Unsupervised Dependency Parsing

David Mareček

Institute of Formal and Applied Linguistics Charles University in Prague

Monday seminar, ÚFAL April 2, 2012, Prague

Outline

What is unsupervised parsing

- Pros & cons
- Evaluation

Current state-of-the-art methods

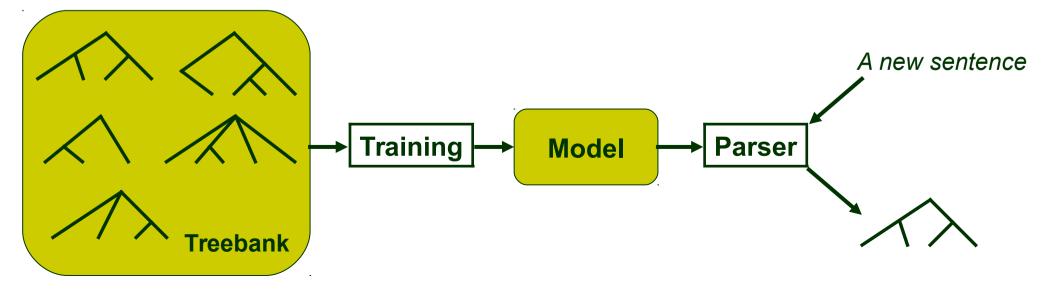
Dependency Model with Valence

My work

- Reducibility feature
- Dependency model
- □ Gibbs sampling of projective dependency trees
- Results

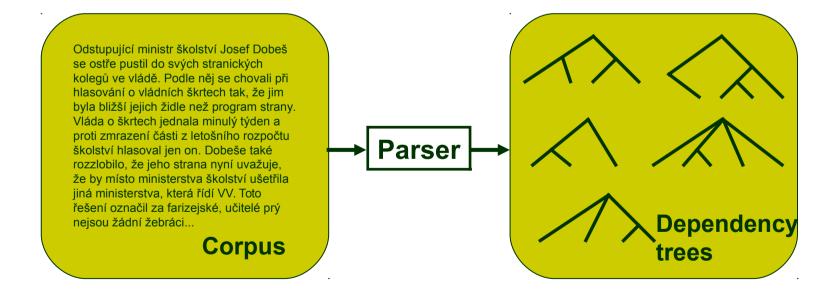
Supervised Dependency Parsing

We have a manually annotated treebank (set of example trees), on which the parser can be learned



Unsupervised Dependency Parsing

- We have no manually annotated treebank.
- Dependency trees are induced automatically from raw (or possibly PoS tagged) texts.
- The testing data can be included into the training



Why should be unsupervised parsing useful?

Disadvantages:

So far, the results are not as good as for supervised methods (50% vs. 85% unlabeled attachment score for Czech)

Advantages:

- □ we do not need any manually annotated treebanks
- □ we can possibly parse any language in any domain
- we do not depend on tagset or tokenization used for the treebank annotation

Analogy with word-alignment

- Dependency parsing can be also seen as alignment of a sentence with itself, where
 - □ connecting a word to itself is disabled
 - each word is attached to just one other word (= to its parent)
 - □ a word can be attached to the technical root

Despite the drop in prices for thoroughbreds , owning one still is not cheap . ROOT

Despite the drop in prices for thoroughbreds , owning one still is not cheap .

GIZA++ is widely used unsupervised word-alignment tool

- □ easy to use
- works on any parallel corpus and if it is large enough it achieves high quality

Evaluation metrics

Comparison with manually annotated data is problematic

- for each linguistic annotation, we have to make a lot of decisions how to annotate some phenomena that are not clear
- coordination structures, auxiliary verbs, modal verbs, prepositional groups, punctuation, articles...
- □ unsupervised parser can handle them differently, but, in fact, also correctly

Two metrics:

- UAS (unlabeled attachment score) standard metric for evaluation of dependency parsers
- UUAS (undirected unlabeled attachment score) edge direction is disregarded (it is not a mistake if governor and dependent are switched)
- Ideally, the parsing quality should be measured extrinsically in some application

□ machine translation, question answering, ...

