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Abstract

This work follows the NPFL108 course on Bayesian inference. In NPFL108, a student is introduced
into basics of Bayesian inference. The presented techniques include analytic solutions for the simplest cases,
the Variational Inference and Expectation Propagation algorithms, Markov Chain Monte Carlo (MCMC)
techniques, represented by Gibbs sampling.
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1 Introduction

In this work, the Bayesian models will be described using graphical models. A graphical model represents
variables as nodes and dependencies between them as oriented edges. In the graphical representation in this
article, the observed variables are filled with light blue colour and the unobserved (hidden) variables are filled
with white colour. In addition, the fixed parameters of the priors are filled with the light red colour.

An important problem in graphical models is the process of finding the probability distributions of un-
observed (some times called latent or hidden) variables given the observed variables. This process is called
inference. This work introduces basic methods of Bayesian inference on a set of simple examples. The pre-
sented techniques include analytic solutions for the simplest cases, the Variational Inference and Expectation
Propagation algorithms, Markov Chain Monte Carlo (MCMC) techniques, represented by Gibbs sampling.

This work is based on the lecture notes for the NPFL108 - Bayesian inference course. Some derivations
and/or results were obtained or corrected with the help of the students of the course. Namely: Ondfej Dusek,
Mateéj Korvas, ...

1.1 Bayes rule, prior, likelihood, joint distribution, and posterior



2 Tractable Bayesian Inference

2.1 Example: The binomial distribution

Graphical model Figure [I| depict a graphical model representing inference of a parameters a Bernoulli
distribution. There are N observations D = {z1,...,2y} and we aim to compute the posterior distribution for
the proportion - hidden variable 6 given the observation and prior. Note that the observations have values 0 or
1, where 0 usually stands for failure and 1 for success.

) (™)
0
©

N

Figure 1: The graphical model representing the joint distribution for the observations x1,...,zx and the
proportion 6.

Generative process The model depicted on Figure [I] assumes the following generative process:
1. 6 ~ Beta(+|ag, bo)
2. x; ~ Bern(-|0) Vie{l,...,N}
where the parameters ag and by are priors set manually and x; is an observed variable.
Before continuing, please recall that:
Beta(fla,b) = Tlatb)
Bern(z|0) = 6%(1 — 0)' ™.
Please note that:
Bern(xz =110) = 6.

Prior As noted above, the prior is formed by the Beta distribution Beta(f|a,b).

Likelihood The likelihood is defined as follow:
p(D|w) = p(x|0)
e
= H Bern(z;|0)

=[Je -0y



Joint distribution The joint distribution is defined as follows:

p(w, D) = p(w, 6)

=p(0) [ [ p(x:16)
= Beta(0|ao, bo) H Bern(z;|0)
T'(ao + o) a1 bo—1 z; 1-a;
= 0 (1 —0)"° 0% (1 -6 i
Fagrag ™ 0 -oP " TToa -0
T(ao +bo) yag—1 bo—1,5; @4 (1)
- §u0 1 (1 — g)to—1gTiTi(1 _ g)Ti(i-=i
(o) T (bo) (1-0) (1-16)
(a0 +b0) jag—145, bo— 143, (1—;)
= 100 +50) pag—145s 21 _ gyo-14i(-a),
(a0 (bo) 40

Posterior The posterior distribution is defined as follows:

1
p(w|D) = mp(w,D),

where
p(D) = [ plaw, D).

However instead of solving the normalisation constant p(D), we will inspect the likelihood whether it has a form
of some convenient distribution.
p(w|D) o p(w, D)
x p(x,0)
(a0 +bo) pag-145; z; bo— 143, (1—5)
ox =0 T 20) gao— 1R @i (1 _ gybo— 1R (1w
a0 (bo) 4=
Since the Bernoulli and Beta distributions are conjugate, one can observe trough introspection that the posterior
has the form of a Beta distribution:
p(’wlD) = p(@\aj\“ bN)
= Beta(0lan,bn)
any =ag— 1+ Z T

K3

by =bo— 1+ (1)

To simplify the result, one can denote ), z; as number of successes n; and ) (1 — x;) as number of failures
ng. Then one gets:

p(w|D) = Beta(flan,bn)
any =ag+n; —1
by =bg+mno—1

2.2 Example: The multinomial distribution

Graphical model Figure [2] depict a graphical model representing inference of a parameters a Multinomial
distribution. There are N observations D = {x1,...,xy} and we aim to compute the posterior distribution
for the proportion - hidden variable @ given the observation and prior. Note that the observations x; are d
dimensional vectors where all values are 0 except one being set to 1. The position of 1 indicates the cardinal
value of the observation, e.g. [0,0,0, 1,0] represents value 3 from 0, ..., 4.

Generative process The model depicted on Figure [2| assumes the following generative process:
1. 6 ~ Dir(-|ayg)
2. x; ~ Multi(-|0) Vie{l,...,N}



Figure 2: The graphical model representing the joint distribution for the observations x1,..

parameter.

where the parameters « is a vector of priors set manually and x; are observed variables.

Before continuing, please recall that:

T(ao) 1 g1

Dir(fla) = ————
Hj:1 I'(ey) j=1 !
Where:
a; >0,
d
op = Za]‘.
j=1
Multi(x|0) = Hj — 1d9;f,
where:

0; >0,

> 0;=1.
J

Please note that:
P(z = j|6) = Multi(z =[...,1,...]|0) = 6,
Prior As noted above, the prior is formed by the Dirichlet distribution Dir(0|c).

Likelihood The likelihood is defined as follow:
p(Dlw) = p(x(0)
=[] r(x:l6)
= [[ Muiti(:|6)

d
SNIlE

i j=1

d
— o> "
E ;

.,xyn and the 6



Joint distribution The joint distribution is defined as follows:

p(w, D) = p(w, 6)
=p(0) [ [ p(:l0)

= Dir(0|a) HMuzm'(w,-w)

Posterior The posterior distribution is defined as follows:

p(w|D) = ——p(w, D),

p(D)

o p(w, D)

x p(z, 0)

O(& - 9‘.‘J‘+Zﬂu—1
szl F(a‘) ]1:[1 J

Since the Multinomial and Dirichlet distributions are conjugate, one can observe trough introspection that the
posterior has the form of a Dirichlet distribution:

p(w|D) = p(6lax)
= Dir(0|an)

OéNjIOéOj-l-E ri—1
i

To simplify the result, one can denote ), x;; as n; . Then one gets:
p(w|D) = Dir(6|o)

ozNj:aoj—i—nj—l

d
aNo = E QN j
j=1

2.3 Example: The normal distribution

Let us start with a simple problem of Bayesian inference for the normal distribution. We will study four
situations:

1. Inference of the mean while the variance is known

2. Inference of the variance while the mean is known

3. Inference of the mean and variance using conjugate prior

4. Inference of the mean and variance using non-conjugate prior

In all cases, we aim to compute the posterior distributions for the unknown variables, e.g. the mean and
variance.

2.3.1 Inference of the mean while the variance is known

Figure[3|depict a graphical model representing inference of a mean of an univariate normal distribution assuming
that the variance o2 is known. There is one observation « and we aim to compute the posterior distribution for
the hidden variable p given the observation and prior.

The model depicted on Figure [3| assumes the following generative process:

L o~ N(|por3)
2. @~ N(-|u,0?)
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Figure 3: The graphical model for prediction of the observation x given the mean g where the mean p is
unknown.

where the parameters yg, o3, and o2 are priors set manually and z is an observed variable.
To compute the posterior for pu, we must define the joint distribution for x and p given the manually set
prior parameters jio, 02 and known variance o2 of the observations:

p(@, plo”, po, 05) = p(a|p, o*)p(ulpo, 03), (1)

where
p(z|p, 0%) = N(z|p,o?) (2)
p(ulpo, 05) = N(plpo, o) (3)

Note that we use the normal distribution as a prior for the mean. The important property of this prior is that
it is conjugate to the normal distribution used to model the probability of the observation.
Further, we have to compute the posterior of the p. Using the Bayes rule, we get:

p(x, plo?, po, 05) = p(plx, 0, o, 03)p(xlo®, o, o3) (4)

Therefore, the posterior for the mean p is:

2 2 P($7M|‘727N0708)
T,0°, po, 05) = ——— 2 230 5
p(p" Ho 0) p($|0'2,}140,0'8) ( )
2 2
p(,fC“LL|O' ,/L0,0'Q) (6)

[, p(x, plo?, po, o8)dp
Substituting into @, we get:

p(x|p, o*)p(plpo, 03)
p(plz,o”, po, 05) = (7)
O ] ol o)p(plpo, oF)du

Since all factors in the dividend and divisor in contain p, the fraction cannot be further simplified. To
compute the posterior of u, lets substitute and into :

N (z|p, 0®)N (plpo, 03) 2
p(ulz, 0, 1o, 03) = = N(p|piz, 03) (8)
O [ N(@lp, 0®)N (plpo, o3)dp

Given that the prior of p is a normal distribution and therefore conjugate with a normal distribution used for
modelling the observation x, the posterior is again a normal distribution which will be denoted as N (p|pz, 02).
However, to avoid the integration in the divisor, it is easier to compute only the dividend and then by completing
the squares compute the full posterior. Before continuing, lets us recall the definition of the normal distribution:

Neli ) = Gragrs o { ~gazlo = n*}. (9)



Using this definition and substituting it into , we get:

pulz, 0%, po, 05) o N(alu, o®)N (plpo, o5)
1 1 ) 1 1 )
x 7(2#02)1/2 €xp {—ﬁ(l’ =) } 7(27r0§)1/2 exp {_T‘_(Q)(l’l’ — po) }
S ooz e { 5o = 0~ o= o)*
(2ma?)1/2 (2mad)t/? 202 202

1 1
X exp {—@(332 —2xp+p*) — ﬁ(lf — 2pp0 +M3)}
0

x ex 1 ixzfi%ﬂ +i2+i27i2 +
p 2 o2 o2 12 o2 M O_g M O_g 129%%] 2 /JJO
1/71 ) 1
X exp |~ ;Jr;g B=2p | T+ —po T2 2uo
X exp —E(i-f—i) -2 ! { + ]-i— ! {1 2+i2}
2 \o ol K K (%2 + (%2 2 zho L+ o,% 2 3”0
o ex _} 1 + i 2 i 2 b 2 o’ 2
p 2\o2 o2 K o2 + o2 02+ o? tio 5+ o2 02 + o2 to
1/1 1 5 ol o?
—(=+= - 10
OCEXP{ 2(0’2+U§) (M M|:U(2)+O'2 02+a§“° (10)
2
Note that z':f’ 2x + = P 3 is independent of p and therefore a constant. Consequently, it can be omitted.

As described in the posterlor p(plx, 02, o, o) has the form of N(ju|u,,o2) and it is proportionate to .

