Latent Dirichlet Allocation

David Mareček

November 04, 2021
With the Expectation-Maximization algorithm we have essentially estimated θ and β by maximum likelihood.
Bayesian Mixture of Categoricals Model

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:

- $\theta \sim Dir(\alpha)$ is a symmetric Dirichlet over category probabilities,
- $\beta_k \sim Dir(\gamma)$ are symmetric Dirichlets over vocabulary probabilities.

What is different?

- We no longer want to compute a point estimate of θ and β.
- We are now interested in computing posterior distributions.
Collapsing sampling for Bayesian Mixture of Categoricals

We want to employ Gibbs Sampling to sample the model variables z_d, β, and θ.

Collapsed Gibbs Sampler: We will sample only the latent variables z_d. The model parameters β and θ are marginalized (integrated out).

In each step, we sample one latent variable z_d conditioned by all the other latent variables z_{-d}, all the documents w, and our hyperparameters γ and α.

$$p(z_d = k|\{w\}, \{z_{-d}\}, \gamma, \alpha)$$

We rewrite it using Bayes theorem.

$$= \frac{p(z_d = k|\{z_{-d}\}, \gamma, \alpha) \ p(\{w\}|z_d = k, \{z_{-d}\}, \gamma, \alpha)}{p(\{w\}|\{z_{-d}\}, \gamma, \alpha)}$$

The denominator is constant (does not depend on category k), the parts in the nominator also do not depend on both the hyperparameters.

$$\propto p(z_d = k|\{z_{-d}\}, \alpha) \ p(\{w\}|z_d = k, \{z_{-d}\}, \gamma)$$
Collapsed sampling for Bayessian Mixture of Categoricals [2]

We have:

\[p(z_d = k|\{w\}, \{z_{-d}\}, \gamma, \alpha) \propto p(z_d = k|\{z_{-d}\}, \alpha) \, p(\{w\}|z_d = k, \{z_{-d}\}, \gamma) \]

Probability of the document collection \(p(\{w\}) \) may be rewritten as \(p(w_d|w_{-d})p(w_{-d}) \). However \(p(w_{-d}) \) does not depend on \(z_d \), so:

\[\propto p(z_d = k|\{z_{-d}\}, \alpha) \, p(\{w_d\}|w_{-d}, z_d = k, \{z_{-d}\}, \gamma) \]

\[\propto p(z_d = k|\{z_{-d}\}, \alpha) \prod_{n=1}^{N_d} p(w_{nd}|\{w_{-d}\}, z_d = k, \{z_{-d}\}, \gamma) \]

For computing \(p(z_d|z_{-d}) \) and \(p(w_d|w_{-d}) \), we integrate over all possible parameters \(\theta \) and \(\gamma \) respectively.

\[\propto \int p(z_d = k|\theta)p(\theta|z_{-d}, \alpha)d\theta \prod_{n=1}^{N_d} \int p(w_{nd}|\beta_k)p(\beta_k|\{w_{-d}\}, \{z_{-d}\}, \gamma)d\beta_k \]
We have:

\[\propto \int p(z_d = k | \theta) p(\theta | z_{-d}, \alpha) d\theta \prod_{n=1}^{N_d} \int p(w_{nd} | \beta_k) p(\beta_k | \{w_{-d}\}, \{z_{-d}\}, \gamma) d\beta_k \]

Both the integrals are expected values of Dirichlet distributions, therefore:

\[p(z_d = k | \{w\}, \{z_{-d}\}, \gamma, \alpha) \propto \frac{\alpha + c_d[k] - 1}{K\alpha + D - 1} \prod_{n=1}^{N_d} \frac{\gamma + c_w[w_{nd}][k]}{M\gamma + \sum_{m=1}^{M} c_w[m][k]} \]

- \(c_d[k]\) ... How many documents are assigned to topic \(k\).
- \(c_w[m][k]\) ... How many times the word \(m\) is in a document assigned to topic \(k\).
Algorithm for Bayessian Mixture of Categoricals

initialize z_d randomly $\forall d \in 1..D$; compute initial counts $c_d[k], c_w[m][k], c[k] \ \forall k \in 1..K, \ \forall m \in 1..M$;

for $i \leftarrow 1$ to I do

 for $d \leftarrow 1$ to D do

 $c_d[z_d]--$;

 for $n \leftarrow 1$ to N_d do

 $c_w[w_{nd}][z_d]--; c[z_d]--$;

 end

 for $k \leftarrow 1$ to K do

 $p[k] = \frac{\alpha+c_d[k]}{K\alpha+D-1} \prod_{n=1}^{N_d} \frac{\gamma+c_w[w_{nd}][k]}{M\gamma+c[k]}$;

 end

 sample k from probability distribution $p[k]$;