However, the most common is the standard UAS

CURRENT METHODS FOR UNSUPERVISED DEPENDENCY PARSING

History of unsupervised parsing

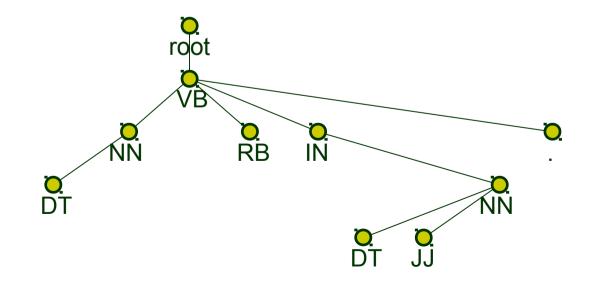
- First approaches based on pointwise mutual information had problems in being better then right/left chain baseline
- 2005: Dan Klein introduces a Dependency Model with Valence (DMV)
 - Current state-of-the-art methods are based on modifications of DMV

Dependency Model with Valence

Generative model: For each node:

- □ generate all its left children and go recursively into them
- □ generate the left STOP sign
- □ generate all its right children and go recursively into them

□ generate the right STOP sign



Dependency Model with Valence

- P_{STOP}(STOP|*h*,*dir*,*adj*) ... probability that no more child of the head *h* will be generated in the direction *dir*
- P_{CHOOSE}(a|h,dir) ... probability of children a for the head h and direction dir
- adj ... is something generated in the given direction?

 $P(D(h)) = \prod_{dir \in \{l,r\}} \prod_{a \in deps_D(h,dir)} P_{STOP}(\neg STOP|h, dir, adj)$

 $P_{CHOOSE}(a|h, dir)P(D(a))$

 $P_{\text{STOP}}(\text{STOP}|h, dir, adj)$

Extended Valency Grammar and Lexicalization

- P_{CHOOSE}(a|h,dir,adj) instead of P_{CHOOSE}(a|h,dir)
- Lexicalization: uses wordform+tag instead of tag only
- Smoothing

Progress in 2005 – 2011

Attachment score on English PTB, WSJ23

Random baseline	4.4%
Left chain baseline	21.0%
Right chain baseline	29.4%
DMV (2005)	35.9%
EVG (2009)	42.6%
Lexicalization (2009)	45.4%
Gillenwater (2010)	53.3%
Blunsom and Cohn (2010)	55.7%
Spitkovsky (2011)	58.4%

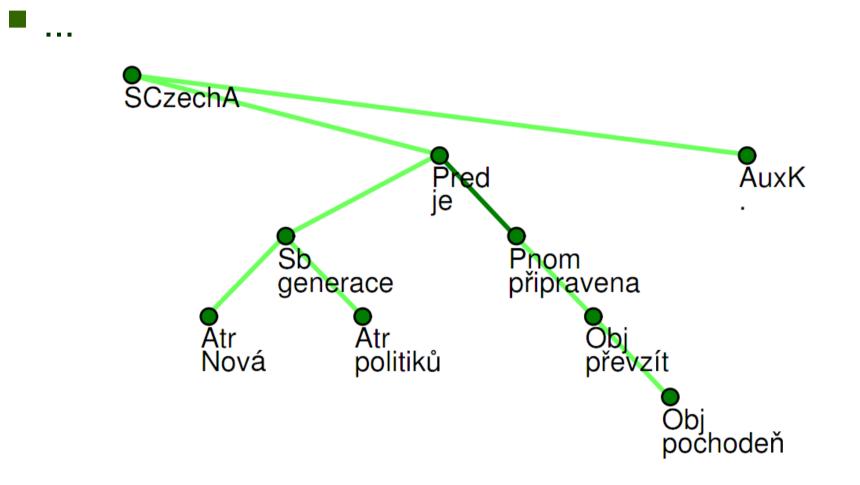
MY EXPERIMENTS

- reducibility feature for recognition of dependent words
- four submodels for modeling dependency trees
- Gibbs sampling algorithm for dependency structure induction