2 2 2 1 1 1 2 0'(2] 0'2
p(,u\m,cr 7#070—0) = N(M‘Mﬂﬂyo—m) X exp{—§ (; + ;{2)) (,LL - 2/’L |:0_(2) +O_2ZI:+ o2 +o_§,uO (11)

Completing the squares of the exponent in , a careful reader can notice that:

2 2
0o ag
r = 12
H: o2 + o2 o +02“0 (12)
1 1 1
— ==+ (13)

o2 o2 o}

So far, we assumed that there is only one observation x. However, the introduced approach can be used
in a similar way even if there is x1,...,xx observations. Figure [4 depicts a graphical model which explicitly
expresses the multiple observations. One can imagine that if there are more observations then the graphical
representation can become cluttered, therefore multiple repeated nodes are expressed more compactly in a form
of one node in a plate labelled with a number indicating the number of times the node should be replicated.

Figure 4: The graphical model representing the joint distribution for the observations x1,...,zy and the mean
I

In case of multiple observations x1,...,zy, the joint distribution is defined as:
N
p(, plo?, po, 05) = p(plpo, o5) [ [ p(xiln, 0?)
=1

N
M‘MO:O’O HN $1|N702) (14)
i=1



where @ = {x1,...,2y}. Using similar technique as in 7 one can derive that posterior of the mean p is:

p(,u|:c,02, Ko, O—g) = N(/"’|/'LN3 0-?\7) (15)
_ Noj ¥ o’
'UJNiNUg—&—U?'UJML NU%—i—aQuO
1N 1
o3 o2 o}

where ppr = % Efil x; is empirical mean.
Sometimes, it is convenient to use the precision instead of the variance since it can significantly simplify the
calculations and the result. Since the precision is defined as

the results using the precision is
p(ple, A, o, Xo) = N (ulpn, Ay') (17)
_ NApnvr + Aopo
HN N+ Xo
AN =N+ Ao

2.3.2 Inference of the variance while the mean is known

Figure || depict a graphical model representing inference of a variance of an univariate normal distribution
assuming that the variance o2 is known. This is the opposite situation when compared to the case presented
in the previous section. There are N observations x1,...,xy and we aim to compute the posterior distribution
for the hidden variable o2 given the observations and prior.

o8

Figure 5: The graphical model for prediction of the observations z1, ..., zy given the mean p where the variance
o2 is unknown.

To get an analytical solution, we require the prior for the o parameter to be conjugate with the normal
distribution. The calculations will be greatly simplified if we work with precision A instead of the variance 2.

The graphical model using precision is at Figure [6]

o8

Figure 6: The graphical model for prediction of the observations x1, ..., 2y given the mean p where the precision
A is unknown.

The model depicted on Figure [6] assumes the following generative process:

1. A~ Gam(-|ag, bo)



2.z~ N(|p A1) Vie{l,...,N}

where the parameters pg, ag, and by are priors set manually and z is an observed variable.
Substitution into @D, the normal distribution using the precision is as follows:

N(alp, %) = N(alu, A7) = %em{-g@ — e { =S - (18)

The conjugate prior for the precision A is the gamma distribution defined by:
1

Gam(M|a,b) = ()

b X" exp{—bA} o A ! exp{—bA}. (19)

The joint distribution represented by the graphical model at Figure [6] is given by:

N
p(:l:, )‘|/1/a ao, bO) = p()\|a0, bO) Hp(xilﬂa )‘71)

i=1
N
= Gam(\|ao, bo) H N(zi|p, A1)

i=1
where @ = {z1,...,2y}. The posterior of the precision X is therefore derived as follows:

Gam()‘|a07 bo) Hi\le N(:Ci“" )‘71)
Jy Gam(Xao, bo) [T;Z, N(wilp, A=1)dA

p(Alz, 1, ao, bo) =

N
x Gam(X\|ao, bo) H N(zi|p, A1)
i=1
1

N
agyag—1 _ 1/2 _é PR 2
x T(ao) bg® A exp{—boA} 21:[1 A7 exp { 3 (zi — p) }

N
ap— A
oc A% exp{—bo A}AN/ 2 exp {—2 Z(xz - ,u)Q}

i=1

N
ap+N/2—1 A . 2
o A0 exp{—bo)\—2 E (zi — p) }

i=1
1
Z N2
b0+2i:1(xz M)}A}

Since the normal and gamma distributions are conjugate, the posterior for the precision A has the form of the
gamma distribution and its parameters can be computed as follows:

o A\ao+N/2]-1 exp {_

p(Alx, 1, ao, bo) = Gam(Nan,bn) (20)

aN:ao+§

N
1 N
bN:b0+§E($i—H)2:b0+

where Ay = N/ SN (25 — p)2.

2.3.3 Inference of the mean and variance using a conjugate prior

Figure (7| depicts a graphical model representing inference of a mean and precision of an univariate normal
distribution. In this section, we will consider a conjugate prior for the mean and precision.
The model depicted on Figure [7] assumes the following generative process:

1. A~ Gam(-|ag, boy)
2. 1~ N(|no, (BoA)™")
3. @ ~ N(|p,A7Y) Vie{l,...,N}

where the parameters pg, 32, ag, and by are priors set manually and x is an observed variable.
Again, we will use the precision instead of the variance since it will greatly simplify the derivation of the
solution. A conjugate prior for the mean p and the precision A is the normal-gamma distribution defined as:

p(1, Alpo, Bo, ao, bo) = N (|0, (BoX) ™) Gam(Alao, bo).

10



Figure 7: The graphical model for prediction of the observations x1,...,xn given the mean p and the precision
A. Where both the mean and variance is unknown.

Therefore, the joint distribution represented by the graphical model is:

N
(@, 1, Alpso, Bo, ao, bo) = p(t, Alpo, Bo, ao, bo) | [ p(ailw, A7)

=1
N
= N(ulpo, (BoA)™")Gam(Aao, bo) [ [ N (il A7)
i=1
where @ = {z1,...,25}. And the posterior can be computed as follows:

N (plpo, (BoN) ™) Gam(Nao, bo) [T, N (xi|p, A1)

S N(plo, (BoXN) =) Gam(Alag, bo) TTiZy N (|, A=) dpA
N
N(plpo, (BoN) ™) Gam(Mao, bo) [T NV (il A7)

=1

1/2
“((5207:\))1/2 exp{—ﬁg/\(u—uo)z}r( Syl AT exp{ boA}l_[lx\l/2exp{ ;( z-—u)?}

BoA Ao
oc \1/2)\[a0+N/2]-1 %(u 1o)? } exp{—bpA} exp {—2 Z(xi — M)Q}

=1

p(p, A, o, Bo, ao, bo) =

p

i=1

ho)

N
A
— 5 (0 = 20 4 p1g) — oA — = Z(:v? — 2xp + MQ)}

g5
M}
)]

x )\1/2)\[a0+N/2]71 ex

o)

s
o

o )\1/2)\[“0+N/2]_1 ex

el

N
2
1 & 2
—</~L —2/~L/~L0+Mo+* Fz; N
N
e

2
(Dol 5 aed

o )\1/2)\[a0+N/2]—1 exp

1
oc A2\ a0 tN/2=1 oy {— (u — 2ppi0 + 15 + - F

N W 1
+<1+60) <u3+50+ﬁ02x2>>}

11



N
_ +N A
o A1/2 )\lao+N/2] 1exp{ ﬁo 12— 2 (Bo + N)~ <5ou0+zxi>

(e
+ (Bo+N)~ <ﬂ0u0+2b0+2x ))}
)G

3 Bo+ N)A
o \1/2)\lao+N/2] 1eXp{— 0 u? =2 ,30+N) (3()#0-&-2%)

(Bo+N)~ (30#0-*-2%)1

i=1

(Bo+ M)~ (50#0 + Z%)

+(Bo+N)~ <5OM0+250+233 ))}

oc AL/2\la0+N/2=1 o { (Ko +2N)>\ <<

o))
+(Bo+ N)~ <50u0+2bo+2x >>}

(Bo+N)~! <50M0 +sz> ]) }

N
Aloo tN/2I =L ey { N —;N)/\ ( — | (Bo+ N (50#0 + sz)
i=1

(o N)" (ﬁomzxz)]f}

N 2 N
. B A _
Alao+N/2] 1exp{2<(ﬁo+N) 1<,80u0+2x¢> +Bou§+2b0+zx$>}

i=1 i=1
o A1/2 exp{ - 7(50 A (

w5

N
1
A\lao+N/2]-1 exp { — | b + B} ( (Bo + N (50#0 + Z%) + Bou?) + fo) )\}

i=1

2

(Bo+N)~" (ﬁouo + Z%)

i=1

oc)\l/gexp{— (BO—ZN))\(u_

2

N
+(Bo+N)T (%ug + 2b + Zx?) ) }

=1

od\l/zexp{ (50+2N)/\<

Since we used a conjugate prior, the posterior has the same form as the prior and its parameters can be
identified from the equation above as follows:

(i, Mpn, B, an,bn) = N(plpn, (BnA) " Gam(Maw, by)

N
un = (Bo + N)71 (ﬁouo + Z%)
i—1
By =Bo+ N

aN=a0+§

N
bN—bo+;( (Bo+ N)™ (ﬁouo+Zzz) +60u3+2x?>

=1
2.3.4 Inference of the mean and variance using a non-conjugate prior

In the previous section, we considered a conjugate prior for the mean and precision. After a complex manipula-
tion with the posterior, we derived a closed form solution. However, we cannot always design a conjugate prior
or compute the posterior in a closed form. In this section, we will try to compute the posterior distribution
for the normal distribution when the prior is not conjugate. Figure [§] depict a graphical model representing
inference of the mean and precision of an univariate normal distribution using non-conjugate prior.

The model depicted on Figure [§] assumes the following generative process:

12



Figure 8: The graphical model for prediction of the observation = given the mean p and the precision A. Where
both the mean and precision are unknown and the prior is not conjugate.

L. A~ Gam(-|ag, bo)
2. p~ N(|no, A5 ")
3. 2~ N, A~1) Vie{l,...,N}

where the parameters pg, Ao, ag, and by are priors set manually and z is an observed variable.
The prior distribution for the hidden parameters according to the graphical model is defined as follows:

(1, A os Ao, a0, bo) = N (p|po, Ay ) Gam(XAao, bo). (21)

Consequently, the joint distribution is:

N
(@, 1, Ao, Ao, ao, bo) = p(i, Alpo, Ao, ao, bo) | [ pilw, A1)

i=1
N

= N(plpo, Ao ")Gam(Nao, bo) [ [ N(zilu, A7)

i=1
where @ = {z1,...,25}. The posterior is then defined as:

N
p(ﬂ7 )\|€B,/.l,0, )‘07 aOvbO) S8 N(M|M07 A(Tl)C:Lwn()‘kLOa bO) H N(l‘,“i, A_l) (22)

i=1

However, the posterior does not have a form of the prior defined in . The unavailability of a simple
analytical solution to the posterior greatly complicates inference in such models and therefore approximation
techniques must be used.

There are several techniques dealing with inference in intractable models. The most popular are based
on Markov Chain Monte Carlo (MCMC) method, e.g. Gibbs sampling, Variational Inference, or Expectation
Propagation.

