Primitivní funkce

DEF: Mějme funkci \(f \) definovanou na otevřeném neprázdném intervalu \(I \). Existuje-li na tomto intervalu funkce \(F \), která má pro všechna \(x \in I \) vlastní derivaci a platí \(F'(x) = f(x) \), řekneme, že \(F \) je na \(I \) primitivní k \(f \).

V: Je-li \(F \) na \(I \) primitivní funkce k nějaké funkci \(f \), pak je \(F \) na \(I \) spojitá.

V: Spojitá funkce \(f \) na otevřeném neprázdném intervalu \(I \) má na tomto intervalu primitivní funkci (tj. podmínka postačující, nikoli nutná).

V: Má-li funkce \(f \) na intervalu \(I \) primitivní funkci, pak je obraz \(f(I) \) též interval (tedy funkce má Darbouxovu vlastnost, tj. nabývá mezihodnot).

Metody pro výpočet primitivní funkce:
- tabulkové integrály (viz)
- per partes
- substituce ...
- rozklad na parc. zlomky (zde jen pro rac. lomené funkce s \(\mathbb{R} \) kořeny)

1. Určete primitivní funkce k následujícím funkcím (na největších možných intervalech):
 (a) \(\int x^3 + 2x + \frac{16}{3} \, dx \)
 (b) \(\int 18e^x + 16e^{8x} - \frac{1}{x} + 3 \cos x \, dx \)
 (c) \(\int \cos^2 \frac{x}{2} \, dx \)
 (d) \(\int (3e^x + \frac{1}{x}) \, dx \)
 (e) \(\int \left(\frac{1}{x} \cos x + \sqrt{x} \right) \, dx \)
 (f) \(\int \frac{x^2 - 1}{x} \, dx \)
 (g) \(\int \sin^2 x \, dx \)
 (h) \(\int (\sqrt{x} + x^2) \, dx \)
 (i) \(\int \left(1 - \frac{x}{\sqrt{x}} \right)^2 \, dx \)
 (j) \(\int \frac{1}{(x-a)^n} \, dx \), kde \(n \in \mathbb{N} \), \(a \in \mathbb{R} \)

2. ‘Lepení’ primitivních funkcí – určete primitivní funkco na největším možném intervalu:
 (a) \(\int |x| \, dx \)
 (b) \(\int |\cos x| \, dx \)

3. Určete primitivní funkce: metoda per partes:
 (a) \(\int x \sin x \, dx \)
 (b) \(\int (x^2 - x) \exp(x) \, dx \)
 (c) \(\int \exp(x)(\sin x + \cos x) \, dx \)
 (d) \(\int \ln |1 + x| \, dx \)
 (e)* \(\int \sqrt{x} \cdot \ln^2 x \, dx \)
 (f)* \(\int \frac{1}{(1+x^2)^2} \, dx \)

4. Určete primitivní funkce: metoda substituce
 (a) \(\int 2x \cdot \exp(-x^2) \, dx \)
 (b) \(\int \frac{x}{\sqrt{1 - 3x}} \, dx \)
 (c) \(\int \frac{x}{(1+x^2)^2} \, dx \)
 (d) \(\int \frac{x}{\sqrt{2+5x^2}} \, dx \)
 (e) \(\int \frac{\ln^2 x}{x} \, dx \)
 (f) \(\int \frac{x}{\sqrt{4-x^2}} \, dx \)
 (g) \(\int \frac{1}{1+\sqrt{x}} \, dx \)
 (h) \(\int \frac{1}{1+\sqrt{x}} \, dx \)
 (i) \(\int \exp(\sqrt{x}) \, dx \)

5. Určete primitivní funkce: doplnění na čtverec a rozklad na parc. zlomky
 (a) \(\int \frac{x^2 + 2x}{x^2 + 3} \, dx \)
 (b) \(\int \frac{x^3 + 1}{(x-1)^3} \, dx \)
 (c) \(\int \frac{2x + 3}{(x-1)(x+5)} \, dx \)
 (d)* \(\int \frac{1}{(3x^2 - 2x - 1)} \, dx \)
 (e)* \(\int \frac{3x^4 + 4}{x^2 + 3x + 5} \, dx \)
 (f) \(\int \frac{1}{\sqrt{8+6x-9x^2}} \, dx \)
Výsledky: (Primitivní funkce až na $c \in \mathbb{R}$ - případné chyby prosím reportujte emailem!)