Reducibility feature

- Can we somehow recognize from a text which words are dependents?
- A word (or a sequence of words) is reducible if the sentence after removing the word(s) remains grammatically correct.
- Hypothesis: Reducible words (or reducible sequences of words) are leaves (subtrees) in dependency tree.

Reducibility - example



Computing reducibility

- How can we automatically recognize whether a sentence is grammatical or not?
 - □ Hardly...
- If we have a large corpus, we can search for the needed sentence.
 - \Box it is in the corpus \rightarrow it is (possibly) grammatical
 - \Box it is not in the corpus \rightarrow we do not know
- We would like to assign some reducibility scores to the PoS tags (sequences of PoS tags)
 - □ adjectives and adverbs high reducibility
 - □ nouns middle reducibility
 - verbs low reducibility

Computing reducibility

- for PoS sequence g = [t1, ..., tn]
 - □ We go through the corpus and search for all its occurrences
 - For each such occurrence, we remove the respective words from the sentence and check in the corpus whether the rest of the sentence occurs at least ones elsewhere in the corpus. If so, then such sequence of words is reducible.

 \Box r(g) ... number of reducible sequences g in the corpus

 \Box c(g) ... number of all sequences g in the corpus

$$R(g) = \frac{1}{N} \frac{r(g) + \sigma_1}{c(g) + \sigma_2}, \quad N = \frac{\sum_{g \in G} (r(g) + \sigma_1)}{\sum_{g \in G} c(g) + \sigma_2)}$$
$$\sigma_1 = \frac{\sum_{g \in G} r(g)}{\sum_{g \in G} c(g)}, \quad \sigma_2 = 1$$

Examples of reducibility scores

Reducibility of Czech PoS tags (1st and 2nd position of PDT tag)

unigrams	R	bigrams	R	trigrams	R
P4	0.00	RR AA	0.00	RR NN Z:	0.00
RV	0.00	Z: J,	0.00	NN RR AA	0.00
Vp	0.06	Vp NN	0.00	NN AA NN	0.16
Vf	0.06	VB NN	0.12	AA NN RR	0.23
P7	0.16	NN Vp	0.13	NN RR NN	0.46
J,	0.24	NN VB	0.18	NN J^ NN	0.46
RR	0.28	NN RR	0.22	AA NN NN	0.47
VB	0.33	NN AA	0.23	NN Z: Z:	0.48
NN	0.72	NN J^	0.62	NN Z: NN	0.52
J^	1.72	AA NN	0.62	NN NN NN	0.70
C=	1.85	NN NN	0.70	AA AA NN	0.72
PD	2.06	NN Z:	0.97	AA NN Z:	0.86
AA	2.22	Z: NN	1.72	NN NN Z:	1.38
Dg	3.21	Z: Z:	1.97	RR NN NN	2.26
Z:	4.01	J^ NN	2.05	RR AA NN	2.65
Db	4.62	RR NN	2.20	Z: NN Z:	8.32