13



3 Inference in discrete Bayesian networks

4 The Laplace Approximation

14



5 Variational Inference

Variational Inference (VI) is based on the calculus of variations, i.e., a generalisation of standard calculus. VI
deals with functionals, functions and derivatives of functionals rather than functions, variables and derivatives.
In variational calculus similar rules apply. VI can be applied to models of either continuous or discrete random
variables. VI approximates both the posterior distribution: p(w|D), and its normalisation constant (model
evidence): p(D), where D is the evidence — data, and w are unknown parameters.

Variational inference is based on decomposition of model evidence

p(D) = / p(w, D)dw = / p(DJw)p(w)dw
as follows

logp(D) = L(q) + K L(q||p)
logp(D) = L(g(w)) + KL(q(w)||p(w|D))

where p(w|D) is our true distribution and g(w) is its approximation. L(q) approximates log p(D) and we want
to maximise it. The Kullback-Leibler (KL) divergence measures the “distance“ from ¢(w) to p(w|D) and we
want to minimise it.

La(w) = [ atw)iog {”E}‘(”;f)” } o

is lower bound and

KL(aw)lpw|) = [ a(w)tog { A5 dw
is the Kullback-Leibler divergence. The KL divergence is also known as relative-entropy and has these properties:
1. KL(pllp) = 0,
2. KL(q||lp) = 0 if and only if ¢ = p,
3. KL(q||lp) > 0 for all ¢ and p.

Decomposition of the p(D) evidence can be verified as follows:
logp(D) = L(q) + K L(qllp)

= [atwrtog (P22 o+ [ gtayton {109 o
ot {1og { P | s { 00 1 o

p(w, D) g(w)
q“")bg{ a(w) (w|D>}dw
(

/
/ ;
= [ ation { B o
/
/

q(w) log p(D)dw

—logp(D) [ gw)dw
=logp(D) -1
=logp(D)

Theoretical properties of the Variational inference are very favourable. Although it is an approximation, it is
guaranteed to converge to a local optimum. Since the KL divergence satisfies K L(¢||p) > 0, one can see that the
quantity L(q) is a lower bound on the log likelihood function log p(D). The goal of Variational inference is the
variational lower bound L(q) with respect to the approximate ¢(w) distribution, or to minimise the K L(q||p)
divergence.

Alternative derivation of the lower bound L(g) is based on the Jensen’s inequality:

logp(D) = log/p(D,w)dw = log/q(w)%dw

> /q(w) log p(q?g)u)dw

> L(q)
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5.1 Variational Mean Field

In Variational Mean Field, one assumes that g factors with respect to a partition of w into M disjoint groups
w;, with ¢ = {1,..., M}. No further assumptions are made about q.

M
g(w) = [ gs(ws) (23)
which can be written with explicit parameters, @, for the the approximation as
M
q(w; 0) = [ [ :(wi; 0)

where 0 = [01, ey 01]

The presented version of the Variational inference is sometimes called “global” since it tries to optimise the
full joint probability. Since even this can be found intractable, one can derive a local version of the Variational
inference, where only individual factors are independently optimised using the Variational inference.

Substituting ¢ in K L(g||p) and looking for the dependence with respect to g; is similar to coordinate ascend
when optimising K L(q(w; 0)||p(w|D)).

g(w) = qu'(wz‘) = q1(w1)gz2(w2) . .. qu (wir)

k3

We iteratively optimise ¢(w) with respect to ¢;(w;|0;) for i € {1,...,M}.
Derivation:

KLln) = [ Hqi<wi)1og{w} .
= /H%‘(wi) {Zloqu(wk) - 1ng(w|D)} dw
=1 k=1

M M
= / qi(w;) { log gx(wi) — logp(w, D) + 10gp(D)} dw
=1 k=1

= /qu'(wi) {ZIOng(wk) - logp(’w,D)} dw + C1

k=1

—/Hqi(wi){zloqu(wk)}dw/Hqi(wi) {logp(w, D)} dw + C:

M M M
=3 [ T atwtogan(widw ~ [ T atwlogpw, Didw +
k=1 i=1 =1

M M M M
— [Tlatwtogg wdw+ >~ [ Tlaw)ogatwdw— [ T]aws)ogp(w. D)dw + €y
i=1 k=lik#j 7 i=1 i=1
M M M M
:/Hqi(wi)logqj(wj)dw—i— Z /qk(wk)loqu(wk) H qi(wi)dw—/Hqi(wi)logp('w,D)dw—i—Cl
i=1 k=13k+j i=1jik i=1
M M M M
— [Tatwoggwidw+ > [atw)ogatu) [ T] atwdwdo, ~ [ ] atw)logptw, D)dw + s
i=1 k=1;k+; i=1Lyitk i=1

M M M
— [Tlatwtogg wdw+ >~ [ atwoga(uwndue ~ [ []as(w)ogp(w, Didw + €1
i=1 k=1;k+#j i=1
M

M
= /qu'(wi)logqj(wj)dw —/ qi(wi) log p(w, D)dw + C>
i=1 i=1
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Derivation continuation:

Kr(al) = [ TLattogastwaw [ TLaw) osptew, D)iw + 0

M

/qg(wg)logqy wy) [] a(wi)dw— /qu w;) log p(w, D)dw + Co

i=1;1#]

— [ aw) o as(w)du,; - [ _H s (wi) log p(w, D)dw + C:

_ / 45 (w;) 10g g (w;)duw; — / a5 (w3 / TT (0 logp(w, D)dw + Cs

i=1;1#£]

= /Q.j(wj)log%(wj)dw qj(w;) log (exp {/ H qi(wi) log p(w, D)dw" } | dw; + Ca

i=1;i7#]

= [ wtwy) 1o as(w)du,; ~ [ asw;)1og <exp
dw; — qJ (w;)dw,

M
Xp H qi(w;) log p(w, D) dw"

= /Qj(wj)IOng(wj)dwj = [ gi(w;)
i=1;1#]

}
}
)

= /qj(wj)logtJj(wj)dwj — [ aj(w;)log ( p{/ H i (w;) log p(w, D)dw"
log ( { ) qa (w;) log exp(—Ca)dw;

= / 4; (w;) log q; (w; )dw, — / ¢ (wy) log (exp{ / TT () log plaw. D)o — c}) w,

i=1;1#]
(w0
/qJ(wj)log 4 (ws) : dw;
exp {f [112,..; ¢i(w:) log p(w, D)dw\7 + Cs}

M )
=KL <Qj(wj)|exp {/ [ @(wi)logp(w, D)dw" +03}>

i=15i]

In general, K'L(¢g||p) is minimised when both ¢ = p. The optimal ¢; given that the other factors are kept
fixed is:

qj(wj; 6;) o exp {/ H qi (w;) log p(w, D)dw\]}

i=1;1#7

o exp E\; [log p(w, D)]

Please note that equality does not apply here because of the constant C5. More often, we work with the log
version and the normalisation constant is found by introspection.

log g (w;;0;) = E,\; [logp(w, D)] + C4
5.2 Example: VMF - Unknown Mean and Variance of a normal distribution, with
improper priors

In this section, we will try to compute the posterior distribution for the normal distribution when the prior is
improper. Figure [9] depict a graphical model representing inference of the mean and precision of an univariate
normal distribution using non-conjugate prior.

As we set the priors for 4 and A to be improper priors:

p(p) = o
p(A) =1/A

the prior distribution for the hidden parameters factors as follows:
1
p(u, Mpo) = Ho -

17
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Figure 9: The graphical model for prediction of the observation x given the mean p and the precision A. Where
both the mean and precision are unknown and the prior is improper.

While these priors are computationally convenient, they are not conjugate. Therefore, the posterior will
have a different form compared to the priors.
We enforce that the posterior approximation factors

a1, A) = qu(m)gr(A)
and solve for the optimal factors

log qu (1) = Eq, [logp(D, p1, \)]
log gx(A) = Eq,, [log p(D, p1, \)]

Goal: infer the posterior distribution of the mean p and precision A of a normal distribution given indepen-
dent observations D = {z1,...,zn}.

18



The likelihood of y and A is

N
p(Dlp, ) Hp ilp, A) = [ N(@ilp, A7
i=1
N
logp(Dp, A) = > log N(wilp, A1)

=1

glog\/ziﬁexp {,g(% - u)2}
3

:Elogx\—ﬁlog%r—fz

= 7% log oAt —

| >

N
= glog)\ — glog%r — g;(asl — pumML + ML — u)2
N
= T logA— 7 log2m - g;«x — pare) = (= pare))?
. log A — N log 27 — 2 i((ﬂvi — parn)? = 2(xi — par) (e — paer) + (1 — pare)?)
2 2 2 2
-y log A — N log 27 — 2 N(u — )+ Z(”“ — )’ — ij(w — pnr)(p— MML)}
2 2 2 : rar

N N A al
:ElogA—?logQW—E N(u “amL) +Z —parr)? —2(p — MML; HML:|

N N A
B og/\ D) Og 4T B) (/J /JML —|— E ,uML (,u /.LJVIL)

N N A

= Elog/\ - ﬁlog?ﬂ - é N(p— pare)? + EN:(% — pnrr)® = 2(p — parr) (
2 2 2 o

N N
= 5 logA — S log2m — 5 N(p—parn)® + Y (@i — pare)® = 2(p — prr) (sz Z%)]

N N A a
= S logA— S log2r — 5 | N(u— pan)® + Y (w5 — prr)® = 2(p — pare) '0]

2 2 2 P
N
N A 2 2
= Elog)\ -3 N(p— pmr)” + E (zi — pamr)”| + const

N . ..
where ppr = % > ieq %; is empirical mean.
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5.2.1 loggq, (1)

Derivation:

axn [1 g (D /.t, )‘)}
ax [log p(D|p, Np(p)p(A)]

log g (1) = E
Eqy [log p(D|p, A) + log p(u) + log p(N)]

o (A) [log p(D|p, A) +log p(u) + log p(A)] dA

a3 (V) log p(Dljs, A)d + / 43 (V) log p()dA + / 9x(A) log p(A)dA

ax(N) log p(D|p, )dAHogp(u)/qA(/\)d/\JrCl

ax(A) log p(D|p, \)dA + C2

/
/
/
/qA ) log p(D|u, N)dA + log(po) - 1 + C1
/
/
/
(

= [ (N (J;[ log A — g N(p— pare)? + Z(wi - MML)QD dA+Cs
ax(N) (‘%(# — ,UJML)Q) dA + Cy

= —%(u - uML)2> /QA(/\)/\dA +Cy

= = ) B+ C

By introspection, one can observe that

qu(p) o< exp {—%Am(u - MML)Q}

= N(u; parr, Ay')
where
An = NE,, .