1. (tabulkové integrály)
 (a) $\frac{x^4}{4} + 2 \frac{x^2}{2} + 16 \ln |x|$, na $(-\infty; 0) \cup (0; +\infty)$
 (b) $18e^x + 2e^{8x} - \ln |x| + 3 \sin x$, na $(-\infty; 0) \cup (0; +\infty)$
 (c) $\frac{x}{2} + \frac{1}{2} \sin x$, na \mathbb{R}
 (d) $3e^x + \ln |x|$, na $(-\infty; 0) \cup (0; +\infty)$
 (e) $\tan x + \frac{2}{3} \sqrt{x^3}$, na $(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi)$, $k \in \mathbb{Z}$
 (f) $\frac{2}{3} \sqrt{x^3} - \ln |x|$, na $(-\infty; 0) \cup (0; +\infty)$
 (g) $\tan x - x$, na $(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi)$, $k \in \mathbb{Z}$
 (h) $\frac{2}{3} \sqrt{x^3} + \frac{x^2}{2}$, na \mathbb{R}
 (i) $-2\frac{1}{x^2} - 4\sqrt{x} + \frac{3}{2} \sqrt{x^3}$, na $(0; +\infty)$
 (j) $n \neq 1 : \frac{1}{1 - n} \left(\frac{1}{1 - (x - a)^{n-1}} - \frac{1}{1 - (a - x)^{n-1}}\right)$, na $(-\infty; a) \cup (a; +\infty)$; $n = 1 : \ln |x - a|$, na $(-\infty; a) \cup (a; +\infty)$

2. ("lepení" prim. fcí)
 (a) $\operatorname{sgn} x \cdot \frac{x^2}{2}$, na \mathbb{R}
 (b) na každém intervalu $(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi)$ předpis $F(x) = (-1)^k \sin x + 2k$ (tj. def. na \mathbb{R})

3. (per partes)
 (a) $-x \cos x + \sin x$, na \mathbb{R}
 (b) $e^x (x^2 - 3x + 3)$, na \mathbb{R}
 (c) $e^x \cdot \sin x$, na \mathbb{R}
 (d) $x \ln |1 + x| - x + \ln |1 + x|$, na $(-\infty; -1) \cup (-1; +\infty)$
 (e) $\frac{2}{3} \sqrt{x^3} \cdot (\ln^2 x - \frac{3}{2} \ln x + \frac{3}{2})$, na $(0; +\infty)$
 (f) $\frac{1}{2} \left(\frac{x}{1 + x^2} + \tan x\right)$, na \mathbb{R}

4. (substituce)
 (a) $-e^{-x^2}$, na \mathbb{R}
 (b) $-\frac{1}{4} \sqrt{(1 - 3x)^4}$, na \mathbb{R}
 (c) $-\frac{1}{2} \cdot \frac{1}{1 + x^2}$, na \mathbb{R}
 (d) $\frac{2}{5} \sqrt{2 + 5x^2}$, na \mathbb{R}
 (e) $\frac{1}{4} \ln^3 x$, na $(0; +\infty)$
 (f) $\frac{1}{2} \arcsin \frac{x^2}{2}$, na $(-\sqrt{2}; \sqrt{2})$
 (g) $-\ln |\cos x|$, na $(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi)$, $k \in \mathbb{Z}$
 (h) $2\sqrt{x} - 2 \ln(1 + \sqrt{x})$, na $(0; +\infty)$
 (i) $2e^{\sqrt{x}} (\sqrt{x} - 1)$, na $(0; +\infty)$
5. (parc. zlomky)

(a) $\frac{x^2}{2} - x + 3 \ln |x + 3|$, na $(-\infty; -3), (-3; +\infty)$

(b) $\frac{3}{2} \ln |x^2 + 3x + 5| - \frac{1}{2} \sqrt{11} \arctg \left(\frac{2}{\sqrt{11}} (x + \frac{3}{2}) \right)$, na \mathbb{R}

(c) $\ln |x - 2| + \ln |x + 5|$, na $(-\infty; -5), (-5; 2), (2; +\infty)$

(d) $\frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |3x + 1|$, na $(-\infty; -\frac{1}{3}), (-\frac{1}{3}; 1), (1; +\infty)$

(e) $\ln \frac{(x-1)^2}{|x|} - \frac{1}{x-1} + \frac{2}{x-1x^2}$, na $(-\infty; 0), (0; 1), (1; +\infty)$

(f) $\frac{1}{2} \arcsin(x - \frac{1}{4})$, na $(-\frac{3}{2}; \frac{3}{2})$