Examples of reducibility scores

Reducibility of English PoS tags

unigrams	R	bigrams	R	trigrams	R
VB	0.04	VBN IN	0.00	IN DT JJ	0.00
TO	0.07	IN DT	0.02	JJ NN IN	0.00
IN	0.11	NN IN	0.04	NN IN NNP	0.00
VBD	0.12	NNS IN	0.05	VBN IN DT	0.00
CC	0.13	JJ NNS	0.07	JJ NN .	0.00
VBZ	0.16	NN.	0.08	DT JJ NN	0.04
NN	0.22	DT NNP	0.09	DT NNP NNP	0.05
VBN	0.24	DT NN	0.09	NNS IN DT	0.14
	0.32	NN,	0.11	NNP NNP .	0.15
NNS	0.38	DT JJ	0.13	NN IN DT	0.23
DT	0.43	JJ NN	0.14	NNP NNP,	0.46
NNP	0.78	NNP.	0.15	IN DT NNP	0.55
JJ	0.84	NN NN	0.22	DT NN IN	0.59
RB	2.07	IN NN	0.67	NNP NNP NNP	0.64
,	3.77	NNP NNP	0.76	IN DT NN	0.80
CD	55.6	IN NNP	1.81	IN NNP NNP	4.27

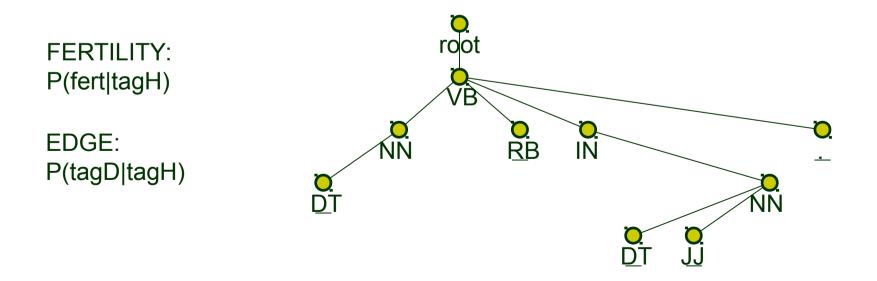
Dependency tree model

Consists of four submodels
edge model, fertility model, distance model, subtree model

Simplification

□ we use only PoS tags, we don't use word forms

□ we induce projective trees only



Edge model

- P(dependent tag | direction, parent tag)
 - □ Chinese restaurant process
 - If an edge has been frequent for in the past, it is more likely to be generated again

 \Box Dirichlet hyperparameter β

$$P_e(t_j|t_i, d_j) = \frac{c^{-i}("t_i, t_j, d_j") + \beta}{c^{-i}("t_i, d_j") + \beta |T|},$$

Fertility model

P(number of children | parent tag)

- □ Chinese restaurant process
- □ Hyperparameter α_e is divided by a frequency of a word form

$$P'_f(f_i|t_i, w_i) = \frac{c^{-i}("t_i, f_i") + \frac{\alpha_e}{F(w_i)}P_0(f_i)}{c^{-i}("t_i") + \frac{\alpha_e}{F(w_i)}},$$

Distance model

Longer edges are less probable.

$$P_d(i,j) = \frac{1}{\epsilon_d} \left(\frac{1}{|i-j|}\right)^{\gamma}$$

Subtree model

The higher reducibility score the subtree (or leaf) has, the more probable it is.

$$P_s(i) = \frac{1}{\epsilon_s} R(desc(i))^{\delta}$$

Probability of treebank

The probability of the whole treebank, which we want to maximize

Multiplication over all nodes and models

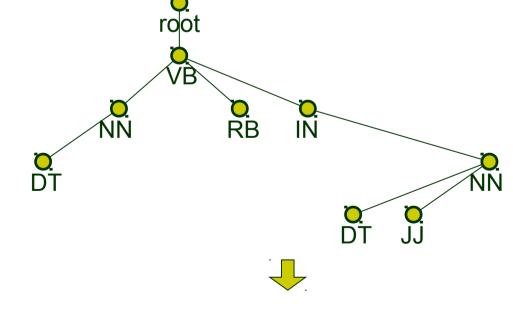
$$P_{treebank} = \prod_{i=1}^{n} (P'_f(f_i|t_i, w_i)$$
$$P_e(t_i|t_{\pi(i)}, d_i)$$
$$P_d(i, \pi(i))$$
$$P_s(i)),$$