 $z_d \leftarrow k; c_d[k]++$;

 for $n \leftarrow 1$ to N_d do

 $c_w[w_{nd}][z_d]++; c[z_d]++;$

 end

end
Limitations of the mixture of categoricals model

A generative view of the mixture of categoricals model:
1. Draw a distribution θ over K topics from a $Dirichlet(\alpha)$.
2. For each topic k, draw a distribution β_k over words from a $Dirichlet(\gamma)$.
3. For each document d, draw a topic z_d from a $Categorical(\theta)$
4. For each document d, draw N_d words w_{nd} from a $Categorical(\beta_{z_d})$

Limitations:
- All words in each document are drawn from one specific topic distribution.
- This works if each document is exclusively about one topic, but if some documents span more than one topic, then “blurred” topics must be learnt.

$$z_d \sim Cat(\theta)$$
$$\theta \sim Dir(\alpha)$$
$$w_{nd}|z_d, \beta \sim Cat(\beta_{z_d})$$
$$\beta_k \sim Dir(\gamma)$$
Bayesian Latent Dirichlet Allocation

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:

- $\theta \sim \text{Dir}(\alpha)$ is a symmetric Dirichlet over category probabilities,
- $\beta_k \sim \text{Dir}(\gamma)$ are symmetric Dirichlets over vocabulary probabilities.

What is different?

- We no longer want to compute a point estimate of θ and β.
- We are now interested in computing posterior distributions.
Collapsed sampling for Latent Dirichlet Allocation

\[p(z_{nd} = k|\{w\}, \{z_{-nd}\}, \gamma, \alpha) = \]

(rewrite using Bayes theorem)

\[= \frac{p(z_{nd} = k|\{z_{-nd}\}, \gamma, \alpha) \ p(\{w\}|z_{nd} = k, \{z_{-nd}\}, \gamma, \alpha)}{p(\{w\}|\{z_{-nd}\}, \gamma, \alpha)} \]

(the denominator is constant with respect to \(z_{nd}\); generation of topics does not depend on \(\gamma\); generation of words for given topic does not depend on \(\gamma\))

\[\propto p(z_{nd} = k|\{z_{-nd}\}, \alpha) \ p(\{w\}|z_{nd} = k, \{z_{-nd}\}, \gamma) \]

(probability of data \(p(w)\) can be also rewritten as \(p(w_{nd}|w_{-nd})p(w_{-nd})\) and \(p(w_{-nd})\) is constant with respect to \(z_{nd}\))

\[\propto p(z_{nd} = k|\{z_{-nd}\}, \alpha) \ p(w_{nd}|\{w_{-nd}\}, z_{nd} = k, \{z_{-nd}\}, \gamma) \]
Collapsed sampling for Latent Dirichlet Allocation [2]

\[p(z_{nd} = k | \{w\}, \{z_{-nd}\}, \gamma, \alpha) \propto \]
\[\propto p(z_{nd} = k | \{z_{-nd}\}, \alpha) \cdot p(w_{nd} | \{w_{-nd}\}, z_{nd} = k, \{z_{-nd}\}, \gamma) \]

(for each predictive distribution, we integrate over all possible parameters \(\beta_k\) and \(\theta_d\))

\[\propto \int p(z_{nd} = k | \theta_d) \cdot p(\theta_d | z_{-nd}, \alpha) d\theta_d \int p(w_{nd} | \beta_k) \cdot p(\beta_k | \{w_{-nd}\}, \{z_{-nd}\}, \gamma) d\beta_k \]

(these integrals can be easily computed; see predictive distribution for Dirichlet posteriors)

\[= \frac{\alpha + c_d[d][k]}{K\alpha + N_d - 1} \cdot \frac{\gamma + c_w[w_{nd}][k]}{M\gamma + \sum_{m=1}^{M} c_w[m][k]} \]

Where:

- \(c_d[d][k]\) = how many words in document \(d\) are assigned to topic \(k\).
- \(c_w[m][k]\) = how many times the word \(m\) is assigned to topic \(k\) (across all documents).

