
weightrangefeature name

0.110 or 1equal semantic POS

0.17〈0, 1〉translation probability from dict.

0.330, 1, 2, …aligned child

0.370 or 1aligned parent

0.490 or 1the same 3-letter prefix

0.510 or 1both coord/apos. roots

0.640 or 1aligned by GIZA++, grow-diag-final

0.950 or 1t-lemma pair in dictionary

1.000 or 1identical t-lemmas

1.49〈0, 1〉translation probability from GIZA++

1.810 or 1the same 4-letter prefix

2.280 or 1the same 5-letter prefix

2.630 or 1the same digit prefix

2.780 or 1aligned by GIZA++, intersection

2.81〈0, 1〉similarity in linear position

Feature weights

1. Introduction

• Task: to find correspondences between two
tectogrammatical (deep-syntactic) trees that represent
an English sentence and its Czech translation.

• Motivation: aligned tectogrammatical trees are
needed for training tree-to-tree transfer models in our
MT system.

• Hypothesis: tectogrammatical representations of
Czech and English sentences are more similar
compared to the similarity of the sentence surface
shapes, thus higher agreement/precision in alignment
should be achievable.

Automatic Alignment of Czech and English Deep Syntactic Dependency Trees

David Mareček, Zdeněk Žabokrtský, Václav Novák

Institute of Formal and Applied Linguistics, ÚFAL MFF, Charles University in Prague

The $ 409 million bid is estimated by Mr . Simpson as representing 75 % of the value of all Hooker real-estate holdings in the U . S .

Podle odhadu pana Simpsona představuje 409 milionová nabídka 75 % hodnoty všech realitních holdingů firmy Hooker ve Spojených státech .

5. Evaluation

• inter-annotator agreement (f-measure)
• on aligning words: 82.1 %
• on aligning t-nodes (i.e., after transferring the manual word alignment to t-trees):

94.7 %

• performance of the automatic t-trees aligners (f-measure)
• baseline: t-lemma sequences aligned by GIZA++: 82.6 %
• alignment of t-trees by our feature-based aligner: 90.4 % (10-fold cross validation)

foreach (cnode, enode): cnode ∈CTree, enode ∈ETree do
score(cnode, enode) = w · f (cnode, enode);
Add cnode to CNonUsed;
Add enode to ENonUsed;

while exist (cnode, enode): cnode ∈CNonUsed, enode ∈ENonUsed do
Find (cmax, emax) with the highest score(cmax, emax);
if score(cmax, emax) ≥ threshold then

Align(cmax, emax);
Delete cnode from CNonUsed;
Delete enode from ENonUsed;
foreach (cnode, enode): cnode ∈CNonUsed, enode ∈ENonUsed do

if cnode = parent(cmax) or cnode ∈ children(cmax)
or enode = parent(emax) or enode ∈ children(emax) then

score(cnode, enode) = w · f (cnode, enode);
else

break;

Step 1: Greedy feature-based 1:1 alignment

We align two t-nodes K, L if the following conditions are fulfilled:
• K is not yet aligned and its parent or child t-node is aligned to L
• The pair (K, L) was also aligned by GIZA++ (grow-final-diag sym.)
• The pair (K, L) occures in the probabilistic dictionary

Step 2: Completing 1:N relations

INPUT: a pair of Czech and
English tectogrammatical trees

OUTPUT:
aligned trees

3. Alignment algorithm

4. Function for scoring candidate node pairs

Alignment of words in a sample sentence pair:

Alignment of t-nodes in the corresponding pair of tectogrammatical trees:

2. Manually aligned data

• 515 sentences (about 13,000 tokens) manually
aligned on the word level, in parallel by two
independent annotators.

• Three types of links distinguished: (a) sure links,
(b) possible links, (c) phrasal links.

• The sentences were automatically parsed up to the
tectogrammatical layer.

• Then the word alignment was transferred to the
tectogrammatical trees in order to provide data for
training and testing tectogrammatical aligners.

6. Conclusions
• Inter-annotator agreement on aligning t-nodes (≈ content words) is considerably

higher than the agreement on aligning all words of the original sentences.

• Our feature-based tectogrammatical aligner outperforms the GIZA++ baseline.

• Based on a set of
manually designed
features - feature vector f

• Vector of feature weights
w found by perceptron
using the annotated data

• Scalar product scoring
function:

score(cnode, enode) =
w · f (cnode, enode)