Gibbs sampling

- Iterative approximation algorithm which helps with searching for the most probable solution
 - Often used in unsupervised machine learning
- First, dependency trees for all the sentences in the corpus are initialized randomly.
 - □ We can compute the initial probability of the treebank
- We are doing a small changes in the treebank
 - We pick a node and randomly change the dependency structure of its neighbourhood by weighted coin flip
 - The changes that lead to higher treebank probability are more probable than the changes that lead to lower probability
- After more than 200 iterations (200 small changes for the each node), the dependency trees converge

Gibbs sampling – bracketing notation

- Each projective dependency tree can be expressed by a unique bracketing.
 - Each bracket pair belongs to one node and delimits its descendants from the rest of the sentence.
 - Each bracketed segment contains just one word that is not embedded deeper; this node is the segment head.



(((DT) NN) VB (RB) (IN ((DT) (JJ) NN)))

Gibbs sampling – small change

- Choose one non-root node and remove its bracket
- Add another bracket which does not violate projective tree constraints

(VB)	0.0009
(VB (RB))	0.0011
(((DT) NN) VB)	0.0016
(((DT) NN) VB (RB))	0.0018 📛
(IN)	0.0006
(IN ((DT) (JJ) NN))	0.0023
((RB) IN ((DT) (JJ) NN))	0.0012
((RB) IN)	0.0004
((((DT) NN) VB (RB)) IN ((DT) (JJ) NN))	

Gibbs sampling

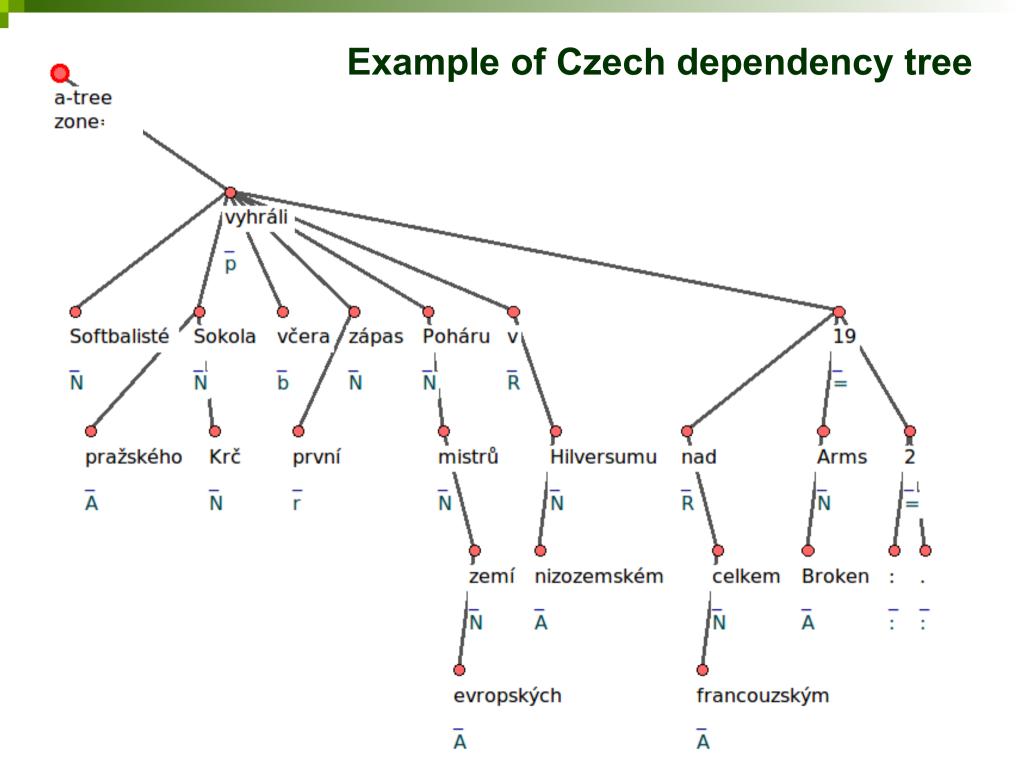
After 100-200 iterations, the trees converge.