Recall that

1/2
NGelnA™) = oo { =50
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5.2.2 loggy())

Derivation:

(D, ) +log p(p) + log p(M)]

log p(D|p, N)] + Eq,, [log p(p)] + Eq,, [log p(N)]
log p(D|p, A)] + Eq,, [log p(N)] + C1

= Eq, [log p(D|p, A)] +log p(A) + C1

= logp(A) + Eq,, [log p(D|p, A)] + C1

Q
=

N
N A 2 2
—logA+ Eq, {QIng\—2 N(p— parr) +Zl(l’i—HML) +Cs
N
N — A
= 10 A= 5 Eq, N(p—parr)® + Y (w: — parr)?| + Co
=1
N 2 M 2 + p3 +ii( — )’ | + C
= 2 0og 5 fau w MWUMEL + UL N 2 Ti; — UML 2
N _q N 2 2 1 a
=log A2 — o | By, (0] = 2Bq, [Wuare + pve + > (@i = pan)? | A+ Co
=1
N_q N —1 2 2 1 =
=log A2 -3 AN + Uy —2uMmopmLn + B + Z M]V[L A+ Cs
1:1
N
N _ N _ 1
=log \2 1—2<)\N1+NZ;(I¢—MML)2>/\+C2

By introspection, one can observe that

N
N _ N _
qA()\)O(/\{‘Y 16XP{—2 </\N1+ Z — UML) >>\}
= Gam(\;an,bn)
where

aN =

by =

NN
VS
>/
z),
_|_
uMz
"‘;
g
h
v

Recall that

1 a1
m)\ exp(—b))

Gam(\; a,b) = b"
5.2.3 Summary

This gives the following optimal factors given that the other factor is fixed

Qu(1) = N(plparn, AY)
g (A) = Gam(A|an,bn)

where
Av = NE, [\ = N2X
by
av =¥
N7

N
by = <)\N + = Z — pML) )

We iteratively optimise ¢, and gy until convergence.
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5.3 Example: VMF - Unknown Mean and Variance of a normal distribution, with
non-conjugate priors

In this section, we will try to compute the posterior distribution for the normal distribution when the prior
is not conjugate. Figure depict a graphical model representing inference of the mean and precision of an
univariate normal distribution using non-conjugate prior.

o o o s

Figure 10: The graphical model for prediction of the observation = given the mean p and the precision A. Where
both the mean and precision are unknown and the prior is not conjugate.

As we set the priors for 1 and A to be non-conjugate priors:

p(p) = N(plpo, Ao ),
p(A) = Gam(Aao, bo),

the prior distribution for the hidden parameters factors as follows:
(1, A os Ao, a0, bo) = N (p|po, Ay ) Gam(Aao, bo). (24)
We enforce that the posterior approximation factors
a(p, A) = qum)gr(X)

and solve for the optimal factors
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5.3.1 loggq,(n)

Derivation:
log (1) = Eqy [logp(D, i, N)]
= Eq, [log p(D|p, N)p(1)p(N)]
= Ey, [logp(D|p, A) + log p(p) + log p(M)]
= Eq, [logp(D|p, N)] + Eq, [logp(p)] + Eq, [log p(N)]
= Eq, [log p(D|p, \)] + Eq, [logp(p)] + C1
= Eq, glog/\*% (N(M L) +;($' pML) ) + Eq, { %(

A
=FEq, |[—5N(u /LML)Q} —?O(# po)” + Cs
N, A
= =5 (= parn)*Egy [N = 5 (1 = o) + Cs
N, , 2 Ao, 2 2
= —E(M —2upmr + parn) Eqy [N — 7(# — 2pp0 + po) + Cs
N
= =5 1 Bay W + Npparr Bgy [N — fu + Xopipio + C
N Ao
=51 By [\ - 7u + Nppnrr Eqy [N + Aoppo + Ca
NE‘D\ [)‘] + Ao 2

= =202 4 (N Egy [N jaars + ool + Ci

NEg, A +Xo (2, NEg, [\ par + Aopo
ST BT A0 02y
2 NEy, N+r MO

By completing the squares, one can derive that

NEq, [A] + o NEq, [\ parr + Aopo
qu(u)txeXp{ 5 NANESY

= N(u; v, AN)
where

v = NEa (Al parz + Aopto
H NEg [N+ Ao

AN = NEg, [A] + Ao

23

)}



5.3.2 loggi(A)

Derivation:

log gx(A) = Eq,, [logp(D, 1, M)
= Eq, [log p(D|u, )p(1)p(N)]
= Eq, [logp(D|u, A) + log p(u) + log p(N)]
= Eq, [logp(D|p, N)] + Eq, [log p()] + Eq,, [log p(N)]
= Eq, [logp(D|p, A)] + Eq,, [log p(N)] + C1

N A a
= Eq, |5 logA— 3 (N(u — )+ (@i — ,LLML)2>

(z; — ,LLIML)2>

- N
N A
= Eq, 510g>\} + Eq, {2 (N(MMML)2 +) (s MML)2>

=1

+ El]u, [(CLO - 1) IOgA - bOA] + CQ

Il
i

N A
= E‘Zu 710g)‘ - 5 (N(ILL 7/'LML)2 +

-

Il
—

5 +(a071)10g/\fb0/\+02

7

+(a07 l)log/\fbo/\+C’3

N

N
N 1
ZEIOg)\—?Eq“ (p,—p,juL Z ,uML )\+(a0—1)log>\—bo>\+03

i=1

N
1
= (CLO + = - 1) log A — (bo + By, | (1 — ,uML)2 + ~ Z(SCZ — MML)2 > A+Cs
N - N
= (ao + 5~ 1> log A — ( —2pupnmr + /ﬁuL Z:: — punmL) > A+ Cs
N 1 &
=(ll0+§—1>1 (bo-i-( an 1] = 2B, [Wlparr + pisr + Z — UML) >>)\+03
7,:1
N N 1<
= (ao+§—1> log A — <b0+2 (AN + uN = 2uNparr + i+ Z — ML) )))\-i-cs
i=1
N N N
_ ag+5—1
=log\"0"2 7" — (bo > (AN (un — prn)’ + N; — UML) )) A+Cs

By introspection, one can observe that

N
ant N _ N _ 1
g (A) o A0 E " exp {— (ao + 5 ()\Nl + (uv — parr)® + N ;(ﬂﬁi - MML)2>> )\}
= Gam(\;an,bn)
where

aN=ao+5

N 1 &
_ —1
by = bo + 5 (AN + (N — pr)® + EZI — ML) >

5.3.3 Summary

This gives the following optimal factors given that the other factor is fixed

qu(p) = N(plpn, A3")
g (A) = Gam(A|an,bn)
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where
iy = NEq, M pmr +Xopo _ N(an/bn)parr + Aopo
N(an/bn) + Xo N(an/bn)+ Xo
AN = NEqA[)\] + o = N(aN/bN) + Xo

aN:(IO‘F?

N 1 &
by = bo + 5 ()\1_\71 + (unv — ,UML)2 + ~ (zi — M]VIL)2>
im1

N 1 &
_ -1 L 2
=bo+ = (AN + 5 _E_l(:cz KN) )
We iteratively optimise g, and g until convergence.

5.4 Gradient ascend

First, one selects ¢ to be a parametric distribution: ¢(w|@) for which L(g) can be computed analytically. Then,
one can use a gradient ascend (hill climbing) to maximise L(q) with respect of parameters, 6, of ¢(w;8). The
lower bound then becomes a function of 8 and can be optimised. This can be very tedious.

5.5 Example: GA - Inference of the mean and variance using a non-conjugate
prior

Using gradient ascend, the goal is to approximate the posterior with the with a product of marginals in

the form of the prior as defined in . The interesting point here is that we know what the posterior will look

like.
The approximating distribution is defined as follows:

‘J(Mv )“,u/Na AN, an, bN) = N(ul/“\’7 )‘Ii\ll)Gam()‘laNa bN)7 (25)
where w1 = p and we = A, and the factors ¢; are

@1 (wilun, AN) = qu(plan, Av) = N(plun, AN
q2(wz2lan,bn) = gx(Man,by) = Gam(A|an, by)

The true distribution is defined as follows:

N
P(1, M, p0, Mo, a0, o) o N(jalpo, Ay )Gam(Nao, bo) [] N (el A ). (26)

i=1

One can notice that we know the joint posterior distribution only up to the normalisation constant.
However, this is not a significant problem since the minimum of the KL divergence does not depend on the
normalisation constant. Therefore, the KL divergence can be computed as:

N (plpn, Ay ) Gam(Nan, by)
1/ Zaug xosaosbo - N (lpo, Ag H)Gam(Aao, bo) [Ty N (ailp, A1)

KLGllp) = [ Nl A5 Gam(Naw, bw) log dpd,
JTIDN

where the Zg 15,00,a0,b0 15 the unknown normalisation constant of the true posterior.
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This can be further expanded as

KL(qllp) = / Nl AR Gam(Nan, by) (log Nl Ax") + log Gam(Max  by)
A

N
—log N(ulpo, A ') — log Gam(A|ao, bo) — > log N (x|, A~ ") + log Zm,m,xo,ao,bo)dudx

i=1

= [ N(ulun,\y")Gam(Nan, by) log N (p|pn, AN")dpdA
79N

+ N(p|pn, Ay ) Gam(Nan, by ) log Gam(Nax, b )dpdA
A

= [ Nl A5 YGam (Ao, b ) og Nilao, 5
JTIDN

- / N(p|pn, Ay ) Gam(Nan, by ) log Gam(ao, bo)dudA
79

N
[ Nl A5 Gam (Mo b) S 1og N A dudn
JTIDN

i=1

+ / N (e AV Gam(Nan, br) 108 Zes o o o 0 dpidA
JTIDN

Now, some of the factors can be integrated out:
KL{allp) = | Nl X5 108 Nl 35
+/)\Gam()\|aN,bN)logGam()\|aN,bN)d)\
= ¥ 2 o8 N o, A5 s

— / Gam(Man,bn)log Gam(A|ao, bo)dA
A

N
= [ Nl A5 Gam(May, bx) S log Nl A~ dud
739

i=1

+10g Zz,110,70,a0,b0

In our case, the minimisation of K L(q||p) is performed with respect to the pn, Nyan, by parameters of the
approximating distribution The simplest solution is to compute partial derivatives of the KL divergence
with respect to these parameters, and then perform gradient descend.

