Dependency Grammars and Treebanks: Introduction

Markéta Lopatková, Daniel Zeman, Jiří Mírovský

Institute of Formal and Applied Linguistics, MFF UK <u>lopatkova@ufal.mff.cuni.cz</u>

Dependency Grammars and Treebanks (NPFL075)

Lectures: Wednesday, ZOOM, 14:00-15:30 Markéta Lopatková, Daniel Zeman

Practical sessions: Wednesday, ZOOM, 10:40-12:10 Jiří Mírovský, Daniel Zeman

http://ufal.mff.cuni.cz/course/npfl075

Requirements:

- Homework (40%)
- Activity (10%)
- Final test (50%)

Assessment:

- excellent (= 1) $\geq 90\%$
- very good (= 2) ≥ 70%
- good (= 3) ≥ 50%

Dependency Grammars and Treebanks

Treebank as a collection of:

- linguistically annotated data
- tools and data format(s)
- documentation
 - Family of Prague Dependency Treebanks (PDT, PCEDT)
 - Universal Dependencies
 - HamleDT, PropBank, ???

Another point of view:

- underlying linguistic theory
- annotation scheme
- framework for annotation of different languages

Outline of the lecture

- Introduction: dependency grammar in a nutshell
- Tree-based structures informally
 - phrase structure / constituency trees
 - dependency trees
- How to detect a dependency relation?
- A bit of maths ...
- Problem with free word order

Dependency grammar (DG)

notion of DG in a nutshell:

The dependency grammar is

- a model developed by Lucien Tesnière (1893-1954) and
- based on structuralism
- to describe the syntax of natural languages.

The main concern of the dependency grammar is

the description of the dependency structure of a sentence,
 i.e. the structure of dependency relations between the elements of a sentence.

Dependency grammar (DG)

notion of DG in a nutshell:

The dependency grammar is

- a model developed by Lucien Tesnière (1893-1954) and
- based on structuralism
- to describe the syntax of natural languages.

The main concern of the dependency grammar is

- the description of the dependency structure of a sentence,
 i.e. the structure of dependency relations between the elements of a sentence.
- dependency as an asymmetric binary relation between language units
- governing/modified unit (head) dependent/modifying unit (modifier)
 → word (morph) grammar ... *lexicalization* → no phrase nodes
- dependency trees, with edges ~ dependency relations (mostly)

A bit of history

structural linguistics:

(based on Ferdinand de Saussure: Course in General Linguistics, 1916)

- synchronic approach (vs. diachronic)
- *sign*: "signified" (idea, concept) "signifier" (means of expressing)
- examining language as a (static) system of interconnected units
- stress on structure (signs cannot be examined in isolation)
- syntagmatic vs. paradigmatic relations
- *langue* (idealized abstraction of language) vs. *parole* (language as actually used)

structuralist schools:

- Genova School (course 1909-12): Ferdinand de Saussure, Albert Sechehaye, Charles Bally
- Prague School (1926–1939): Vilém Mathesius, Bohumil Trnka, Bohuslav Havránek, Jan Mukařovský, Roman Jakobson, Nikolai Trubeckoj, Sergej Karcevskij
- Copenhagen School (1930-1950): Louis Hjelmslev, glossematics
- "American structuralism" (1920-50): Leonard Bloomfield, Charles Hockett

Dependency-based approaches

- Pāņini (6th-4th century BC; India); Ibn Madā' (12th century AD; Andalusia)
 ... term dependency
- Franz Kern and others († 1894, esp. pedagogy) ... sentence diagrams
- Lucien Tesnière († 1954; France) ... valency, "stemma" (unordered)

motivation for current computational linguistics / NLP:

- David Hays (1950-60, machine translation $ru \rightarrow eng$)
- Harris Zellig (since 1930, † 1992; linguistics as applied mathematics; methodology of linguistic analysis)
- Dependenzgrammatik ... esp. Jürgen Kunze (from 1960s, 1975)
 Valenzgrammatik ... esp. Gerhard Helbig (from 1960s)
- Richard Hudson (from 1970s, 1984) ... Word Grammar
- Michael Halliday ... Systemic Functional Grammar

Dependency-based approaches (cont.)