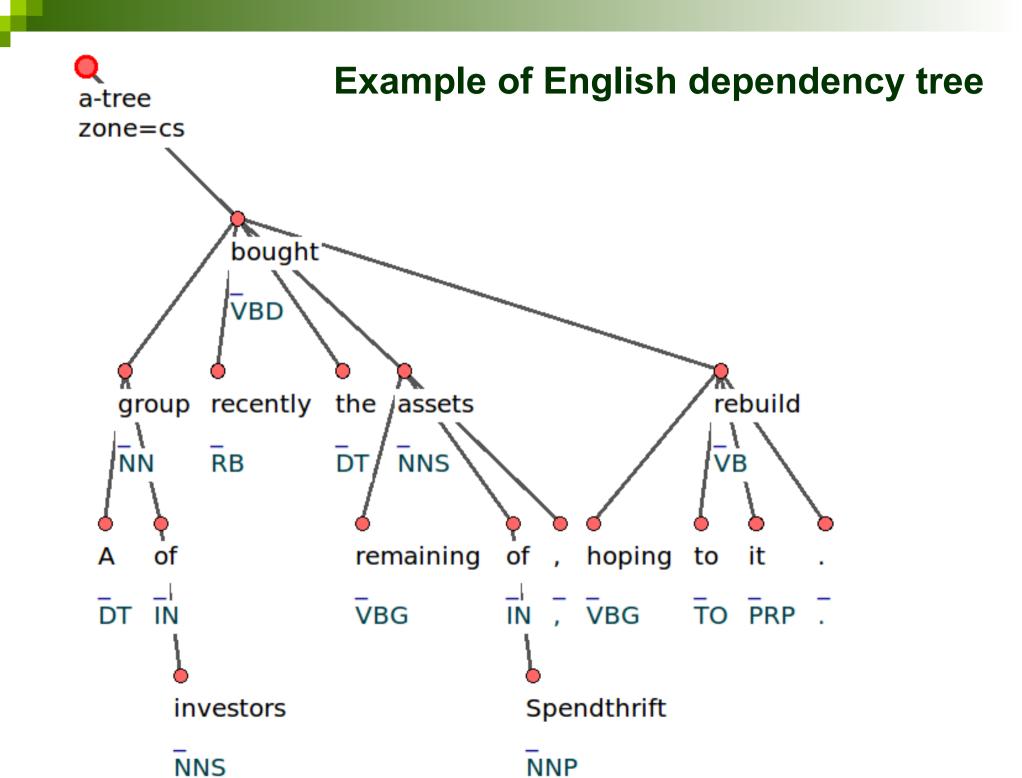
- we can pick the actual treebank as it is after the last iteration
- we can average the last (100) iterations using maximum spanning tree algorithm

Evaluation and Results

Directed attachment scores on CoNLL 2006/2007 test data
Comparison with Spitkovsky 2011 (possibly state-of-the-art)

language	spi11	our	language	spi11	our
Arabic	16.6	26.5 Greek		13.2	20.2
Basque	24.0	26.8	Hungarian	34.7	51.8
Bulgarian	43.9	46.0	Italian	52.3	43.3
Catalan	59.8	47.0	Japanese	50.2	50.8
Czech	27.7	49.5	Portuguese	36.7	50.6
Danish	38.3	38.6	Slovenian	32.2	18.0
Dutch	27.8	44.2	Spanish	50.6	51.9
English	45.2	49.2	Swedish	50.0	48.2
German	30.4	44.8	Turkish	35.9	15.7





Conclusions

- We have an unsupervised dependency parser, which has been tested on 18 different languages.
- We achieved higher attachment scores for 13 of them.
 - Compared with previous results reported by Spitkovsky (2011)

Thank you for your attention.