Let first derive the partial derivative for py:

0K L(q||p)
((9/“\7

P _ .
= /N(uluzv,Awl)logN(uluN,/\Nl)du
KN n

9] _ _
- 67/N(ulusz\Nl)logN(uluo,/\ol)du
un J,,

N
6 - —
_ 3#7/ N(plpn, AN Gam(Max, by) E log N (i, A~ )dpd 27)
oA

i=1

Before continuing, lets us recall the definition of the normal and the gamma distributions:

1/2
NGl A™) = ez e { =5 - (28)
Gam(Xa, b) = ﬁb“)\”’l exp{—bA}. (29)
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Now substitute ) and (| into
OKL(qllp) @ A}V/Z A, AN° AN,
dun  Opn L (2m)1/2 P 2 (= )" g log (2m)1/2 eXP 2 (k= ) dp
0 A2 A A2 A
_(9H7N WGXP{_%(M_MN)Q}I(% (QWOW‘?XP{_?O(M_MO)Q} dp
n
a )\1/2

)\N 2 1 a an—1
- _ON (= HAIN \ON —ba A}
auN (271)1/2 exp{ 2 (1 = o) }F(aw) exp{—bnA}

A
Zlog ez exp {_5(% — ,U)Q} dud\

However, this is typically difficult to solve this way. Therefore, another approach building on functional analysis,
where one tries to compute derivatives with respect to functions instead of parameters, is be easier to grasp:

9K L(q||p) 9 / 1 1
b = N(plpn, Ay ) log N(plpn, Ay )du
ON(ulpn, ANY)  ON(plun, Ay N N
B
/N plpn, AN') log N (pl o, Ao *)dp
N(plpn, Ay
o L
- N(plpn, A\n")Gam(XNan, by) log N (zi|p, A\~ ) dpdX
ON (plpn, Ay N ;

= (log N(plun, A') + 1) — log N (p|po, Ag ') /Gam Man,bn) ZlogN i, A7) dA

i=1

Setting the derivative equal to zero, one can compute the approximation:

0= (log M. A5') + 1) = log Nsluo: X5) = | Gam(Max.b) 3 log N, A=)

i=1

log N (p|un, Ax') = log N (ulpo, Ag ') / Gam(Xax,bn) ZlogN (@il ATHdx =1

i=1

N (plpn, AN ocexp{logN(uwo / Gam(Xax,bn) Zlogzv (wilp, A~ )dA}

i=1

N
N(plpn, AN") o exp {/ Gam(Man,bn)log ( (plpo, Ao HN (i, A~ ) d)\} (30)
A =1
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Using the results , can be written as:

Nl AR) o< exp { [ Gam(Aan, bx)1og N(ulux,/\}l)d/\}
A

px =

NAparr + Xopto

NX+ Mo

Ax = NA+ Xo

N(H'MN, >‘]_\11) X exp {EGam(MaN,bN) logN(:u|uX7 >‘)_(1)}

_ 1
N(/ALLLN, )‘Nl) X exp {EGam(MaN,bN) 5 log(N/\ + )\0) - D)
N (ulpn, AN') o< exp

N (plpn, Ay') o exp

(NA+X0) [ NAuar +dopo\’
N+ Mo

. (NA+ Xo) Nparz + dopio |
Gam(Xan,bn) _f M_W

5 __ (NA+Xo) [ 2 , NAparr + Aopto Nparr + Aopo \ 2
Gam(Alapn,by) ) H N>\+)\O N)\+)\O

(NX+ Xo) 2+(N)\+/\0)2 N)\/LML+)\ON0:|}

N(plpn, A\y") < exp 3 Ecamlan bn) | — 5 Iz 5 P NA T 2o

N(plpn, Ay") < exp 3 Ecam(rlan bn)

(NX+ o) o

NA A
-t - 70;12 + NApprop+ Aouou} }

2#

Ao N
N(plpn, AN') o exp 5 20?4+ Moptost + Eamran bn) | — 3 =+ N)\MMLM} }

Nl An') o exp

N(uli, An') o exp

{
N(plpn, Ay') o< exp {EGam(MaN,bN) B (e (NX\uar + Aouo)u} }
{
{-
{
{3

N - EGam(MaNbe)[)\]

2
Ao u? - N - Egam(\ay bx) A
2

Ao
—?M + Xopropt — p>+ N - EGam(,\\aN,bN)[)\]MMLM}

1?4 oo + N - EGam(,\\aN,bN)[)\]MMLM}

(N EGam(MaN bN)[)\] + )\0) 2

N(plpn, AN') o exp {— 5 1+ (N Egam(iay by Apaz + /\ouo)u}

Completing the squares, one can derive the following parameters of the approximating normal distribution

N(plpn, AN"):

N - EGam(MaN,bN)[Ah‘“ML + AO,LLO
N - EGam(MaN,bN)[A] + >\0
A =N - EGG‘"L()\laNabN)[)\} + o

pN =

This can be further simplified using the mean for the gamma distribution (Egqm(aja,p)[A] = a/b) as

N(ulpn, AN') = N(ulpn, Ax's an,by)
N -(an/bn)parr + Xopo
py =
N - (an/bn) + Xo
An =N -(an/bn)+ Xo

Similarly, one can derive the approximation for the posterior probability for .

0K L(ql|p)

0

OGam(Man,bn) -

~ 8Gam(Nan,by)

~ 0Gam(Nan,by)

dGam(Nan,bn) /)\ Gam(Man,bn)log Gam(A|an, by )dA

9 /Gam(/\\aN,bN)logGam(/\|ao,b0)d)\
A

N
/ N(ulpin, A ) Gam(Na, b) 3 log N (i, A" )dpd

i=1

0

= (log Gam(Man, bn) + 1) — log Gam(Aao, bo) /N/LWN,)\N ZlogleLu, “HdA

=1

28

(31)



Setting the derivative equal to zero, one can compute the approximation:

N
0 = (log Gam(Man,by) + 1) — log Gam(|ao, bo) — / N(plpn, AN') D log N (s, A1) dA
A

i=1

N
log Gam(Man,bn) = log Gam(\|ao, bo) + / N (ulpn, A\N") Zlog N(zi|p, A" DdA — 1
A

=1

=1

N
Gam(Man,bn) o exp {log Gam(Mao, bo) + / N(plpn, AN") Zlog N (x|, /\1)d)\}
A

N
Gam(Man,bn) o exp {/ N(plpn, AN") log (Gam()\|ao,bo) HN(mim, /\1)) d/\}
A i=1

Using the results , can be written as:
Gam(Man,bn) x exp {/ N(/L|MN,)\;,1)logGam(MaX,bx)dz\}
A

aX:aO'f'?

1 N
L 2
bx =bo+ 5 2:1(562 )

Gam(Man,bn) x exp {E 1)logGam()\|ax,bx)}

N
(ao+ % —1) log A — (bo+ %;(agl _M)2) )\]}

N N
Z 2
(ao—F? —1) 10g>\_b0>\— 71.:1(131' _/.L) )\:|}
1
log A — boA — EN(#IHNAX,I) |:2 E (@; — #)2)‘:| }

=1

N(plpn AN

N(ulpn AN

Gam(Man,bn) x exp {E

DN | =

Gam(\an,bn) o< exp

Gam(\an,bn) < exp

N
A 2
Gam(Man,bn) x exp log A — boA — 3 E 1 EN(MMN,A;,I) [(zi — p)?] }
Jr

A 2 2
log A= boA = 53 Byupy ) (o7 = 22+ 4°] }

A _
log A — bo X\ — 5 Z (xf — 2z uN -|-/ﬁ\, + /\Nl)}

{
{
{
Gam(Nax, by) x exp {
{
{
{

A 2 2
— ]) log A — boA — 5 Z (ml — 2xiEN(MMNq>\;]1) [u] + EN(H\HNJ\XJI) [/L ])}

N -1
N 1 2 NAy
Gam(Man,bn) o exp (ao + 5~ 1)log\— (bo + > E: (zi — pN)™ + 5 > )\}

N -1
N 1 A
Gam(Man,bn) x exp {log )\( o+5-1) _ <bo + 3 2:1 (s N)2 + 2N > )\}
N 1 At
Gam(Max, by) o A%+ ¥ T exp {_ <b“ AEPIC RS ) A}

Now, one can derive parameters for the approximating gamma distribution Gam(A|ay, by ):
Gam(Nan,by) = Gam(Nan, by un, Ax')

aN:CIO‘i‘E

NG
2

N
1 2
by =bo + 5 ig:l(l‘i —punN) +
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6 Expectation Propagation

Expectation Propagation (EP) can be used to approximate an distribution by a simpler parametric distribution,
in a similar way as Variational Inference (VI). It is based on the minimisation of the KL-divergence, but in
its direct way K L(pl||q) instead of K L(q||p) (the one used by VI). Ideally, we would like to minimise K L(p||q)
directly:

_ p(w|D)
K L(pllq) = /p(wlD) log{ o(w) }dw
This involves computing averages with respect to the exact posterior which is intractable. However, we compute
the approximation because we assume that we cannot handle the true posterior distribution in the first place.
Therefore, EP minimises the KL divergence between p(w) and ¢(w), where p(w) is an approximation of p(w|D).

KL(pllg) = / p(w) log {§EZ§ } dw

The facts and assumptions:

e EP is a generalisation of LBP to graphical models which may contain continuous variables

e The distribution ¢ is restricted to belong to a family of probability distributions that is closed under the
product operation - the exponential distribution family.

6.1 The exponential distribution family

Most of the simplest parametric distributions belong to the exponential family. This includes the normal,
exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, categorical, Poisson, Wishart, Inverse Wishart and
others.

If g(w) is from the exponential family then
a(w) = h(w)g(n) exp {n" u(w) } (34)
where
e 7) is a vector of natural parameters of g,
e u(w) are the sufficient statistics,

e g(n) is a log normaliser which satisfies:
o) [ hiw)exp {n" uw)} dw =1 (35)

Consider minimising KL-divergence between p(w) and ¢(w), where p(w) is a fixed distribution and ¢(w) is a
member of the exponential family:

KL(pllg) = —10g 9(n) = 0" Ep(uw) [u(w)] + const
We can minimise K L(p||q) with respect to the natural parameters n

0K L(pllg)

on =0

% —log g(n) = Ep(uw) [u(w)]

—Vlog g(n) = Epuw)[u(w)]. (36)
Differentiating both sides of with respect to i we get:

\Y {g(n)/h(w) exp {nTu(w)} dw} =V1
Vo) [ hw)exp {n"u(w)} dw + g(m) [ h(w)exp {n"u(w) } u(w)dw =0

~Vg(n)saln) [ hw)exp {n"u(w) } dw = gn) [ w)exp {n"u(w) } ulaw)d

S

~Vg(n) s 1= a(n) [ hw)exp {n"u(w) | uw)duw

1

~—5Valn) = a(n) [ hw)exp {n"u(w) } u(w)dw

—Vlog g(n) = Eqw)[u(w)]
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Comparing this result with , we get:
Epw) [u(w)] = Eq(uw) [u(w)]

Minimising K L(p||q) is equivalent to matching expected sufficient statistics. This result is systematically ex-
ploited in EP to carry out approximate inference. This method is called moment matching.

Example: If g(w) is a Normal distribution N(w|u, ), we minimise the KL divergence by setting the mean
p and covariance % of ¢(w) to the mean and covariance of p(w). That is:

o Ejlw] = Eyw]

o E,wwl] = E,[ww’].

6.2 The Expectation Propagation algorithm
6.2.1 Factorisation of the joint distribution

In EP, we assume that the joint distribution p(w, D) of the latent variables w and the observed variables D
factors as

p(va) = Hfl(w)y

where each factor f; depends on w or a subset of these variables and D. Factors f; can be arbitrary; however,
they are very often represented by likelihood or prior for w.

Please recall that p(w, D) can be written very often as:

p(w, D) = p(w) Hp(wiIW)

Given p(w, D), the posterior for w is obtained after normalising by p(D):
1
D)= —— i
plwiD) = s T
o(0) = [ T] fiw)iw

Example: Show factor graph and factors for Unknown Mean and Variance of a normal distribution.

