1. **Find a sequence of operations in** $(a, 2a − 1)$-trees in which almost every operations perform splits/joins up to the root.
Could you find similar sequence for $(a, 2a)$-trees?

For example, insert keys 1 to 14 into $(2, 3)$-tree and than alternately insert and delete number 15.

2. **$(2,4)$-trees versus red-black trees**

Red-black tree is a BST that is balanced by maintaining following invariants:

- Every node is either **black** or **red**
- Root and null pointers are **black**
- There are **no consecutive red nodes** (i.e. red node must have black parent).
- All root-leaf paths contain the same number of black nodes.

It can be useful to consider edge color instead: The color of an edge is the color of the lower end-point. I.e. parent-edge of a red node is red, parent-edge of a black node is black.

- Show, that every $(2,4)$-trees is in fact a red-black tree. That is, find a simple mapping that transforms given $(2,4)$-tree into a valid red-black tree. Note that we are not really looking for an algorithm but for mapping in the mathematical sense.
- What about the other way around? Can we turn any red-black tree into a $(2,4)$-tree?
- Left-leaning red-black tree (LLRBT) maintains additional invariant: If the node has a single red son, then it is the left son. Show, that there is a 1-1 correspondence between $(2,4)$-trees and left leaning red-black trees. That is, find a mapping between $(2,4)$-trees and LLRBT that assigns a unique LLRBT to any $(2,4)$-tree (or a unique $(2,4)$-tree to any LLRBT, which is the same thing).

3. Compare (a,b)-trees, 2-3-trees, 2-3-4-trees, B-trees, B⁺-trees BB(α) trees, RB-trees, LLRB-trees, and AA-trees.

2-3-4-trees are (2,4)-trees; B-trees are (\lceil b/2 \rceil, b)-trees, B⁺-trees store all keys on the last level and let the internal nodes contain copies (typically minima of subtrees); BB(α) trees are lazily balanced trees, where size(children) ≥ α · size(parent) and α < 0.5; RB-trees are Red-Black trees; LLRB-trees were defined in the previous exercise; AA-trees are Red-Black-trees in which each node has at most one red child and it is the right child.

4. Top-down (a,b)-trees
Explain pre-emptive splitting in insert and delete operations.

See the lecture notes.