- Meaning-Text Theory (MTT) ... applied esp. in machine translation, lexicography; Igor Melčuk, Aleksandr Žolkovski (1965-)
- Functional Generative Description (FGD) ... applied in treebanks from the Prague dependency family, used esp. for machine translation; Petr Sgall and his school (1967-)
- Universal Dependencies (UDs) ... since 2013, Joachim Nivre et al.

Corpora with dependency trees

- PropBank (1995) <u>http://propbank.github.io/</u>
- Prague dependency treebank (1996) first Czech, then Arabic, English, ... <u>http://ufal.mff.cuni.cz/pdt.html</u>
- HamleDT project (from 2012) http://ufal.mff.cuni.cz/hamledt
- Universal Dependencies (from 2013) http://universaldependencies.org/
- Danish Dep. Treebank <u>http://mbkromann.github.io/copenhagen-dependency-treebank/</u>
- Finnish: Turku Dependency Treebank
 <u>http://bionlp.utu.fi/fintreebank.html</u>
- Negra corpus
 <u>http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html</u>
- TIGERCorpus
 <u>http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html/</u>
- SynTagRus Dependency Treebank for Russian

Outline of the lecture

- Introduction: dependency grammar in a nutshell
- Tree-based structures informally
 - phrase structure / constituency trees
 - dependency trees
- How to detect a dependency relation?
- A bit of maths ...
- Problem with free word order

Phrase structure vs. dependency tree

Mary will eat bread.

Pros

- rich syntactic structure
- derivation history / 'closeness' of a complementation
- CFG-like
- coordination, apposition
- derivation of a grammar

Pros

- rich syntactic structure
- derivation history / 'closeness' of a complementation
- coordination, apposition
- CFG-like
- derivation of a grammar (BUT is it appropriate?)

Pros

- rich syntactic structure
- derivation history / 'closeness' of a complementation
- coordination, apposition
- CFG-like
- derivation of a grammar (BUT is it appropriate?)

Contras

- complexity (number of non-terminal symbols)
- secondary predicates ('two dependencies') *přiběhl bos* [(he) arrived barefooted] *She declared the cake beautiful.*
- free word order discontinuous 'phrases' non-projectivity
- binary division of a clause (imposed by logic, not by language structure)

discontinuous 'phrases': solution for English

Mary will eat bread.

discontinuous 'phrases': solution for English

Mary will eat bread.

S

VP

VP

NP

Ν

What will Mary eat?

NP

discontinuous 'phrases': solution for English

Mary will eat bread.

Ν

What will Mary eat?

will eat bread Ν VP Mary AuxV trace, **Dependency Grammars and Treebanks - Introduction**

Dependency trees

My brother often sleeps in his study.

Lucien Tesnière (1959) *Éléments de syntaxe structurale.* Editions Klincksieck. Igor Mel'čuk (1988) *Dependency Syntax: Theory and Practice.* State University of New York Press.

Dependency trees

Pros

- economical, clear (complex labels, 'word'~ node)
- head of a phrase
- free word order

Dependency tree

discontinuous 'phrases': no problem

Mary will eat bread.

What will Mary eat?

Dependency tree

Po babiččině příjezdu půjdou rodiče do divadla. [After grandma's arrival the parents will go to the theatre.]

Dependency trees

Pros

- economical, clear (complex labels, 'word'~ node)
- free word order
- head of a phrase

Contras

- no derivation history / 'closeness'
- coordination, apposition
- secondary predicates ('two dependencies')

přiběhl bos [(he) arrived barefooted] *She declared the cake beautiful.*

Outline of the lecture

- Introduction: dependency grammar in a nutshell
- Tree-based structures informally
 - phrase structure / constituency trees
 - dependency trees
- How to detect a dependency relation?
- A bit of maths ...
- Problem with free word order

Dependency Relations

semantic dependencies ... semantic predicates and their arguments

cf. Sam likes Sally. like(Sam, Sally)

vs. *new car* (= car being new) ... New(car)

• syntactic dependencies

Dependency Relations (cont)