The current position \(z_{nd}\) is always excluded from the counts.
LDA Algorithm

initialize z_{nd} randomly $\forall d \in 1..D$, $\forall n \in 1..N_d$;
compute initial counts $c_d[d][k]$, $c_w[m][k]$, $c[k]$ $\forall d \in 1..D$, $\forall k \in 1..K$, $\forall m \in 1..M$;

for $i \leftarrow 1$ to I do
 for $d \leftarrow 1$ to D do
 for $n \leftarrow 1$ to N_d do
 $c_d[d][z_{nd}]$--; $c_w[w_{nd}][z_{nd}]$--; $c[z_{nd}]$--;
 for $k \leftarrow 1$ to K do
 $p[k] = \frac{\alpha+c_d[d][k]}{K\alpha+N_d-1} \frac{\gamma+c_w[w_{nd}][k]}{M\gamma+c[k]}$;
 sample k from probability distribution $p[k]$;
 $z_{nd} \leftarrow k$;
 $c_d[d][k]$++; $c_w[w_{nd}][k]$++; $c[k]$++;;
 end
 end
 end
end
LDA Algorithm - topics assignment on a new data

initialize \(z_{nd} \) randomly \(\forall d \in 1..D, \forall n \in 1..N_d \);
fix the counts \(c_w[m][k] \) and \(c[k] \) obtained during training;
compute initial counts \(c_d[d][k] \) \(\forall d \in 1..D, \forall k \in 1..K \);

for \(i \leftarrow 1 \) to \(I \) do
 for \(d \leftarrow 1 \) to \(D \) do
 for \(n \leftarrow 1 \) to \(N_d \) do
 \(c_d[d][z_{nd}]--; \)
 for \(k \leftarrow 1 \) to \(K \) do
 \[
p[k] = \frac{\alpha+c_d[d][k]}{K\alpha+N_d-1} \frac{\gamma+c_w[w_{nd}][k]}{M\gamma+c[k]};\]
 end
 sample \(k \) from probability distribution \(p[k] \);
 \(z_{nd} \leftarrow k; \)
 \(c_d[d][k]++; \)
 end
 end
end
Entropy of text

- joint probability $p(T) = \prod_{i=1}^{N} p(w_i) = \prod_{m=1}^{M} p(m)^{c_m}$

- log probability $\log p(T) = \sum_{i=1}^{N} \log p(w_i) = \sum_{m=1}^{M} c_m \log p(m)$

- entropy $H(T) = -\frac{1}{N} \sum_{i=1}^{N} \log p(w_i) = -\sum_{m=1}^{M} \frac{c_m}{N} \log p(m) = \frac{-\log p(T)}{N}$

- perplexity $PP(T) = 2^{H(T)}$

A perplexity of g corresponds to the uncertainty associated with a die with g sides, which generates each new word.

All the logarithms used here are binary (with base 2)
Entropy of the text for a topic in LDA

Probability of word w given a topic k is

$$p(w|k) = \frac{\gamma + c_w[w][k]}{M\gamma + \sum_{m=1}^{M} c_w[m][k]},$$

where the counts c_w are taken from the training data, M is the size of the vocabulary. The entropy of a topic is computed as follows:

$$H(k) = -\sum_{w=1}^{M} p(w|k) \log_2 p(w|k)$$

Perplexity is $PP(k) = 2^{H(k)}$.
Probability of word w in document d is

$$p(w|d) = \sum_{k=1}^{K} p(w|k)p(k|d) = \sum_{k=1}^{K} \frac{\gamma + c_w[w][k]}{M\gamma + \sum c_w[m][k]} \frac{\alpha + c_d[d][k]}{K\alpha + N_d},$$

where the counts c_w are taken from the training data, and counts c_d and N_d are taken from the test data.

The entropy is computed as the average of the log probabilities over all words in the test data.

$$H = -\frac{1}{N_{test}} \sum_{d=1}^{D_{test}} \sum_{n=1}^{N_d} \log_2 p(w_{nd}),$$

where N_{test} is the total number of words in the test data. Perplexity is $PP = 2^H$.

Perplexity of the LDA model on test data
Perplexity of a simple model without topics

Probability of word w in the test data given the training data is

$$p(w) = \frac{\gamma + c_w[w]}{M\gamma + \sum c_w[m]}$$

where the counts c_w are taken from the training data.

The entropy is computed as the average of the log probabilities over all words in the test data.

$$H = -\frac{1}{N_{test}} \sum_{d=1}^{D_{test}} \sum_{n=1}^{N_d} \log_2 p(w_{nd}),$$

where N_{test} is the total number of words in the test data. Perplexity is $PP = 2^H$.