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Abstract

This article briefly introduces Bayesian inference on a set of simple examples. The used techniques include
analytic solutions for the simplest cases, Markov Chain Monte Carlo (MCMC) techniques, represented by
Gibbs sampling, the Variational Inference and Expectation Propagation algorithms.
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1 Introduction

In this work, the Bayesian models will be described using graphical models. A graphical model represents
variables as nodes and dependencies between them as oriented edges. In the graphical representation in this
article, the observed variables are filled with light blue colour and the unobserved (hidden) variables are filled
with white colour. In addition, the fixed parameters of the priors are filled with the light red colour.

An important problem in graphical models is the process of finding the probability distributions of unobserved
(some times called latent or hidden) variables given the observed variables. This process is called inference. This
article introduces Bayesian inference on a set of simple examples. The used techniques include analytic solutions
for the simplest cases, Markov Chain Monte Carlo (MCMC) techniques, represented by Gibbs sampling, the
Variational Inference and Expectation Propagation algorithms.

2 The binomial distribution

TBD

3 The multinomial distribution

TBD

4 The normal distribution

Let us start with a simple problem of Bayesian inference for the normal distribution. We will study four
situations:

1. Inference of the mean while the variance is known
2. Inference of the variance while the mean is known
3. Inference of the mean and variance using conjugate prior
4. Inference of the mean and variance using non-conjugate prior
In all cases, we aim to compute the posterior distributions for the unknown variables, e.g. the mean and

variance.

4.1 Inference of the mean while the variance is known

Figure[I] depict a graphical model representing inference of a mean of an univariate normal distribution assuming
that the variance o2 is known. There is one observation = and we aim to compute the posterior distribution for
the hidden variable p given the observation and prior.
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Figure 1: The graphical model for prediction of the observation z given the mean p where the mean pu is
unknown.

To compute the posterior for pu, we must define the joint distribution for  and p given the manually set
prior parameters fig, 0 and then known variance o2 of the observations:

p(z, plo?, po,o5) = p(x|p, o*)p(plpo, o5), (1)



where

p(z|p,0®) = N(z|p,0?) (2)
p(plpo, 05) = N(ulpo, 03) (3)

Note that we use the normal distribution as a prior for the mean. The important property of this prior is that
it is conjugate to the normal distribution used to model the probability of the observation.
Further, we have to compute the posterior of the u. Using the Bayes rule, we get:

p(x,,u|o2,,uo,og) pu |x o »NOvU()) (:C|J 7:“070—()) (4)
Therefore, the posterior for the mean p is:
2 2 p($aﬂ|02a/i0708)
p\p|x, 0", o, 0 ) = 5
a V= palo 0. 3) ®)
p<xau|027M0708) (6)

B f# p(x’ /’l/|0-27 Hos Ug)dﬂ
Substituting into @, we get:

2 p(x|p, 0®)p(ulpo, o5)
plp|x, U y M0, O 7
Pl 2:96) = S ol o?)p(plpo, of)du @)

Since all factors in the dividend and divisor in contain u, the fraction cannot be further simplified. To
compute the posterior of p, lets substitute and into :

(l’|ﬂa 2) (M|/L0708) — N(,U|Mx 0-2) (8)

p(plz,0®, po, 05) =
O [ N (@l o?)N(plo, 03 )dpe

Given that the prior of p is a normal distribution and therefore conjugate with a normal distribution used for
modelling the observation x, the posterior is again a normal distribution which will be denoted as N (p|pz, 02).
However, to avoid the integration in the divisor, it is easier to compute only the dividend and then by completing
the squares compute the full posterior. Before continuing, lets us recall the definition of the normal distribution:

N(elieo®) = G o { ~gale = 07} )