- morphological dependencies (agreement)
 - cf. Mary comes here. vs. Children come here.
 - cf. this house vs. these houses
 - cf. strom je zelený 'house is green-sg-inan'
 - vs. stromy jsou zelené 'houses are green-pl-inan'
 - vs. *mužíci jsou zelení* 'men are green-pl-anim'
- intra-word dependencies (→ derivational morphology)
- prosodic dependencies
 - cf. *clitic* (a syntactically autonomous unit prosodically dependent on its host) *He'll stop. There's a problem. Peter's hat. ...*
 - -li; jsem, jsi ..., bych, bys, ; se, si, mi, ti, mu, mě, tě, ho, ...(tam, tu; však, tak)

Syntactic Dependency Relations

- dependency as an asymmetric binary relations between language units
 - \rightarrow detecting heads: not commonly agreed criteria
- number of linguistic criteria
 - e.g., verb as a syntactic center of a sentence
- BUT treebanks:

annotation schemata reflect technical considerations

- tree-based data format
- 1:1 correspondence between nodes and tokens

possible reduction criterion ... FGD (Sgall et al. ,1986), and thus PDT

• "dependent member of the pair may be deleted

while the distributional properties are preserved" $(\rightarrow \text{ correctness is preserved})$

- endocentric constructions
 - e.g. <u>malý</u> stůl → stůl přišel <u>včas</u> → přišel (přišel) <u>velmi</u> brzo → (přišel) brzo

<u>small</u> table \rightarrow table he came <u>in time</u> \rightarrow he came (he came) <u>very</u> soon \rightarrow (he came) soon

possible reduction criterion ... FGD (Sgall et al. ,1986), and thus PDT

• "dependent member of the pair may be deleted

while the distributional properties are preserved" $(\rightarrow \text{ correctness is preserved})$

- endocentric constructions
- exocentric constructions ... principle of analogy (delexicalization)

Prší. [(It) rains.] ... ∃ subjectless verbs ⇒ *Král zemřel.* [The king died.] ... a verb rather than a noun is the head

The girl painted a bag. \rightarrow The girl painted. ... \exists objectless verbs \Rightarrow The girl carried a bag ... an object is considered as depending on a verb

possible reduction criterion ... FGD (Sgall et al. ,1986), and thus PDT

• "dependent member of the pair may be deleted

while the distributional properties are preserved" $(\rightarrow \text{ correctness is preserved})$

- endocentric constructions
- exocentric constructions ... principle of analogy (delexicalization)

Prší. [(It) rains.] ... ∃ subjectless verbs ⇒ *Král zemřel.* [The king died.] ... a verb rather than a noun is the head

The girl painted a bag. \rightarrow The girl painted. ... \exists objectless verbs \Rightarrow The girl carried a bag ... an object is considered as depending on a verb

- plus technical considerations (compare also with "the school grammar")
 - e.g.: prepositions are below nouns; auxiliary verbs are (typically) below content verbs

constituent-based criteria (Osborne, 2019)

- each complete subtree must be a "constituent", based of formal tests, esp:
 - topicalization
 - clefting and pseudoclefting
 - proform substitution (replacement)
 - answer fragments
 - coordination

Fred played tennis this spring.

permutation test

proform tests

Topicalization:

... but **tennis** Fred did play this spring. **This spring** Fred played tennis.

Clefting:

It was **Fred** who played tennis this spring. It was **tennis** that Fred played this spring. It was **this spring** that Fred played tennis.

constituent-based criteria (Osborne, 2019)

• BUT: applied also for (more-or-less) technical solutions

 \Rightarrow lexical verb should be a dependent

Dependency Grammars and Treebanks - Introduction

<u>Topicalization</u>: ... and **eat** Mary certainly will.

Proform substitution: Mary will do so. (do=eat)

Answer fragment: What will Mary do? Eat.

