
weightrangefeature name

0.110 or 1equal semantic POS 

0.17〈0, 1〉translation probability from dict.

0.330, 1, 2, …aligned child

0.370 or 1aligned parent

0.490 or 1the same 3-letter prefix

0.510 or 1both coord/apos. roots

0.640 or 1aligned by GIZA++, grow-diag-final

0.950 or 1t-lemma pair in dictionary

1.000 or 1identical t-lemmas

1.49〈0, 1〉translation probability from GIZA++

1.810 or 1the same 4-letter prefix

2.280 or 1the same 5-letter prefix

2.630 or 1the same digit prefix

2.780 or 1aligned by GIZA++, intersection

2.81〈0, 1〉similarity in linear position

Feature weights

1. Introduction

• Task: to find correspondences between two
tectogrammatical (deep-syntactic) trees that represent
an English sentence and its Czech translation.

• Motivation: aligned tectogrammatical trees are 
needed for training tree-to-tree transfer models in our 
MT system. 

• Hypothesis: tectogrammatical representations of
Czech and English sentences are more similar
compared to the similarity of the sentence surface
shapes, thus higher agreement/precision in alignment 
should be achievable.
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5. Evaluation

• inter-annotator agreement (f-measure)
• on aligning words: 82.1 %
• on aligning t-nodes (i.e., after transferring the manual word alignment to t-trees): 

94.7 %

• performance of the automatic t-trees aligners (f-measure)
• baseline: t-lemma sequences aligned by GIZA++: 82.6 %
• alignment of t-trees by our feature-based aligner: 90.4 % (10-fold cross validation)

foreach (cnode, enode): cnode ∈CTree, enode ∈ETree do
score(cnode, enode) = w · f (cnode, enode);
Add cnode to CNonUsed;
Add enode to ENonUsed;

while exist (cnode, enode): cnode ∈CNonUsed, enode ∈ENonUsed do
Find (cmax, emax) with the highest score(cmax, emax);
if score(cmax, emax) ≥ threshold then

Align(cmax, emax);
Delete cnode from CNonUsed;
Delete enode from ENonUsed;
foreach (cnode, enode): cnode ∈CNonUsed, enode ∈ENonUsed do

if cnode = parent(cmax) or cnode ∈ children(cmax)
or enode = parent(emax) or enode ∈ children(emax) then

score(cnode, enode) = w · f (cnode, enode);
else

break;

Step 1: Greedy feature-based 1:1 alignment

We align two t-nodes K, L if the following conditions are fulfilled:
• K is not yet aligned and its parent or child t-node is aligned to L
• The pair (K, L) was also aligned by GIZA++ (grow-final-diag sym.)
• The pair (K, L) occures in the probabilistic dictionary

Step 2: Completing 1:N relations

INPUT: a pair of Czech and
English tectogrammatical trees

OUTPUT:
aligned trees

3. Alignment algorithm

4. Function for scoring candidate node pairs

Alignment of words in a sample sentence pair:

Alignment of t-nodes in the corresponding pair of tectogrammatical trees:

2. Manually aligned data

• 515 sentences (about 13,000 tokens) manually 
aligned on the word level, in parallel by two 
independent annotators.

• Three types of links distinguished: (a) sure links,       
(b) possible links, (c) phrasal links.

• The sentences were automatically parsed up to the 
tectogrammatical layer.

• Then the word alignment was transferred to the 
tectogrammatical trees in order to provide data for 
training and testing tectogrammatical aligners.

6. Conclusions
• Inter-annotator agreement on aligning t-nodes (≈ content words) is considerably

higher than the agreement on aligning all words of the original sentences.

• Our feature-based tectogrammatical aligner outperforms the GIZA++ baseline.

• Based on a set of 
manually designed 
features - feature vector f

• Vector of feature weights 
w found by perceptron
using the annotated data

• Scalar product scoring 
function:  

score(cnode, enode) =
w · f (cnode, enode)