Using this definition and substituting it into , we get:

p(/l|.’E, 0—27/1'070[2)) X N(m‘:U/vJQ)N(/”L‘:U/Oa Ug)
1 1 ) 1 1 )
X (27_[_0_2)1/2 exp{_%‘_g(l‘_l’[’) } (27_[_0_(2))1/2 exp{_%‘g(ﬂ_ﬂo) }
1 1 1 , 1 )
x (2702)172 (2102)1/2 exp{ @(m 1) Tg(ﬂ Ho) }

ocexp{

1
- (@® = 2zp+ p?) - (M2—2uuo+u3)}

20 202
1/1 9 9 1 5
O<e><p{ 2<U 5200+ —p” + 3u ;82uuo+;8uo
1 ) 1 1, 1,
xexpy Ty 0_2 B =2p 27 + —Ho| + P + UT%MO
1/1 n 1 2 4 1 1 n 1 n 1 1, n 1 5
X ex =+ = - T+ — —z° 4+ —
p 2 o2 Jg 14 /L?12 + % 2 U% Ko # i ?13 D) 0,8 Ho
1 2 g § 0 2 o’ 2
o exp { 2( 0(2)) (,u [024-02 o2 + 3“" 034—0296 024—03”0
1/1 9 o? o?
O‘e"p{ s (oot 0m) (20 g+ w g 1o
Note that 2'1% S 2 + = g 3 is independent of p and therefore a constant. Consequently, it can be omitted.
90
As described in , the posterlor p(plx, 02, o, o) has the form of N(ju|u,,o2) and it is proportionate to .
1/1 1 o o?
2 2 2 0
— 4+ — -2 11
p(,u|x,a a,anO-O) (/J“‘:uah ) ocexp{ 2 (O'2 + 0_8) <:u 1 |:O_O+0_2 + +U(%MO:|)} ( )



Completing the squares of the exponent in , a careful reader can notice that:

2 2
og o
o 12
. U§+02x+03+02ﬂo (12)
1 1 1
=4 13
o2 02+a(2) (13)

So far, we assumed that there is only one observation x. However, the introduced approach can be used
in a similar way even if there is z1,...,zy observations. Figure [2] depicts a graphical model which explicitly
expresses the multiple observations. One can imagine that if there are more observations then the graphical
representation can become cluttered, therefore multiple repeated nodes are expressed more compactly in a form
of one node in a plate labelled with a number indicating the number of times the node should be replicated.

Figure 2: The graphical model representing the joint distribution for the observations x1,...,zy and the mean
7

In case of multiple observations x1,...,zy, the joint distribution is defined as:

N
(@, plo®, po, 05) = p(ulio, o3) [ [ pwilu, o

i=1
N
N(ulpo, o8) [ N (i, 0 (14)
=1
where @ = {x1,...,2y}. Using similar technique as in , one can derive that posterior of the mean p is:
plplz, 0, po,08) = N(ulpn, o3) (15)
NO'(Q) o?
HN = Noi +o? ML+ NoZ + o2 Ho
N 1
Z 2t

N
where pp g = % Y oieq T
Sometimes, it is convenient to use the precision instead of the variance since it can significantly simplify the
calculations and the result. Since the precision is defined as

1
the results using the precision is
p(ulz, A, 1o, Ao) = N (ulpw, AR (17
_ NApmr + Aoko
HN NA+ o
AN =NA+ XA

4.2 Inference of the variance while the mean is known

Figure [3| depict a graphical model representing inference of a variance of an univariate normal distribution
assuming that the variance o2 is known. This is the opposite situation when compared to the case presented



Figure 3: The graphical model for prediction of the observations 1, ...,z N given the mean p where the variance
o? is unknown.

in the previous section. There are N observations x1,...,xy and we aim to compute the posterior distribution
for the hidden variable o2 given the observations and prior.

To get an analytical solution, we require the prior for the o parameter to be conjugate with the normal
distribution. The calculations will be greatly simplified if we work with precision A instead of the variance o2.
The graphical model using precision is at Figure |4 Substltutlon 1 6 into @ the normal distribution using

Figure 4: The graphical model for prediction of the observations x1, ..., xy given the mean p where the precision
A is unknown.

the precision is as follows:

1/2
Nleluo®) = Nl A ™) = g e { -5 - w? s en{ @ -w} (9

The conjugate prior for the precision A is the gamma distribution defined by:
1
Gam(Aa,b) = mb“)\“_l exp{—bA} oc A% Lexp{—bA}. (19)
a

The joint distribution represented by the graphical model at Figure [d is given by:

N
p(@, A, ag, bo) = p(Mao, bo) [ [ p(wilp, A1)
=1

N
= Gam(Mag, by) H N (2], A1)
i=1



where @ = {x1,...,2n5}. The posterior of the precision A is therefore derived as follows:

Gam(Mag, b N N(zilp, A1
p(Al@, 11, a0,bo) = (ag O)HS\?l (il 1)
[y, Gam(Xag, bo) [T;=y N (2ilp, A=1)dA
N

o Gam(Mag, bo) H N (2], A1)
i=1

N
1 A
o b\~ exp{—ho A A2 ex {— T — 2}
F(a()) 0 p{ 0 }};[1 p 2( :u)
P
o AL exp{—bg A}AN/% exp {2 Zl(srZ - u)z}

N
A
+N/2-1 A 2
ox A% exp{ boA 5 E (z; — 1) }

i=1

| X
bo + 5 Z(Jﬁz - .U)Q] )\}

i=1

oc MaotN/21-1 {_

Since the normal and gamma distributions are conjugate, the posterior for the precision A has the form of the
gamma distribution and its parameters can be computed as follows:

p(Alx, g, ag, bo) = Gam(Alan, by ) (20)
AN = a0t o
N
1 N
by =bo+ =Y (wi—p)?=b
N 0+2i:1($ 1) 0+2)\ML,

where Ay, = N/ Eijil(xi — )2,

4.3 Inference of the mean and variance using a conjugate prior

Figure [5| depicts a graphical model representing inference of a mean and precision of an univariate normal
distribution. In this section, we will consider a conjugate prior for the mean and precision.

Figure 5: The graphical model for prediction of the observations z1, ...,z N given the mean p and the precision
A. Where both the mean and variance is unknown.

Again, we will use the precision instead of the variance since it will greatly simplify the derivation of the
solution. A conjugate prior for the mean p and the precision A is the normal-gamma distribution defined as:

(ks Alo, o, a0, bo) = N (plpo, (BoA) ™) Gam(N|ag, bo).
Therefore, the joint distribution represented by the graphical model is:

N
p(ma ,y >‘|,u07 [303 ag, bO) = p(:“’? )‘|,u’07 ﬂOa ao, bO) Hp(ml‘,uﬁ >‘71)
=1
N
= N(plpo, (BoA) ™) Gam(Mao, bo) [ [ N (il A1)
i=1



where @ = {z1,...,2zx}. And the posterior can be computed as follows:

N (o, (BoA) ™) Gam(Nao, bo) Ty N (i, A1)

L N(lo, (BoA) =) Gam(Aao, bo) TTZy N (@i, A1) dp
N
N(plpo, (BoN) ™) Gam(Mao, bo) [T NV (il A1)

=1

p(p, M|, o, Bo, ag, bo) =

1/2
((ﬁo>\))1/2 exp {—50)\(/1 - Mo)z} a )b”"/\a0 Lexp{—boA} H A2 exp { ;\( i — M)z}

i=1

2
oc AL/ p\lao+N/21=1 oy {_ﬂ;)‘
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A
(u— HO)Q} exp{—boA} exp {—2 Z(xl — M)Q}
i=1
BoX Pl
1/2y[ao+N/2]-1 _PoA _ _ A )2
oc A2 exp § ==~ (1 = p0)* = oA — gl(:c ) }
BoA A
o \1/2)\[ao+N/2]-1 exp L(M — 20 + ’uo) —boA— = Z(‘T? — 2w+ MQ)}
i=1
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>
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N
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N)A
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2
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oc)\l/zexp{— (50‘;N)/\<'u_

(Bo +N)~* (@m + Zx> D }

N 2 N
Nl A _
Ao+ /2] 16XP{—2<—(50+N) 1(50#04-2%) +5OM3+250+Z$U?>}
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1 _
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Since we used a conjugate prior, the posterior has the same form as the prior and its parameters can be
identified from the equation above as follows:

P, A, Bnsan, b)) = N(plpn, (BnN) " HGam(Nay, by)

N
pn = (Bo+N)~! (50#0 JrZIl)

i=1

By =po+ N
N
(lN:ao—‘y-?