[ |

Figure 11: Example of factor graph and factors for Unknown Mean and Variance of a normal distribution.

6.2.2 Approximation to the posterior distribution

As in VI, EP assumes that ¢ factorises with respect to a partition of w into M disjoint groups wj, with
i={1,...,M}

q(w) = H q;(wy)

In addition, it also considers that EP approximates p(w|D) using a product of simpler factors: which can be
also written as

JREA
a(w) = [ Fi(w)
where each approximate factor ﬁ approximates the corresponding exact factor f;. The fl are in an exponential
family but need not be normalised. For example, the f; can be un-normalised Normal distribution. Because
the exponential family is closed under the product operation, the product of the f;(w) has a simple form and

can be easily normalised.

We need to use the f; approximations as the original factors f; may be too complex.
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Example: Consider the clutter problem:
e p(w) = N(w;0,100)
o p(zlw) =0.5-N(z;w,1)+0.5- N(z;0,10)
o plw|z) o p(w) T} plaifw)

Note that the p(w|z) is a mixture of 2V terms.

6.2.3 Minimising the KL divergence
We already noted that we cannot minimise the K L(p||q) directly.

KL(pllg) = [ plw|D)log {pfﬂ? } o

1 1 =
= KL (p(D) [Trwli Hfi(w))

Therefore, EP minimises the KL divergence between f; and ﬂ in the context of all the other approximate factors

fj?]#z

1. Assume that we want to update the factor fj

2. We remove ﬁ from ¢ to obtain:

0(w) = L = LTT fyaw) o T i)

 fiw) i i

where ¢\!(w) is called a cavity distribution. Please note that
e ¢\/(w) is un-normalised distribution because we removed potentially un-normalised fi,

e division of ¢ by f; may be often faster then multiplying N factors fj(w)

3. We want to update the factor fz so that

Gnew(w) o fi(w)g" (w) o fi(w) [ ] fi(w)
J#i
is as close as possible in terms of the KL divergence to

p(w) x fi(w)q" (w) o filw) [ F(w),

J#i

where q\j’ is kept fixed (all factors j # i are fixed). Considering f; in the context of all the other approximate
factors f;, j # i ensures that f; is accurate where g\t = Hj £i f; takes large values.

4. To obtain a normalised distribution p(w), we compute the normalisation constant Z;
Z, = / Fi(w)g" (w)dw
and set
plw) = Z_fi('w)q\i(w)-
5. We minimise K L(H(w)||gnew) divergence by with respect to gneq for factor fi:
KL (5 i) @)llgnes ()
This can be done by matching expected sufficient statistics between gpe,, and (1/Z;)f;q\*. For this, expectations

with respect to (1/Z;) fi¢\* must be tractable. In other words, we will construct a new “distribution” with all
the moments of the g,c,, equal to moments (1/Zi)fiq\i.
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6. Then based on the the new approximation of the ¢,c., we update ﬁ using

F(w) = Gnew (W)
Jilw) ¢V (w)

Please recall that gpew < fi(w)q\i(w). The normalisation constant K can be obtained by multiplying both
sides by ¢\!(w) and integration.

Grew (W) 7
W fi (’w)
Kqpew(w) = fi(w)g" (w)

Please note that gpew(w) is a normalised distribution. Comparing zero moments one can found that:

[ Fwaw) = [ fiw)a" w)

Since the right side is Z;, we know that K = Z;. This is especially important as for computation of K we need
to know f;(w). However without K, we do know it.

Several passes are made trough the factors until they converge.

6.2.4 Summary

EP computes ¢(w) — approximation to p(w|D).
1. Initialise ¢ and each f; to be uniform.
2. Repeat until convergence of all the ﬂ

(a) Choose a factor f; to refine.

(b) Remove f; from ¢ by division ¢\' = ¢/ f;.

(¢) Compute Z; and find ¢neqy by minimising K L(p||¢new)-
)

(d) Compute and store the new factor f; = Zi%.

3. Evaluate the approximation to the model evidence:

p(D)~Z = /Hﬁ(w)dw

Considerations:
e The minimisation of the KL is done by moment matching (not necessarily).
e EP may not converge and the fz may oscillate forever (same as in LBP).

e Convergence can be improved by damping the EP updates.

No need to replace all the factors in the joint distribution with approximations. For example, if one factor
is already in the exponential family, the approximate factor is always the same and exact.

EP considers global aspects of p by approximately minimising K L(p||q).
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6.3 Supporting math: Gaussian Identities

The product and ratio of Gaussians is again Gaussian.

N(Mh El) : N(//L27 E2) - CN(M7 E):
S=rt+hT
p=3 (S + 5 )

by 1 _ _ _
C= m exp {—5 (Mfgh Yun g 85 e — 'Y IM) } .

N(,LL1,E1)/N(,U/2, 22) = CN(Na E)v
L= -7,
p=3 (S - 55 )

_ |Z]|32] I A e AN E N AN |
¢= (zw)d|21|eXP 2(#121 p1—po Xy pe—p X H) .

For more information seehttp://research.microsoft.com/en-us/um/people/minka/papers/ep/minka-ep-quickref
pdf

6.4 Supporting math: Gaussian Moments

Let f(x) be an arbitrary factor of x and let

where
Z = /t(a:)N(mm,E).

Then, we have that

_ Olog Z
TR T (S T OlogZ (0OlogZ Tﬁ Olog Z
Varslz) = Ep[za” | — Ep[z]Ep[z]” =X E< n ( o ) 2 75 3.

These expressions are very useful to find the parameters of ¢, in EP.

6.5 Example: EP - Unknown Mean of a normal distribution

In this section, we will try to compute the posterior distribution for the mean parameter of the normal distribu-
tion. Figure[l2|depict a graphical model representing inference of the mean of an univariate normal distribution
with fixed precision.

Figure 12: The graphical model for prediction of the observation x given the mean m and the variance v.
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Prior As we set the priors for m to be:

p(m) = N(m|mo,vo),

therefore we get:

p(w) = p(m|mo, vo),

= N(m|mo,vo).

where w = [m,].

Likelihood The likelihood is defined as follows:
p(Dlw) = [ [ p(ailw) = [ [ N(xilm,v),

where D = {x1,x2,..., 2N}

Joint distribution The join distribution is defined as follows:
p(w, D) = p(m, D)

= p(m|mo,vo) Hp(:ci\w)

(3

= N(m|mo,vo) HN(wi|m, v),
= fo(w) Hfz(w)

where
fo(w) = N(m|mo, vo),
fi(w) = N(z;|m,v).

Posterior The posterior distribution is defined as follows:

pmmzﬁgmmn

1
However, it is in-tractable. Therefore, we choose the posterior to have for of the prior:

= qm(mImN’UN)7

= N(m|mn,vn).

We also approximate g(w) as a product of simple factors:
1 .
a(w) = 2 [ fitw),

where
fo(w) = N(m|mao, %),

fb(w) = §,N(m|ﬁlz,1~}z) 7= 1,. . .,N.

Note that the §; is de-normalisation constant to make sure that our approximate f; fits well the original f;. This
is useful as the original factor f; is normalised with respect to x;, while the approximation is f; with respect to
m.

Initialisation We initialise our approximation of ¢(w) by setting
e fo to the prior N(m|mg,vo),

° fz to have zero mean and high low precision.
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Computation of the cavity distribution Computing the cavity distribution ¢\/ (w) we get:

\inQ(w)
q"(w) T w)

Since both g(w) and f;(w) take form of Normal distributions, we can use the formulas for Normal identities to
obtain un-normalised Normal shaped ¢\(w):

q“ (w) o< N(m|my,vy)

where:
vy = (o' =)

\é i —1 -
my = on (v ma — B ).

Computation of the new posterior The first step is to compute the Z;:
2= [ fim)a" (m)am
= /N(wi|m,v)N(m|m>\f,v1\\;)dm
= N(zilmy,v+vy)
which is obtained from the convolution of two Gaussians.

Next, we compute gne, by finding the mean and the variance of p(m) oc fi(m)q\'(m). Using the Gaussian
moments, we obtain the mean and the variance of the new approximate posterior g, (m):

pm) = - Film)q (m)
= - N(ailm, o) N(mlm}, o))

= N(m|mnew» Unew)

i :0log Z;
Mnew = m)\r + UJ\V Og\i
omyy

2
i i\ 2 dlog Z; dlog Z;
e = o) = (oY) (( omy; > o >
N N

Computation of the derivatives of log Z;:

Bmx

Computing the gpeq, distribution.
TBD

Update the approximate factor Updating the fj factor.
TBD

6.6 Example: EP - The clutter problem

We consider the problem of inferring the mean p of a multivariate Gaussian when the Gaussian observations
are embedded in background Gaussian clutter.
In this problem w = p and D are the observations x, which are generated from:

p(x|p) = (1 —w)N(z|p, I) + wN(x|0, Ia),

where w = 0.5 is the proportion of clutter and a = 10.
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Prior The prior for p is:

p(p) = N(p0, Ib),

with b = 100 (little informative).

Likelihood The likelihood is defined as follows:

p(D|w) = Hp(xi\UJ) =[]0 - w)N(@ilp, I) + wN (|0, Ia)],

7

where D = {x1,x2,...,2N}.
Joint distribution The joint distribution of p and the evidence D = {x1,..., &N} is
p(w, D) = p(p, D)
N
=p(p) [ [ p(:l1e)
i=1

— N(u|o, 16) [T 11 = w)N (@il e, I) + wN ([0, Ia)]

N
= fo(w) [T fi(w),
=1
a mixture of 2V terms. Computing p(p|D) is intractable for large N.

Posterior The posterior distribution is defined as follows:

mmm:R%Mmm

1
However, this is intractable.

We choose a parametric form for ¢ that belongs to the exponential family:
q(p) = N(plm,oI),

with parameters m and v.
We also approximate g(w) as a product of simple factors:

a(w) = 5 [ Fitw),
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where

fo(w) = N(ulmo, 5oI),
i) = 5N (p|r, 5:.1),
with parameters {r; }, {3:}Y,, and {;} .

Note that the fz are not densities and negative values for 0; are valid.

Initialisation f, can be approximated exactly and the optimal choice for fo is fo = fo. Once initialised, this
term needs not be updated by EP anymore.

The f; are initialised to be non-informative, ¢ is also non-informative:

5 = (2m5:) 7
m:0, U:ba
m; =0, Vi — 00 fori=1,...,N.,

where we have used the Gaussian identities. After refining fo, ¢ is equal to the prior p(p).

Computation of the cavity distribution To compute ¢\ one can derive that:

U\i _ ('U71 _ ’[7.71)717

m\ =

We used the fact that both q(u) and f;(u) take the form of Normal distributions.

