1. Introduction

- **Task:** to find correspondences between two tectogrammatical (deep-syntactic) trees that represent an English sentence and its Czech translation.
- **Motivation:** aligned tectogrammatical trees are needed for training tree-to-tree transfer models in our MT system.
- **Hypothesis:** tectogrammatical representations of Czech and English sentences are more similar compared to the similarity of the sentence surface shapes, thus higher agreement/precision in alignment should be achievable.

2. Manually aligned data

- 515 sentences (about 13,000 tokens) manually aligned on the word level, in parallel by two independent annotators.
- Three types of links distinguished: (a) sure links, (b) possible links, (c) phrasal links.
- The sentences were automatically parsed up to the tectogrammatical layer.
- Then the word alignment was transferred to the tectogrammatical trees in order to provide data for training and testing tectogrammatical aligners.

3. Alignment algorithm

4. Function for scoring candidate node pairs

- Based on a set of manually designed features - feature vector f
- Vector of feature weights
- Scalar product scoring function: $\text{score}(\text{cnode, enode}) = w \cdot f(\text{cnode, enode})$

5. Evaluation

- **inter-annotator agreement (f-measure)**
 - on aligning words: 82.1% (f-measure) on aligning t-nodes (i.e., after transferring the manual word alignment to t-trees): 94.7%.
 - performance of the automatic t-trees aligners (f-measure)
 - baseline: t-lemma sequences aligned by GIZA++: 82.6%.
 - alignment of t-trees by our feature-based aligner: 90.4% (10-fold cross validation).

6. Conclusions

- Inter-annotator agreement on aligning t-nodes (= content words) is considerably higher than the agreement on aligning all words of the original sentences.
- Our feature-based tectogrammatical aligner outperforms the GIZA++ baseline.