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We often have:
® Big and high-dimensional data

® A |ot of features

® Many of them may be redundant / correlated / linearly dependent

Dimensionality reduction algorithms map high-dimensional data to a lower dimension while
preserving structure.
Motivation:

® Visualization

® More efficient use of resources (e.g., time, memory, communication)

® Statistical: fewer dimensions — better generalization (curse of dimenzionality)

® Noise removal (improving data quality)
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Dimensionality Reduction

Feature selection:

® select a subset of features

X3

Xz

® X is almost irrelevant

t-SNE Principal Component Analysis Independent Component Analysis Canonical Correlation Analysis
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Dimensionality Reduction

Feature extraction:
® more general
® not limited to the original features

® Assumption: data (approximately) lies on a lower dimensional space
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t-distributed Stochastic Neighbor Embedding
developed by Laurens van der Maaten and Geoffrey Hinton in 2008

® a non-linear dimensionality reduction technique

e for visualization of high dimensional data in 2D (3D)

® it keeps the very similar data points close together in lower-dimensional space
® preserves the local structure of the data, not the global structure

® preserves well-separated clusters

In this part, | am using illustrations by Kemal Erdem.

See https://towardsdatascience.com/t-sne-clearly-explained-d84c537£f53a

t-SNE
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https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a

t-SNE

Large Clusters

Small Clusters
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How you would preserve the local structure in 2D?

Original datasets in 3D
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How you would preserve the local structure in 2D?

Their t-SNE visualization in 2D
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Create a probability distribution that represents similarities between neighbors

For each pair of data points (i, j), compute

o emnllm =) /20%)
3= S ean ([ — o, 2/200)

The similarity of datapoint z; to datapoint z; is the conditional probability p;;, that z;
would pick z; as its neighbor.

The two asymetric distributions are then joined into a symetric one:

Py TPy
Pii=7onN
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Similarity of two points

t-SNE
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Principal Component Analysis Independent Component Analysis

Canonical Correlation Analysis
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Similarity of two points in the low-dimensional space

As similarity measure in the target low-dimensional

space, we will use Student t-distribution instead of ' ||
the Gaussian — \
‘ — p<—x’fa-zn‘n
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Student t-distribution "falls” more quickly and has o o \

longer tail than the Gaussian distribution

Therefore, we will not get similar points squashed o2
into a single point.
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t-SNE starts with all the points y, randomly distributed in the target 2D (or 3D) space.

It uses Gradient descent optimization using the Kullback-Leibler divergence between p,; and
q;; as a cost function.
x )

In each step, a gradient is calculated for each point and describes how “strongly” it should
be pulled and what the direction it should choose.

C=Dg(PlQ) =) Plx) (

zeX
Demo: projector.tensorflow.org
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Principal Component Analysis



Principal components (PC) are orthogonal directions that capture most of the variance in

the data.

® 1st PC — direction of the greatest variability in data
® 2nd PC — next orthogonal (uncorrelated) direction of greatest variability

Principal Component Analysis

Independent Variable y
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Given the centered data [z, z,, ..., x,,], the first principal vector is:

1 m
wy, =argmax — > (wlz;)? = argmaxw? XXTw, wlw=1
We maximize the variance of projection of x to w.
— we maximize the covariance between = and w (the dataset is centered)

For computing the k-th principal vector, we first remove all variability of the previous k — 1
PC directions and find the next direction of the greatest variability.
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Principal Component Analysis
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Principal Component Analysis
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Standardize the original high-dimensional dataset.
Take the standardized data and compute a covariance matrix A that provides a means
to measure how all our features relate to each other.
1 X
Azy = COU({E, y) = N Z(xz - ‘i.)(yz - g)

=1

Find its eigenvectors w and corresponding eigenvalues A. Eigenvectors represent the
principal components and provide a means to understand the direction of the data.
Corresponding eigenvalues represent how much variance there is in the data in that
direction.

Aw = dw

Principal Component Analysis 16/ 23



The eigenvectors are then sorted in descending order based on their corresponding
eigenvalues, after which the top k eigenvectors are selected representing the most
important representations found in the data.

A new matrix is then constructed with these k eigenvectors, thereby reducing the
original n-dimensional dataset into reduced k£ dimensions.
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Independent Component Analysis



Independent Component Analysis

® The classical “cocktail party” problem
® Separate the mixed signal into sources
® Assumption: different sources are independent

@3S +a35, +a5S;
0

@S +a135; + 455,
™~ a5} +a3S; +ayS;
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Let [vy, 09,05, ...,v,] denote the projection directions of independent components:

ICA: find these directions such that data projected onto these directions have maximum
statistical independence

How to actually maximize independence?
® Minimize the mutual information

® Maximize the non-Gaussianity
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PCA versus ICA
Both PCA and ICA reduce dimensions.

Differences:
® PCA with a Gaussian model, ICA with non-Gaussian model

® PCA vectors are orthogonal, ICA vectors are not orthogonal
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ICA mathematical approach

T; = ;181 + QoS+ + 0,8, Vi=1,...,n

Giving: observation “x"

Find:
® Original independent components s

® Associated linear combination a;;
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Canonical Correlation Analysis




Now consider two sets of variables x and y
® 1 is a vector of p variables
® y is a vector of ¢ variables
® Basically, two feature spaces
How to find the connection between two set of variables (or two feature spaces)?

e CCA: find a projection direction u in the space of z, and a projection direction v in the
space of y, so that projected data onto w and v has max correlation

® Note: CCA simultaneously finds dimension reduction for two feature spaces
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CCA formulation:
uI'XTyw
arg max

wo /(I XTXu)(WTYTYv)

® X is n by p: n samples in p-dimensional space
® Y is n by g: n samples in g-dimensional space

® The n samples are paired in X and Y

How to solve? .. kind of complicated ..
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