Computation of the new posterior The first step is to compute Z;:
Zi :/fz‘(u)q\i(u)du
= / [(1 — w)N (| p, I) + wN(2]0, Ia)] N(p|lm ", Iv\)dp
- /(1 —w)N (@[, DN (u|m ', Tv\)dps + /wN(on, Ta)N(pu|m', Iv\ )dp

= (1= w) [ N, DNl 20 dps+ wN (@10, o) | N(ulm 10" )dp
= (1 —w)N(zi|m"', (0\" + 1)I) + wN (|0, aI).

which is obtained from the convolution of two Gaussians.

Next, we compute gye, by finding the mean and the variance of p(p) o< fi(p)g\ (p):

) \@
m :m\l—kp-iv (x; —m)
new Zv\,LJrl 2 )
\iy2 \i\2] (0. \i[|2
L @ e m Y
Unew =0 plv\i+1+pl( pi) D(v\* +1)? ’

where we have used the Gaussian moments and identities and
pi=1-— %N(mi\O,aI)
can be interpreted as the probability of @; not being clutter.
Note that derivation of the above solution is doable; however, very tedious. Therefore, see https://github.com/

bayesian-inference/notes/blob/master/expectation_propagation__the_clutter_problem/clutter.pdf
for details.
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Update of the approximate factor ﬂ is updated to be equal to Ziqnew/q\i:
. —1
V; = (('Unew)_l - (U\l)_l) 5
m; = U; ('U;elwmnew - ('U\i)_lm\Z) s
5i= Zi
" N(muilm\ (5 4+ 0\’

where we used the Gaussian identities.

At convergence we evaluate the approximation of the marginal likelihood:

N N
~ f; pn)dp = (2T0new) D 2 exp ;) ,
/Hf()d (2mv (B/2) H[ (2 D/Q]
=0 i=0

— oy T -1 N T 1os fam 3 g
where B = M0, Upo Mnew — 2 ;oM (0;) ' and we have used the Gaussian identities.

6.7 Example: EP - The probit regression model

Suppose we have independent data points !, each consisting of d features, thus building a matrix X € R"*9.
Each data point x; has a label y; € {—1,1},4 = 1...n, which gives a vector of labels v. Then, the data D is a

set {(2o,%0), (z1,91),--.}.
We want to model this data using a probit model:
p(yilzi, w) = (yaw” x:),

where ® denotes a standard Gaussian cumulative distribution function:

z 1 _1,2
P(z) = ——e 27 dt.
(=) /,oo Ver
Prior We choose the prior for w to be:

p(w) = N(wl0, Tvo)

=1 N (w0, v0)

Jj=1

Likelihood The likelihood is defined as follows:

p(Dlw) = p(y| X, w),

n

(
Hp(y¢|m,~, w) = H <I>(y,~wTa¢,').

=1

Joint distribution The joint distribution is defined as follows:
p(w, D) = p(y, X, w),
(w) [ [ (il w)
=1

= N(w|0, Tvo) [ [ @(yw” @),

=1
w) [ fi(w
i=1
where

fo(w) = N(wl0, Tvo),

post
g

N
Il

39



Posterior The posterior distribution is defined as follows:

p(w| D) = ﬁpm,m

= o) [T ol w),
1
= @fO(w)Uﬁ('w)

However, this posterior is in-tractable. Therefore, we choose the posterior to have form of the prior:

g(w) = N(w|m, Iv) = HN(wjlmj,vj)

J

Note that m = {m;}9_, and v = {v;}7_, denote means and variances in the individual dimensions.
We also approximate g(w) as a product of simple factors:

(w) = 5 fotw) [ Fitw),

where
fo(w) = fo(w) = N(w|0, Tvo),
d
ﬁ(w) = siN(w\mi,I'ui) = H sijN(wj\mij,v,-j) 1= 1, ey N.
j=1
Note that m; = {m;}{_, fori =1,...,N and v; = {v;;}}_, for i = 1,..., N denote means and variances in

the individual dimensions of the approximated factors.

Also, note that the s;; is a de-normalisation constant to make sure that our approximate ﬁ fits well the original
fi. This is useful as the original factor f; is normalised with respect to (y;,«;), while the approximation is f;
with respect to w.

Initialisation We initialise our approximation ¢(w) by setting fo(w) to the prior and ﬁ(w) to uniform
distributionsE The parameters of the approximate factors then may look as follows:

mOj:07 Voj = Vo leaad

mi; =0, Vi = 00 j=1,...,d, i=1,...,N

Now our posterior approximation is in fact equal to our prior (if we view it as prior - [T}, uniform).

Computation of the cavity distribution Computing the cavity distribution q\i('w) we get:

¢V (w) = 4
fi(w)
Since both g(w) and f;(w) take form of Normal distributions, we can use the formulas for Normal identities to
obtain un-normalised Normal shaped ¢\ (w):
¢ (w) o N(wlm", v\
where:

\i _ o, -1 —1y—1
vy = (v; " =y ),
7 i, —1 —1
mj\. = UJ\ (v; "my —v;; mig).
Note that m;;, v;; refer to the current approximation of ﬁ(w) and m;, v; refer to the current approximation of

q(w).

LOr as close to uniform distributions as we can get in practice since f;(w) are assumed to be Gaussian.
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Computation of the new posterior The first step is to compute Z;:

2= [ fiwia

—/(Ma,mewf

Yi Z] 1 mj\'ixij
iea v w1

Note that the derivation above is not trivial.

Now using the Gaussian moments, we can compute the g,e,(w). We obtain the mean and the variance of the
new approximate posterior ey, (w):

ne 7 281 Z
mj \+ \ aOg\l

new __ _\i \d 2 0 log Z; 8 lOg Zi
YT T (“J’ ) Vi g
om; v

TBD: Compute the derivatives of log Z;.

Update of the approximate factor We now have the new approximate posterior ¢"“(w) and need to
obtain our new approximate factor f**(w) for later use.

Grewlw) = - Filw)a" (w)
o w)
filw) = 2 V' (w)

The parameters m;’#", v;i*", s{'" are obtained from the Gaussian identities formulas:

1\ !
new __ -1 \i
v = (v v, ,

where

new \’L

Vi Vs 1 2 1 i 2 i -1 new 2 new)—1

s o (03 (s = ()" () - " 5
J

We can now use £ (w) and ¢"¢"(w) in the next iterations.

41



7 Markov Chain Monte Carlo
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8 MCMC: Gibbs sampling

In this section, we will introduce a specific case of a MCMC technique called Gibbs sampling. Since direct
sampling from the posterior is usually intractable, Gibbs sampling draws from a posterior for each hidden
variable given the rest of the observed and hidden variables.

8.1 Example: Inference of the mean and variance using a non-conjugate prior

Here, we will try to solve the the task described in Section[2:3.4] Figure[8]depict a graphical model representing
inference of the mean and precision of an univariate normal distribution using non-conjugate prior. Instead of
direct analytic computation of the posterior, we will use Gibbs sampling from the posterior distributions and
use the samples to represent the posterior.

In our case, we want to draw samples from the posterior distribution p(u, A|&, to, Ao, ag, bg). Therefore, we
will iteratively sample from the posterior p(u|A, x, po, Ao, ag, bo) and p(A|u, x, o, Ao, o, bo), where the initial
values for 4 and A are set manually. After some burn-in period, e.g. M samples, the samples will be distributed
according to the posterior p(u, A| . ..). These generated samples can be then used on its own, e.g. for visualisation
or the estimation of the parameters iy, AN, dn, by of the approximate posterior defined in the form of the prior
£4).

Note that given the conditional independence defined by the graphical model, the posteriors have the fol-
lowing form:

p(,Uz‘A, T, [o, )‘07(107 b[)) = p([J,|$L'7 )‘7 Ko, /\0)
p(>\|/~’L7 T, o, )‘0, ao, bo) = p(/\\m, M, @0, bo)

Recall that we derived the posterior for the mean in Section and that the posterior for the precision was
derived in Section [2.3.2] Therefore, we already know that:

p(u|:1:, A fos /\0) = N(H'/”Vv )‘J_Vl)
NApmr + Aoto

NA+ Xo
AN =NA+ )Xo

pN =

where ppyp = % Ef\il x; and 0% = 1/\.

Now we have to iteratively sample p(p|x, A, po, Ao) and p(A|x, i, ag,bg) to obtain the samples from the
posterior p(u, A|...). Note that although the posteriors for p and A are independent, they exhibit a coupling
since the posterior p(u|...) depends on the precision A and the other way around.

Assume that we have obtained N samples of the mean, e.g. p1,..., un, and precision, e.g. A1,..., Ay, using
Gibbs sampling described above. Then, the parameters fiy, 5\N, an, by of the approximate posterior

p(l'l’7 )‘|/1N7 S‘Nv an, BN) = N(N"ﬂNv 5\]_\]1)00/171()\‘&1\[, BN)
can be computed as follows:

1

AN =5 2 Wi

™=

Z

- 1 .
AN =+ i =

N N - (pi — fin)

an = no closed form solution
- aN

by = ——

In the case of an, a numerical maximisation of likelihood has to be performed since there is no closed form
solution.

8.2 Example: Hierarchical Bayesian model for the real observations

This section does not use correct notation for o2 for normal distribution.

In this section, we will model the observations using hierarchical Bayesian model. The observations are
still real; however, we observe additional information about the observations. The situation can by described
by the model depicted on Figure In this case, we model real valued observations x which depend on s
and u. This can be a model of a fundamental frequency (an inverse of a pitch period) of speech of the user u
when communicating with the system s. It is known that the fundamental frequency is defined by the physical
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properties of the user’s vocal tract. However, users tends to adapt the frequency based on the partner they
communicate with.

The model is equivalent to predicting x given s and u using the probability distribution p(z|s,u). We can
assume that the observations x are generated from a normal distribution where the mean of the distribution
depends on both the system and user. If we had enough data, then we could estimate a specific mean for each
combination of the system and user. We would need S x U parameters, where S represents the number of
systems and U represents the number of users, to specify the distribution p(z|s,u) = N(z|usv, o). However,
we aim to develop a more compact probabilistic model.

( )

SxU

\ \ N)

Figure 13: The probabilistic model for the prediction of the observation = given s and u.

Instead, we will try to make use of the knowledge that there is similarity between the observations for the
same systems as well as that there is similarity between the observations for the same users. More precisely, we
will assume that the probability distribution of the observations can be described by the distribution N (x|us +
N, 0). In this case, we will need only S + U parameters. In addition, we will add unknown priors for ps and 7
which will be inferred from the data. These priors will enable sharing information about the means among the
systems and the means among the users, e.g. the prior for one user will be affected by observations from other
users. Such model is depicted on Figure

Q} @ ©

\/@&D

Figure 14: Graphical model factoring the system and user parameters represented by a hierarchical Bayesian
model. The model is modelling only the mean and the variance is assumed to be known.

The model depicted on Figure [14] assumes the following generative process:
L. po ~ N('|M—1a031)
2. 1o ~ N(:[n-1,7-1)
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3. pis ~ N(-|po,05)
4. 1y ~ N(n0,73)
5. @ ~ N(:|pps + M, 0?)

where the parameters pu_1, o_1, o9, 0, 7—1, 7—1, and g are priors set manually and s, u, and z are the
observations.