N 2 N
bNbO+;<(,BO+N)_1 <50H0+in> +50H8+Z$?>
i=1

=1

4.4 Inference of the mean and variance using a non-conjugate prior

In the previous section, we considered a conjugate prior for the mean and precision. After a complex manipula-
tion with the posterior, we derived a closed form solution. However, we cannot always design a conjugate prior
or compute the posterior in a closed form. In this section, we will try to compute the posterior distribution
for the normal distribution when the prior is not conjugate. Figure [6] depict a graphical model representing
inference of the mean and precision of an univariate normal distribution using non-conjugate prior.

o ° o 8

Figure 6: The graphical model for prediction of the observation = given the mean p and the precision A. Where
both the mean and precision are unknown and the prior is not conjugate.

The prior distribution for the hidden parameters according to the graphical model is defined as follows:

P, Alpto, Aoy ao, bo) = N (plpo, Ag 1) Gam(Aag, bo)- (21)
Consequently, the joint distribution is:

N
p(ma Hs )‘|,u’07 >‘07 ag, bO) = p(pﬂ )‘|N07 )‘Oa ag, bO) Hp(:rz|.ua )‘71)
1=1
N
= N(plno, Ao ") Gam(Mao, bo) [ [ N (i, A1)
i=1



where @ = {x1,...,2n5}. The posterior is then defined as:

N
P, Al 10, Mo, a0, bo) o< N(plpo, Ag ") Gam(Alao, bo) H N (@i, A7) (22)

=1

However, the posterior does not have a form of the prior defined in . The unavailability of a simple
analytical solution to the posterior greatly complicates inference in such models and therefore approximation
techniques must be used.

There are several techniques dealing with inference in intractable models. The most popular are based
on Markov Chain Monte Carlo (MCMC) method, e.g. Gibbs sampling, Variational Inference, or Expectation
Propagation. In the next three sections, we will demonstrate all the mentioned techniques.

4.4.1 Gibbs sampling

Instead of direct computation of the posterior, MCMC techniques sample from the posterior distribution and
then they use the samples to represent the posterior. In this section, we will introduce a specific case of a
MCMC technique called Gibbs sampling. Since direct sampling from the posterior is usually intractable, Gibbs
sampling draws from a posterior for each hidden variable given the rest of the observed and hidden variables.

In our case, we want to draw samples from the posterior distribution p(u, A|&, to, Ao, ag, bg). Therefore, we
will iteratively sample from the posterior p(u|A, x, po, Ao, ag, bo) and p(A|u, &, o, Ao, o, bo), where the initial
values for 4 and A are set manually. After some burn-in period, e.g. M samples, the samples will be distributed
according to the posterior p(u, A| . ..). These generated samples can be then used on its own, e.g. for visualisation
or the estimation of the parameters iy, AN, dn, by of the approximate posterior defined in the form of the prior
1)

Note that given the conditional independence defined by the graphical model, the posteriors have the fol-
lowing form:

p(u|)\,w, 1o, A07a07 bO) = p(u\a}, )‘7MO7 )\0)
p()\‘,u,a:; Ho, )‘Ova()v bO) = p(>\|wa K, G, bO)

Recall that we derived the posterior for the mean in Section [f.1] and that the posterior for the precision was
derived in Section [£.2] Therefore, we already know that:

p(ple, X, po, M) = N(plpn, A"
_ Nuarr + dopo

NX+ X
Av = NA+ Ao

KN

where pyr = % Zf\il x; and 02 = 1/\.

Now we have to iteratively sample p(u|x, A, po, Ao) and p(A|x, i, ag, by) to obtain the samples from the
posterior p(u, A|...). Note that although the posteriors for p and A are independent, they exhibit a coupling
since the posterior p(u|...) depends on the precision A and the other way around.

Assume that we have obtained N samples of the mean, e.g. p1,. .., iy, and precision, e.g. A1,..., An, using
Gibbs sampling described above. Then, the parameters fin, Ay, an, by of the approximate posterior

(s Afin, An s @n, bv) = N(pliin, Ayt Gam(Aaw , by)

can be computed as follows:

1 N
pN = NZM
=1

~ 1 &
Ay = N Z(Hi — fin)?

an = no closed form solution
~ aN

v = TN
% D imi i

In the case of ay, a numerical maximisation of likelihood has to be performed since there is no closed form
solution.



