
Unsupervised
Dependency Parsing

David Mareček

Institute of Formal and Applied Linguistics
Charles University in Prague

Monday seminar, ÚFAL
April 2, 2012, Prague

Outline

 What is unsupervised parsing
 Pros & cons
 Evaluation

 Current state-of-the-art methods
 Dependency Model with Valence

 My work
 Reducibility feature
 Dependency model
 Gibbs sampling of projective dependency trees
 Results

Supervised Dependency Parsing

 We have a manually annotated treebank (set of
example trees), on which the parser can be learned

Training ParserModel

Treebank

A new sentence

Unsupervised Dependency Parsing

 We have no manually annotated treebank.
 Dependency trees are induced automatically from raw (or

possibly PoS tagged) texts.
 The testing data can be included into the training

Parser

Corpus

Odstupující ministr školství Josef Dobeš
se ostře pustil do svých stranických
kolegů ve vládě. Podle něj se chovali při
hlasování o vládních škrtech tak, že jim
byla bližší jejich židle než program strany.
Vláda o škrtech jednala minulý týden a
proti zmrazení části z letošního rozpočtu
školství hlasoval jen on. Dobeše také
rozzlobilo, že jeho strana nyní uvažuje,
že by místo ministerstva školství ušetřila
jiná ministerstva, která řídí VV. Toto
řešení označil za farizejské, učitelé prý
nejsou žádní žebráci... Dependency

trees

Why should be unsupervised parsing useful?

 Disadvantages:
 So far, the results are not as good as for supervised

methods (50% vs. 85% unlabeled attachment score for
Czech)

 Advantages:
 we do not need any manually annotated treebanks
 we can possibly parse any language in any domain
 we do not depend on tagset or tokenization used for the

treebank annotation

Analogy with word-alignment

 Dependency parsing can be also seen as alignment of a
sentence with itself, where
 connecting a word to itself is disabled
 each word is attached to just one other word (= to its parent)
 a word can be attached to the technical root

 GIZA++ is widely used unsupervised word-alignment tool
 easy to use
 works on any parallel corpus and if it is large enough it achieves

high quality

Despite the drop in prices for thoroughbreds , owning one still is not cheap . ROOT

Despite the drop in prices for thoroughbreds , owning one still is not cheap .

Evaluation metrics

 Comparison with manually annotated data is problematic
 for each linguistic annotation, we have to make a lot of decisions how to annotate

some phenomena that are not clear
 coordination structures, auxiliary verbs, modal verbs, prepositional groups,

punctuation, articles...
 unsupervised parser can handle them differently, but, in fact, also correctly

 Two metrics:
 UAS (unlabeled attachment score) – standard metric for evaluation of

dependency parsers
 UUAS (undirected unlabeled attachment score) – edge direction is disregarded (it

is not a mistake if governor and dependent are switched)

 Ideally, the parsing quality should be measured extrinsically in
some application
 machine translation, question answering, ...

 However, the most common is the standard UAS

CURRENT METHODS FOR
UNSUPERVISED DEPENDENCY PARSING

History of unsupervised parsing

 First approaches based on pointwise mutual
information had problems in being better then
right/left chain baseline

 2005: Dan Klein introduces a Dependency Model
with Valence (DMV)
 Current state-of-the-art methods are based on

modifications of DMV

Dependency Model with Valence

 Generative model: For each node:
 generate all its left children and go recursively into them
 generate the left STOP sign
 generate all its right children and go recursively into them
 generate the right STOP sign

root

NN IN

VB

NNDT

DT JJ

.RB

Dependency Model with Valence

 PSTOP(STOP|h,dir,adj) ... probability that no more child of the
head h will be generated in the direction dir

 PCHOOSE(a|h,dir) ... probability of children a for the head h and
direction dir

 adj ... is something generated in the given direction?

Extended Valency Grammar and Lexicalization

 PCHOOSE(a|h,dir,adj) instead of PCHOOSE(a|h,dir)
 Lexicalization: uses wordform+tag instead of tag only
 Smoothing

Progress in 2005 – 2011

Random baseline 4.4%

Left chain baseline 21.0%

Right chain baseline 29.4%

DMV (2005) 35.9%

EVG (2009) 42.6%

Lexicalization (2009) 45.4%

Gillenwater (2010) 53.3%

Blunsom and Cohn (2010) 55.7%

Spitkovsky (2011) 58.4%

 Attachment score on English PTB, WSJ23

MY EXPERIMENTS

 reducibility feature for recognition of dependent words

 four submodels for modeling dependency trees

 Gibbs sampling algorithm for dependency structure induction

Reducibility feature

 Can we somehow recognize from a text which words
are dependents?

 A word (or a sequence of words) is reducible if the
sentence after removing the word(s) remains
grammatically correct.