Given the parameters u_1, 0_1, 0g, 0, 7—1, 7—1, Yo and the observations s and u, the joint distribution of
the observations x, the system mean values u, the prior of the system mean values pg, the user mean values 7,
the prior of the user mean values 7 is given by:

p(x, 1, f0, M, 0|8, U, f—1,0-1,00,0,1-1,7-1,%) =
N

= p(lpo, 00)p(polp—1,0-1)p(nlno, v0)p(noln-1,v-1) [ [ p(w:lsi, g, us,m, o) (37)
=1

Note that the system s (more precisely s;) and the user u (u;) are represented by a unit-basis vectors that have
a single component equal to one and all other components equal to zero. For example, the jth system in ith
sample is represented by S-vector s such that s;; = 1 and s;;, = 0 for k # j for all 4.

This can be further factored according to the components of the vectors g and n:

p(w7I"'a:u/07777770‘37u7:u*170'*1700707 Nn-1,7-1, 70) =
S

U N S U
= p(polp—1,0-1) [ T p(uilpo, o0) - plnoln-1,~v-1) H 77k|770ﬂo)'HHH (@il g, i, o) "7k (38)
j=1 k=1 i=1j=1k=1
Note that now the system and user are represented by indexes j and k respectively. Given the generative model
and the assumptions on the normal distribution of the observations, the probability distributions are represented
as follows:

p(polp—1,0-1) = N(polp-1,0-1) (39)
p(pjlpo, 00) = N(ujlpo, 00) (40)
p(moln-1,7v-1) = N(no|n-1,7-1) (41)
P(M|m0,70) = N (MK[70,70) (42)
p(zilpg, e, o) = N(@i|p; + i, o) (43)

Now, we will describe inference using Gibbs sampling in the model described above. In summary, the
samples from the joint posterior for all hidden variables p(u, po, m, n0l, 8, W, i—1,0-1,00,0,1—-1,7—1,%0) can
be obtained by iterative sampling from posteriors for individual hidden variables. This turns out to be very
often simpler than sampling from the full joint distribution.

To apply Gibbs sampling method, posterior distributions for each hidden variable u, pg,n,n79 must be de-
rived. More precisely, we must derive the following posteriors:

(ol pp1,0-1,00) (44)
p(ujle, 8, p—j, po, u,m,0,00) VjeE{l,...,S} (45)
p(no[m, n-1,7-1,7%) (46)
p(nkl, 8, u,w,m_k,n0,0,7) Vke{l,...,U} (47)

where p_; is the vector p without u; and n_; is the vector n without ;.

Note that in situation where all latent variables are know except for the latent variable for which we want
to compute the posterior, the posterior depend only on the parents, children and parents of the children (aka
Markov blanket).

8.2.1 Posterior of the hyper-parameters
The easiest way to start is to compute posterior of py. Using the joint distribution and the Bayes rule:

p(@, 1, o, M, M0|8, W, f1—1,0-1,00,0,1M-1,%-1,%) =
= p(uolx, 1, M, M0, 8, w, i—1,0-1,00,0,M-1,Y-1,7)P(X, 4, N, M0 |8, W, p—1,0-1,00,0,1M-1,7-1,70)

Therefore the posterior is computed as:

p(polT, B, M, M0, 8, U, f1—1,0-1,00,0,1M-1,%-1,%) =
p(®, w1, po, M, Mo0|8, W, f1—1,0-1,00,0,1-1,7-1,70)

~ p(x, pm,mols, w, pr,0-1,00,0,m-1,7-1,7%)

_ _ p(®@ p, po,m, 0|8, W, 1,01, 00,0511, 7-1,70) (48)
[ p(x, e, po,m,m0l8, w, p—1,0-1,00,0,7-1,7-1,%0)dpo
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When is substituted into , then it results in:

p(pole, p,1,M0, 8, U,y i—1,0-1,00,0,1-1,7-1,70) =
_ _ p(@[s, p,u,m, 0)p(plpo, 00)p(pol -1, 0-1)p(nlno, v0)p(noln-1,7-1)
S p(xls, p,u,m, 0)p(plpo, oo)p(polp—1,0-1)p(nlm0, Y0)p(10|n-1,v-1)dpo
_ __p(p|po, 00)p(polp—1,0-1) (49)
J oo, o0)p(po|p-1, 0-1)dpo
= p(po|p, p—1,0-1,00)
One can see that the result is exactly what we need for Gibbs sampling as described in . Now using (38))
and substituting (40) and (39) into (49)), results in:

p(polpt; fi—1,0-1,00) X p(pe|po, o0)p(polp—1,0-1)
S

o< N(polp—1,0-1) [ [ N(uslpo, o0) (50)

j=1

Recall that we already derived the posterior for the mean in Section Therefore, we already know that:

p(polpt, 1, 0-1,00) = N(polps, 0%)
So%, _ ol
T SoZ, +03u+ o2+ 502,
s 1

1
2 T 2 2
oy oh (ol

us

where @ = % 25:1 i; and S is the number of the modelled systems. Similar results can be obtained for 7:

p(10|m,1-1,7-1,%) = N(n0|nv, 7&)

5731 _ 73
nu = n+ -1
Sy +% %+ S
1_5. 1
% Y

where 7 = % 25:1 Nk and U is the number of the modelled users.

8.2.2 Posterior of the parameters
Now, we will compute the posterior for p. Using the joint distribution and the Bayes rule:

p($7u7,u/07n7770‘37u7:u*170'7170'070-7 7]717’7*1170) =
= p(”j|w7”*j7uo7n7 7o, 8, U, 4—1,0-1,00,0, 77717’7717’70)10(13,ij»n,n0|37%M71>07170070a 77*177*1”}/0)

Therefore the posterior is computed as:

(s, -3, o, 1,70, 8, U, 4—1,0-1,00,0,1-1,7Y—1,7%0) =
_ p(®, 1, po,m,70[8, W, pi—1,0-1,00,0,1-1,7-1,%)
~p(®, ey, M, 008, U, i1, 01,00, 0,71, 7-1,70)
_ p(®, 1, o, M, M08, W, fi—1,0-1,00,0,1-1,7-1,%) (51)
S p(®, pj, g5 po,m,m08, W, pi—1,0-1,00, 0,11, ¥-1,Y0)dp;
When is substituted into , then it results in:

p(usle, =i, 1o, My M0y 8, Uy fhe1, 0—1, 00,0, N—1,Y—1,70) =
__ pluolp1,0-) T, p(alio, 00) - pgoln-—1,7-1) Ty Cnklno, v0) - T, TT, Ty pwilpn, mi, o)k

[ p(aolp—1,0-1) T p(wlio, o0) - p(noln-1,7-1) TTi—y Pk lno, v0) - TILy TTisy TTizy p(il i, me, o) sinsv dps

= Hf:l p(‘ulmo’ UO) : Hiv:l Hf:1 HkUzl p(xi‘ﬂlﬂlka U)S”uik

T, pQulpo, 00) - TV, T2, TIE-, p@sl i, i, 0)irin dps;

__ P(silpo, 00) Hlszl,l;éj plpulio, 00) - 1L, TT—y plwilpys mw, o) Hf:l,l;éj p(@i|p, ni, o)t tik

- J'p(psluo, o0) HzS:u;ej p(ulpto, 00) - TIy Tz, p(@ilpg, ne, ) isix Hle’l# (@i, e, o) *iin dy

_ puslpo,00) - TTwy Tl pl@ilps, ne, o) ik (52)

J p(pilpo, 00) - T, Ty p(@ilg, e, o) dp
= p(ujlx, s, p—j, o, u, M, 0, 00)

46



Substituting and into results into:

p(“j‘m’S)H'—j7,u’07u77770'70'0) =
N U
p(wlto, 00) - P(fﬂz‘\lﬁjﬂ?kﬂ)
i=1k=
N U

N(pjluo,o0) - [T TT N (ilws + mw, o)
i=1k=1

Sij Uik

SijUik

1

1 1 )
CX(ng)l/?(%Xp{ 7 ~ Ho) } HH 2mz o)1z © { %2(%‘—#;‘—%)}
1 A |
_;('uj — ,UO)2} exp {—ZZ @(L —Hj nk)QSijuik}
1 A
_m(ﬂj—uo)z—zzﬁ(mi 1 = T) Szjuik}

N U
1 1 1
o expq —5 ((M? =20+ pd) + > Y 5 (@F 4 pd + 2k — 25w — 277k96i)5ij“ik> }

11 A )
X exp D) %(Mj—uo) +ZZ§($i_Mj_nk) SijUik

N U 1 N U 1 N U 1
+Y > 5 Sk + » 2 2H5 (M — @i)sijuin + > el G 2nkﬂﬁi)8ijuik> }

i=1 k=1 i=1 k=1 i=1 k=1

M\H

N U N U
1(1 1
OCGXP{ - 2((7(%#? 2 2#3M0+ E E /LJSUUUH- E E s 2#; l’i)%%‘k)}
i=1 k=17 i=1 k=1

Note that sz\; ZkU:1 #(mf + 77,3 — 2mp;) iU, and %u% are independent of u; and therefore a multiplying
0
constant. Next, we just reorder the expression.

N U
1 1 1
S| YYD 9) SR TVEEEVIED 3 SR USRI |

i=1 k= 1 i=1 k=1
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Completing the squares of the exponent in gives:

p(,uj\:n, S, H—j, Mo, U, n,0, UO) = N(Mjl/j’jN7U]2'N)

1 N U -1 N U
WiN = | —5 + 5 SijUik —5 o + E E ;(arz — Nk)SijUik
0 0 1 =
i=1 k=1 i=1 k=1
N U
Lo2iysd
—_ = — S Uik
2 2 2 2w
95N 90 i=1 k=1 g

Note that similar results can be obtained for 7.

8.2.3 Inference

As described, the Gibbs sampling algorithm proceeds by iterative sampling from posteriors of individual hidden
variables. Since we already derived posteriors for w, 19,1, 10 in Section and Section [8.2.2] we can use these
posteriors to obtain samples from the true posterior

p(N7H077I7770|33a s, u,ft—1,0-1,00,0, 77—1a7—17'70)-

After some burn-in period, e.g. M samples, we collect N samples of ., ug, 1,70 and use them to estimate
the parameters the approximating posterior

~ ~2 ~ ~2 ~ ~2 ~ ~2
p(,uﬂ/'L07177770|,u0N7O—ON7H/N70-N7770N770N717N77N) =
S S
= N(poliion; 5on) [ [ N(wslitsn, 53n) - Nnoliton, 3on) [ [ N (eliien, ¥in)
j=1 k=1

where the parameters can be computed as follows:
1 N
foN = N Z Hoi

N
- 1 -
Gon = o > (poi — fion)?

N

ﬂjN:%i_Zl,Uji vje{l,...,S}

2 1< N .

UjN:N;(,qu fijn) vjed{l,...,S}
L

ﬁON:N;nm

i=1

| X
ﬁkN:N;nki Vke{1,...,U}
o _ 1y o
%N—NZ(WM—%N) Vke{l,...,U}
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