO RADOST RAJČE
RAKETA ŘECKO ŘEKA ŘETĚZ
ŘIDIČ ROBOT ROH ROLE
ROPA RUČNÍK RUKA RUS
RŮŽE SALÁM SALÁT SAVEC
SEDLÁK SEDMIKRÁSKA SEKERA SESTRA
SILNICE ŠIPKA SKLO ŠKOLA
SKŘÍTEK SLON SLUNCE SMRK
SMRT SMŮLA SNĚŽENKA SNÍH
ŠPAGETA ŠPANĚL SRDCE ŠROUBEK
ŠROUBOVÁK ŠTĚSTÍ ŠTIKA ŠTÍR
STŘELEC STŘÍBRO STROM SUKNĚ
SŮL SUPERHRDINA ŠVESTKA SVĚTLO

61

SVÍČKA SÝR TALÍŘ TAŠKA
TELEFON TELEVIZE TLAČÍTKO TOPOL
TRÁVA TŘEŠEŇ TROUBA TRPASLÍK
TRUBKA TUČŇÁK TULIPÁN TUŽKA
TYGR UCHO UČITEL ÚDOLÍ
UHLÍ UMĚLEC UPÍR ÚŘAD
VÁHA VÁLKA VĚDEC VEJCE
VELRYBA VENUŠE VESMÍR VESNICE
VĚTRNÍK VĚŽ VĚZEŇ VÍČKO
VÍDEŇ VIDLIČKA VÍLA VÍNO
VÍRA VÍTR VLAK VLNA
VODA VODNÍK VOJEVŮDCE VRCHOL
VŮZ VZDUCH YETTI ZADEK
ZÁKON ZÁKUSEK ZÁMEK ZEBRA
ŽEBRÁK ŽEBRO ZEĎ ŽEHLIČKA
ŽELEZO ZELÍ ŽELVA ZEMĚ
ZIMA ZLATO ZOMBIE ZPĚVÁK
ŽRALOK ZRCADLO ZUB ZVONEK

62

A.2 Lexicon for English

AFRICA AGENT AIR ALIEN
ALPS AMAZON AMBULANCE AMERICA
ANGEL ANTARCTICA APPLE ARM
ATLANTIS AUSTRALIA AZTEC BACK
BALL BAND BANK BAR
BARK BAT BATTERY BEACH
BEAR BEAT BED BEIJING
BELL BELT BERLIN BERMUDA
BERRY BILL BLOCK BOARD
BOLT BOMB BOND BOOM
BOOT BOTTLE BOW BOX
BRIDGE BRUSH BUCK BUFFALO
BUG BUGLE BUTTON CALF
CANADA CAP CAPITAL CAR
CARD CARROT CASINO CAST
CAT CELL CENTAUR CENTER
CHAIR CHANGE CHARGE CHECK
CHEST CHICK CHINA CHOCOLATE
CHURCH CIRCLE CLIFF CLOAK
CLUB CODE COLD COMIC
COMPOUND CONCERT CONDUCTOR CONTRACT
COOK COPPER COTTON COURT
COVER CRANE CRASH CRICKET
CROSS CROWN CYCLE CZECH
DANCE DATE DAY DEATH
DECK DEGREE DIAMOND DICE
DINOSAUR DISEASE DOCTOR DOG
DRAFT DRAGON DRESS DRILL
DROP DUCK DWARF EAGLE
EGYPT EMBASSY ENGINE ENGLAND
EUROPE EYE FACE FAIR
FALL FAN FENCE FIELD
FIGHTER FIGURE FILE FILM
FIRE FISH FLUTE FLY
FOOT FORCE FOREST FORK
FRANCE GAME GAS GENIUS
GERMANY GHOST GIANT GLASS
GLOVE GOLD GRACE GRASS
GREECE GREEN GROUND HAM
HAND HAWK HEAD HEART
HELICOPTER HIMALAYAS HOLE HOLLYWOOD
HONEY HOOD HOOK HORN
HORSE HORSESHOE HOSPITAL HOTEL
ICE ICE CREAM INDIA IRON
IVORY JACK JAM JET

