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Dimensionality Reduction

We often have:
• Big and high-dimensional data
• A lot of features
• Many of them may be redundant / correlated / linearly dependent

Dimensionality reduction algorithms map high-dimensional data to a lower dimension while
preserving structure.

Motivation:
• Visualization
• More efficient use of resources (e.g., time, memory, communication)
• Statistical: fewer dimensions → better generalization (curse of dimenzionality)
• Noise removal (improving data quality)
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Dimensionality Reduction

Feature selection:
• select a subset of features

• 𝑋3 is almost irrelevant
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Dimensionality Reduction

Feature extraction:
• more general
• not limited to the original features
• Assumption: data (approximately) lies on a lower dimensional space
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t-SNE

t-distributed Stochastic Neighbor Embedding
developed by Laurens van der Maaten and Geoffrey Hinton in 2008

• a non-linear dimensionality reduction technique
• for visualization of high dimensional data in 2D (3D)
• it keeps the very similar data points close together in lower-dimensional space
• preserves the local structure of the data, not the global structure
• preserves well-separated clusters

In this part, I am using illustrations by Kemal Erdem.
See https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
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t-SNE
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How you would preserve the local structure in 2D?

Original datasets in 3D
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How you would preserve the local structure in 2D?

Their t-SNE visualization in 2D
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Similarity of two points

Create a probability distribution that represents similarities between neighbors
For each pair of data points (𝑖, 𝑗), compute

𝑝𝑖|𝑗 = 𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑗||2/2𝜎2
𝑖 )

∑𝑘≠𝑖 𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑘||2/2𝜎2
𝑖 ) ,

The similarity of datapoint 𝑥𝑗 to datapoint 𝑥𝑖 is the conditional probability 𝑝𝑗|𝑖, that 𝑥𝑖
would pick 𝑥𝑗 as its neighbor.
The two asymetric distributions are then joined into a symetric one:

𝑝𝑖𝑗 =
𝑝𝑖|𝑗 + 𝑝𝑗|𝑖

2𝑁
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Similarity of two points
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Similarity of two points in the low-dimensional space

As similarity measure in the target low-dimensional
space, we will use Student t-distribution instead of
the Gaussian

𝑞𝑖|𝑗 = (1 + ||𝑦𝑖 − 𝑦𝑗||2)−1

∑𝑘≠𝑙(1 + ||𝑦𝑘 − 𝑦𝑙||2)−1

Student t-distribution ”falls” more quickly and has
longer tail than the Gaussian distribution
Therefore, we will not get similar points squashed
into a single point.
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Gradient descent

t-SNE starts with all the points 𝑦𝑖 randomly distributed in the target 2D (or 3D) space.
It uses Gradient descent optimization using the Kullback-Leibler divergence between 𝑝𝑖𝑗 and
𝑞𝑖𝑗 as a cost function.

𝐶 = 𝐷𝐾𝐿(𝑃 ||𝑄) = ∑
𝑥∈𝑋

𝑃(𝑥)𝑙𝑜𝑔 (𝑃(𝑥)
𝑄𝑥 )

In each step, a gradient is calculated for each point and describes how “strongly” it should
be pulled and what the direction it should choose.
Demo: projector.tensorflow.org
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Principal Component Analysis
Principal components (PC) are orthogonal directions that capture most of the variance in
the data.

• 1st PC – direction of the greatest variability in data
• 2nd PC – next orthogonal (uncorrelated) direction of greatest variability

t-SNE Principal Component Analysis Independent Component Analysis Canonical Correlation Analysis 12/ 23



Principal Component Analysis

Given the centered data [𝑥1, 𝑥2, … , 𝑥𝑛], the first principal vector is:

𝑤1 = argmax
𝑤

1
𝑚

𝑚
∑
𝑖=1

(𝑤𝑇 𝑥𝑖)2 = argmax
𝑤

𝑤𝑇 𝑋𝑋𝑇 𝑤, 𝑤𝑇 𝑤 = 1

We maximize the variance of projection of 𝑥 to 𝑤.
→ we maximize the covariance between 𝑥 and 𝑤 (the dataset is centered)

For computing the 𝑘-th principal vector, we first remove all variability of the previous 𝑘 − 1
PC directions and find the next direction of the greatest variability.
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Principal Component Analysis
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Principal Component Analysis
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Principal Component Analysis

1. Standardize the original high-dimensional dataset.
2. Take the standardized data and compute a covariance matrix 𝐴 that provides a means

to measure how all our features relate to each other.

𝐴𝑥𝑦 = 𝑐𝑜𝑣(𝑥, 𝑦) = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

3. Find its eigenvectors 𝑤 and corresponding eigenvalues 𝜆. Eigenvectors represent the
principal components and provide a means to understand the direction of the data.
Corresponding eigenvalues represent how much variance there is in the data in that
direction.

𝐴𝑤 = 𝜆𝑤
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Principal Component Analysis

4. The eigenvectors are then sorted in descending order based on their corresponding
eigenvalues, after which the top 𝑘 eigenvectors are selected representing the most
important representations found in the data.

5. A new matrix is then constructed with these 𝑘 eigenvectors, thereby reducing the
original 𝑛-dimensional dataset into reduced 𝑘 dimensions.
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Independent Component Analysis
• The classical “cocktail party” problem
• Separate the mixed signal into sources
• Assumption: different sources are independent
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Independent Component Analysis

Let [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑑] denote the projection directions of independent components:

ICA: find these directions such that data projected onto these directions have maximum
statistical independence

How to actually maximize independence?
• Minimize the mutual information
• Maximize the non-Gaussianity
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PCA versus ICA
Both PCA and ICA reduce dimensions.

Differences:
• PCA with a Gaussian model, ICA with non-Gaussian model
• PCA vectors are orthogonal, ICA vectors are not orthogonal
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ICA mathematical approach

𝑥𝑖 = 𝑎𝑖1𝑠1 + 𝑎𝑖2𝑠2 + ⋯ + 𝑎𝑖𝑛𝑠𝑛, ∀𝑖 = 1, … , 𝑛

Giving: observation “x”

Find:
• Original independent components 𝑠
• Associated linear combination 𝑎𝑖𝑗
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Canonical Correlation Analysis

Now consider two sets of variables 𝑥 and 𝑦
• 𝑥 is a vector of 𝑝 variables
• 𝑦 is a vector of 𝑞 variables
• Basically, two feature spaces

How to find the connection between two set of variables (or two feature spaces)?
• CCA: find a projection direction 𝑢 in the space of 𝑥, and a projection direction 𝑣 in the

space of 𝑦, so that projected data onto 𝑢 and 𝑣 has max correlation
• Note: CCA simultaneously finds dimension reduction for two feature spaces
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Canonical Correlation Analysis

CCA formulation:
argmax

𝑢,𝑣
𝑢𝑇 𝑋𝑇 𝑌 𝑣

√(𝑢𝑇 𝑋𝑇 𝑋𝑢)(𝑣𝑇 𝑌 𝑇 𝑌 𝑣)
,

• 𝑋 is 𝑛 by 𝑝: 𝑛 samples in 𝑝-dimensional space
• 𝑌 is 𝑛 by 𝑞: 𝑛 samples in 𝑞-dimensional space
• The 𝑛 samples are paired in 𝑋 and 𝑌

How to solve? … kind of complicated …
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