<u>VP-ellipsis</u>: *Peter will eat and Mary will, too.*

criterion of *maximal parallelism* between languages Universal Dependencies

criterion of maximal parallelism between languages

... Universal Dependencies

- the upper levels of UD trees should be as similar as possible across languages
 - dependency relations hold primarily between content words (rather than being indirect relations mediated by function words)

criterion of maximal parallelism between languages

... Universal Dependencies

- the upper levels of UD trees should be as similar as possible across languages
 - dependency relations hold primarily between content words (rather than being indirect relations mediated by function words)
 - function words attach as direct dependents of the most closely related content word

criterion of *maximal parallelism* between languages

... Universal Dependencies

- the upper levels of UD trees should be as similar as possible across languages
 - dependency relations hold primarily between content words (rather than being indirect relations mediated by function words)
 - function words attach as direct dependents of the most closely related content word
 - punctuation attach to head of phrase or clause

Outline of the lecture

- Introduction: dependency grammar in a nutshell
- Tree-based structures informally
 - phrase structure / constituency trees
 - dependency trees
- How to detect a dependency relation?
- A bit of maths ...
- Problem with free word order

A bit of maths – tree in the graph theory

tree (graph theory): definition:

- finite graph $\langle N, E \rangle$, N ~ nodes/vertices, E ~ edges {n₁,n₂}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes
- ⇔ (undirected) graph
- any two nodes are connected by exactly one simple path

A bit of maths – tree in the graph theory

tree (graph theory): definition:

- finite graph $\langle N, E \rangle$, N ~ nodes/vertices, E ~ edges {n₁,n₂}
- connected
- no cycles, no loops
- no more than 1 edge between any two different nodes

⇔ (undirected) graph any two nodes are connected by exactly one simple path

rooted tree

• rooted \Rightarrow orientation (i.e., edges ordered pairs $[n_1, n_2]$)

directed tree ... directed graph

- which would be tree
 - if the directions on the edges were ignored, or
 - all edges are directed towards a particular node ~ the *root*

Tree as a data structure

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the root
- (linear) ordering of nodes:

children of each node have a specific order

Tree as a data structure

tree as a data structure:

- rooted tree (as in graph theory)
- all edges are directed from a particular node ~ the *root*
- (linear) ordering of nodes:

children of each node have a specific order

- "tree-ordering" D ... partial ordering on nodes
 u ≤ v_D ⇔_{def} the unique path from the root to v passes through u
 (weak ordering ~ reflexive, antisymmetric, transitive)
- "linear ordering" ... (partial) ordering on nodes (u <_P v ... strong ordering ~ antireflexive, asymmetric, transitive)

Phrase structure tree (definition, part 1)

$T = \langle N, D, Q, P, L \rangle$

$\langle N,\,D\rangle\,\dots$ rooted tree, directed

- Q ... lexical and grammatical categories
- L ... labeling function $N \rightarrow Q$
- D ... oriented edges (branches)

~ relation on lexical and grammatical categories dominance relation

÷

P ... relation on N ~ (partial strong linear ordering) relation of *precedence*

Phrase structure tree (definition, part 2)

$T = \langle N, D, Q, P, L \rangle$

$\langle N,\,D\rangle\,\dots$ rooted tree, directed

- Q ... lexical and grammatical categories
- L ... labeling function $N \rightarrow Q$
- D ... oriented edges (branches)

~ relation on lexical and grammatical categories dominance relation

÷

- P ... relation on N ~ (partial strong linear ordering) relation of *precedence*
 - Relating dominance and precedence relations:
 - exclusivity condition for D and P relations
 - 'nontangling' condition

Phrase structure tree (relation P)

• exclusivity condition for D and P relations $\forall x, y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \Leftrightarrow ([x,y] \notin D \& [y,x] \notin D)$

Phrase structure tree (relation P)

• exclusivity condition for D and P relations $\forall x, y \in N$ holds: $([x, y] \in P \lor [y, x] \in P) \Leftrightarrow ([x, y] \notin D \& [y, x] \notin D)$

• 'nontangling' condition $\forall w, x, y, z \in N \text{ holds: } ([w, x] \in P \& [w, y] \in D \& [x, z] \in D)$ $\Rightarrow ([y, z] \in P)$ $\bigvee_{V \circ \circ z} \bigvee_{V \circ \circ z} \bigvee_{V \circ \circ z} \bigvee_{V \circ \circ z} \bigvee_{V \circ \circ z} \bigvee_{Z \circ \circ V} \bigvee_{V \circ \circ z} \bigvee_{Z \circ \circ V} \bigvee_{V \circ \circ z} \bigvee_{Z \circ \circ V} \bigvee_{Z \circ$