63

JUPITER KANGAROO KETCHUP KEY
KID KING KIWI KNIFE
KNIGHT LAB LAP LASER
LAWYER LEAD LEMON LEPRECHAUN
LIFE LIGHT LIMOUSINE LINE
LINK LION LITTER LOCH NESS
LOCK LOG LONDON LUCK
MAIL MAMMOTH MAPLE MARBLE
MARCH MASS MATCH MERCURY
MEXICO MICROSCOPE MILLIONAIRE MINE
MINT MISSILE MODEL MOLE
MOON MOSCOW MOUNT MOUSE
MOUTH MUG NAIL NEEDLE
NET NEW YORK NIGHT NINJA
NOTE NOVEL NURSE NUT
OCTOPUS OIL OLIVE OLYMPUS
OPERA ORANGE ORGAN PALM
PAN PANTS PAPER PARACHUTE
PARK PART PASS PASTE
PENGUIN PHOENIX PIANO PIE
PILOT PIN PIPE PIRATE
PISTOL PIT PITCH PLANE
PLASTIC PLATE PLATYPUS PLAY
PLOT POINT POISON POLE
POLICE POOL PORT POST
POUND PRESS PRINCESS PUMPKIN
PUPIL PYRAMID QUEEN RABBIT
RACKET RAY REVOLUTION RING
ROBIN ROBOT ROCK ROME
ROOT ROSE ROULETTE ROUND
ROW RULER SATELLITE SATURN
SCALE SCHOOL SCIENTIST SCORPION
SCREEN SCUBA DIVER SEAL SERVER
SHADOW SHAKESPEARE SHARK SHIP
SHOE SHOP SHOT SINK
SKYSCRAPER SLIP SLUG SMUGGLER
SNOW SNOWMAN SOCK SOLDIER
SOUL SOUND SPACE SPELL
SPIDER SPIKE SPINE SPOT
SPRING SPY SQUARE STADIUM
STAFF STAR STATE STICK
STOCK STRAW STREAM STRIKE
STRING SUB SUIT SUPERHERO
SWING SWITCH TABLE TABLET
TAG TAIL TAP TEACHER
TELESCOPE TEMPLE THEATER THIEF
THUMB TICK TIE TIME
TOKYO TOOTH TORCH TOWER

64

TRACK TRAIN TRIANGLE TRIP
TRUNK TUBE TURKEY UNDERTAKER
UNICORN VACUUM VAN VET
WAKE WALL WAR WASHER
WASHINGTON WATCH WATER WAVE
WEB WELL WHALE WHIP
WIND WITCH WORM YARD

A.3 Similarity scores

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.1: Similarity scores for each card clicked by players across several test
games for the Czech Top2 dependency model

65

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.2: Similarity scores for each card clicked by players across several test
games for the English Top1 dependency model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.3: Similarity scores for each card clicked by players across several test
games for the English Top2 dependency model

66

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.4: Similarity scores for each card clicked by players across several test
games for the English Top3 word embedding model

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.5: Similarity scores for each card clicked by players across several test
games for the English Top2 word embedding model

67

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.6: Similarity scores for each card clicked by players across all games for
the English topN word embedding model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.7: Similarity scores for each card clicked by players across all games for
the Czech topN dependency model

68

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Si
m

ila
rit

y
sc

or
e

Hinted card
Positive card
Negative card

Figure A.8: Similarity scores for each card clicked by players across all games for
the English topN dependency model

A.4 Distribution of decisions

Baseline Top1 Top2 Top30%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.9: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the word embeddings model with Top1,
Top2 and Top3 aggregation methods for Czech

69

Baseline Top1 Top2 Top30%

20%

40%

60%

80%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.10: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the word embeddings model with Top1,
Top2 and Top3 aggregation methods for English

Baseline Top1 Top2 Top30%

10%

20%

30%

40%

50%

60%

70%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.11: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level collocations model
with Top1, Top2 and Top3 aggregation methods for Czech

70

Baseline Top1 Top2 Top30%

10%

20%

30%

40%

50%

60%

70%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.12: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level collocations model
with Top1, Top2 and Top3 aggregation methods for English

Baseline Dependency
Czech

Dependency
English

WE Czech WE English0%

10%

20%

30%

40%

50%

60%

70%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.13: Percentage of own, enemy, neutral and assassin cards clicked by
players across all games played with the dependency-level collocations threshold
model and the word embeddings threshold model for both Czech and English

71

Baseline Czech English
0%

10%

20%

30%

40%

50%

60%

70%

Pe
rc

en
ta

ge
 o

f d
ec

isi
on

s

Own
Enemy
Neutral
Assassin

Figure A.14: Percentage of own, enemy, neutral and assassin cards clicked by play-
ers across all games played with the combination model based on the dependency-
level collocations and word embeddings threshold models for both Czech and
English

72

	Introduction
	Word association
	Codenames
	A single human player

	Structure of the thesis

	Background & Literature
	Word embeddings
	Information theory measures
	Association databases
	WordNet
	University of South Florida Free Association Norms

	Previous work on computational word association

	Methods
	Game
	Hint filter

	Word embeddings
	Collocations
	Sentence-level bigrams

	Dependency-level collocations
	Low frequency words

	Aggregation
	CombinedMax
	MeanDiff
	Gensim - most_similar
	Top-n

	Example game

	Implementation
	Login
	Menu
	Game
	AI names

	Hall of Fame
	Lexicon

	Collocations

	Results
	Baseline
	Distribution of decisions

	Initial models
	Word embeddings
	Collocations
	Distribution of decisions

	Improved models
	Analysis of similarity scores
	PMI experiment
	Annotator results
	Empirical results for PMI
	Empirical results for cosine similarity
	Empirical thresholds

	Ensemble models
	Threshold models
	Combined models

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Lexicon for Czech
	Lexicon for English
	Similarity scores
	Distribution of decisions