 Hypothesis: Reducible words (or reducible
sequences of words) are leaves (subtrees) in
dependency tree.

Reducibility - example

 ...

Computing reducibility

 How can we automatically recognize whether a sentence is
grammatical or not?
 Hardly...

 If we have a large corpus, we can search for the needed
sentence.
 it is in the corpus → it is (possibly) grammatical
 it is not in the corpus → we do not know

 We would like to assign some reducibility scores to the PoS
tags (sequences of PoS tags)
 adjectives and adverbs – high reducibility
 nouns – middle reducibility
 verbs – low reducibility

Computing reducibility

 for PoS sequence g = [t1, ..., tn]
 We go through the corpus and search for all its occurrences
 For each such occurrence, we remove the respective words from the

sentence and check in the corpus whether the rest of the sentence
occurs at least ones elsewhere in the corpus. If so, then such
sequence of words is reducible.

 r(g) ... number of reducible sequences g in the corpus
 c(g) ... number of all sequences g in the corpus

Examples of reducibility scores

 Reducibility of Czech PoS tags (1st and 2nd position of PDT tag)

Examples of reducibility scores

 Reducibility of English PoS tags

Dependency tree model

 Consists of four submodels
 edge model, fertility model, distance model, subtree model

 Simplification
 we use only PoS tags, we don’t use word forms
 we induce projective trees only

root

NN IN

VB

NNDT

DT JJ

.RB

FERTILITY:
P(fert|tagH)

EDGE:
P(tagD|tagH)

Edge model

 P(dependent tag | direction, parent tag)
 Chinese restaurant process
 If an edge has been frequent for in the past, it is more

likely to be generated again
 Dirichlet hyperparameter β

Fertility model

 P(number of children | parent tag)
 Chinese restaurant process
 Hyperparameter αe is divided by a frequency of a word

form

Distance model

 Longer edges are less probable.

Subtree model

 The higher reducibility score the subtree (or leaf)
has, the more probable it is.

Probability of treebank

 The probability of the whole treebank, which we want
to maximize
 Multiplication over all nodes and models

Gibbs sampling

 Iterative approximation algorithm which helps with
searching for the most probable solution
 Often used in unsupervised machine learning

 First, dependency trees for all the sentences in the
corpus are initialized randomly.
 We can compute the initial probability of the treebank

 We are doing a small changes in the treebank
 We pick a node and randomly change the dependency structure of

its neighbourhood by weighted coin flip
 The changes that lead to higher treebank probability are more

probable than the changes that lead to lower probability

 After more than 200 iterations (200 small changes for
the each node), the dependency trees converge

Gibbs sampling – bracketing notation

 Each projective dependency tree can be expressed by a
unique bracketing.
 Each bracket pair belongs to one node and delimits its

descendants from the rest of the sentence.
 Each bracketed segment contains just one word that is not

embedded deeper; this node is the segment head.

root

NN IN

VB

NNDT

DT JJ

RB

(((DT) NN) VB (RB) (IN ((DT) (JJ) NN)))

Gibbs sampling – small change

 Choose one non-root node and remove its bracket
 Add another bracket which does not violate projective tree constraints

(((DT) NN) VB (RB) IN ((DT) (JJ) NN))()

(IN ((DT) (JJ) NN))

((RB) IN ((DT) (JJ) NN))

((RB) IN)

(((DT) NN) VB (RB))

(((DT) NN) VB)

(VB (RB))

(VB)

0.0012

0.0009

0.0011

0.0023

0.0018

0.0004

0.0016

(IN) 0.0006

Gibbs sampling

 After 100-200 iterations, the trees converge.
 we can pick the actual treebank as it is after the last

iteration
 we can average the last (100) iterations using maximum

spanning tree algorithm

Evaluation and Results

 Directed attachment scores on CoNLL 2006/2007 test data
 comparison with Spitkovsky 2011 (possibly state-of-the-art)

language spi11 our

Arabic 16.6 26.5

Basque 24.0 26.8

Bulgarian 43.9 46.0

Catalan 59.8 47.0

Czech 27.7 49.5

Danish 38.3 38.6

Dutch 27.8 44.2

English 45.2 49.2

German 30.4 44.8

language spi11 our

Greek 13.2 20.2

Hungarian 34.7 51.8

Italian 52.3 43.3

Japanese 50.2 50.8

Portuguese 36.7 50.6

Slovenian 32.2 18.0

Spanish 50.6 51.9

Swedish 50.0 48.2

Turkish 35.9 15.7

Example of Czech dependency tree

Example of English dependency tree

Conclusions

 We have an unsupervised dependency parser, which
has been tested on 18 different languages.

 We achieved higher attachment scores for 13 of
them.
 Compared with previous results reported by Spitkovsky

(2011)

Thank you for your attention.

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35