Phrase structure tree (relation P)

- exclusivity condition for D and P relations $\forall x, y \in N \text{ holds: } ([x,y] \in P \lor [y,x] \in P) \Leftrightarrow ([x,y] \notin D \& [y,x] \notin D)$
- *'nontangling'* condition
 ∀ w,x,y,z ∈ N holds: ([w,x] ∈ P & [w,y] ∈ D & [x,z] ∈ D)
 ⇒ ([y,z] ∈ P)

- $T = \langle N, D, Q, P, L \rangle$ phrase structure tree
 - $\forall x,y \in \mathsf{N} \text{ siblings } \Rightarrow [x,y] \in \mathsf{P}$
 - the set of its leaves is totally ordered by P

Dependency tree (definition)

$T = \langle N, D, Q, WO, L \rangle$

$\langle N,\,D\rangle\,\dots$ rooted tree, directed

- Q ... lexical and grammatical categories
- L ... labeling function $N \rightarrow Q^+$
- D ... oriented edges ~ relation on lex. and gram. categories *'dependency' relation*
- WO ...relation on N ~ (strong total ordering on N) ... word order

Outline of the lecture

- Introduction: dependency grammar in a nutshell
- Tree-based structures informally
 - phrase structure / constituency trees
 - dependency trees
- How to detect a dependency relation?
- A bit of maths ...
- Problem with free word order

Problem with free word order

free word order:

 freedom of word order of dependents within a <u>continuous</u> 'head domain' (i.e., substring of head + its dependents)

Problem with Free Word Order

free word order:

- freedom of word order of dependents within a <u>continuous</u> 'head domain' (i.e., substring of head + its dependents)
- relaxation of continuity of a head domain

Whom did Mark decided to marry?

Soubor se mi nepodařilo otevřít. (Oliva)

Problem with Free Word Order

free word order:

- freedom of word order of dependents within a <u>continuous</u> 'head domain' (i.e., substring of head + its dependents)
- relaxation of continuity of a head domain

German:

Maria hat einen Mann kennengelernt der Schmetterlinge sammelt.Mary has aman metthe butteriescollects'Mary has met a man who collects butteries.'

English: long-distance unbounded dependency *John, Peter thought that Sue said that Mary loves.*

Czech:

Marii se Petr tu knihu rozhodl nekoupit. to-Mary PART Peter that book decided not-buy 'Peter decided not to buy that book to Mary.'

Problem with Free Word Order

free word order:

- freedom of word order of dependents within a <u>continuous</u> 'head domain' (i.e., substring of head + its dependents)
- relaxation of continuity of a head domain

German:Image: Image: Image

English: long-distance unbounded dependency *John, Peter thought that Sue said that Mary loves.*

Czech:

Marii se Petr tu knihu rozhodl nekoupit. to-Mary PART Peter that book decided not-buy 'Peter decided not to buy that book to Mary.'

References

- Osborne, T. (2019) A Dependency Grammar of English. John Benjamins Publishing Company, Amsterdam/Philadelphia
- Mel'čuk, I. (1988) Dependency Syntax: Theory and Practice. State University of New York Press, Albany
- Sgall, P., Hajičová, E., Panevová, J. (1986) The Meaning of the Sentence in Its Semantic and Pragmatic Aspects. D. Reidel Publishing Company, Dordrecht/Academia, Prague
- Hajičová, E., Panevová, J., Sgall, P. (2002) Úvod do teoretické a počítačové *lingvistiky*, sv. I. Karolinum, Praha
- Partee, B. H.; ter Meulen, A.; Wall, R. E. (1990) Mathematical Methods in Linguistics. Kluwer Academic Publishers
- Petkevič, V. (1995) A New Formal Specification of Underlying Structure. *Theoretical Linguistics*, vol. 21, No.1
- Štěpánek, J. (2006) Závislostní zachycení větné struktury v anotovaném syntaktickém korpusu. PhD Thesis, MFF UK
- Universal Dependencies https://universaldependencies.org
- Prague Dependency Treebank http://ufal.mff.cuni.cz/pdt3.5