4.4.2 Variational Inference

In the previous section, the Gibbs sampling was used to obtain samples from the posterior of the unknown
variables. Although the use of Gibbs sampling and MCMC methods is straight forward and one can get
samples from the true posterior, these methods are very computationally expensive. One of the main reason is
that many samples must be excluded to obtain representative samples of the posterior.

An interesting alternative to the MCMC methods, is Variational Inference (sometimes called Mean field
variational inference or variational approximation inference). Instead of sampling from the posteriors, one can
compute approximations of the true posteriors. In general, the task in Variational Inference is to approximate
the joint distribution over all unobserved variables with a product of marginals, that is to find a

q(z;0) = HQi(Zi§9i) (23)

such as q(z;0) = p(z), where p(z) is the true joint distribution. The objective in Variational Inference is to
minimise Kullback-Leibler divergence K L(q||p), where the KL divergence is defined as

KL(q|lp) = Zz:q(z)logzztg or = /zq(z) log Zz;dz
— —Zz:q(z) logzgi or = _/zq(z)log Z)Ezidz'

One possibility is how minimise the KL divergence is to use gradient descend. However, more common approach
is coordinate descend on individual ¢(z;;0;).

In our case, the goal is to approximate the posterior with the with a product of marginals in the form
of the prior as defined in (21]). Therefore, the approximating distribution is defined as follows:

Q(H’v )‘|/’6N7 >\N7 an, bN) = N(/”"MNa )‘]:II)Gam()‘|aN7 bN)7 (24)

where z; = i and z = A, and the factors ¢; are

a1 (z1lpn, An) = @ (plin, An) = N(plpn, AYY)
g2(22lan,bn) = g2(Aan, by) = Gam(Nan, by )
The true distribution is defines as follows:

N
p(lu’v A|m7 Ho, )\Oa g, bo) 08 N(,LL|/.,L07 Ao_l)Gam()\|a07 bO) H N(Zz|lu7 )\71)' (25)

i=1

One can notice that we know the joint posterior distribution only up to the normalisation constant.
However, this is not a significant problem since the minimum of the KL divergence does not depend on the
normalisation constant. Therefore, the KL divergence can be computed as:

N (plpn, Ayt Gam(Nan, by)
1/Z¢7M0;)\07a0,b0 ’ N(M|N0, )‘(;I)Gam(/\lao’ bo) Hf\il N(xi|u’ )‘_1>

where the Zg 15, 00,a0,b0 15 the unknown normalisation constant of the true posterior.

KL(qllp) = / N (s A5 Gam(Aa, by) log dud,
TN

10



This can be further expanded as

KLGllp) = [ Nlalew 23 )Gam N, ba) (10 Nl A31) +10g Gam(Aax, by)
A

N
— log N (p1| o, )‘al) — log Gam(Alao, bo) — Z log N (i, Ail) + log Zm,uo,)\(),(loybo)dﬂd/\

=1

— [ Nl AR Gam(Nax, b) g Nulux . A5 i
1,
N(ulpn, Ay ) Gam(Nan, by ) log Gam(May, b )dudA

N(pulpn, Ay ) Gam(Aay, by) log N (u]po, Ag ") dpdA

N
N (ulpn, Ay )Gam(Nan, by) Y log N (], A1) dpd
A i=1

A
/
/
7/ N(plpn, Ay )Gam(Man, b ) log Gam(Xag, bo)dpdA
I
/
| Nl AR Gam(Aay, b ) 108 Zo v i
I

Now, some of the factors can be integrated out:
L) = | N X5 1og N, 5
/Gam Man,bn)log Gam(May, by)dA
/N plpn, Ay log N (pl o, Ag ) dp

— / Gam(Aan,by) log Gam(Aag, bo)dA
A

N
= [ Nl A5 Gam (Mo by) Y log N A
HyA

i=1

+ log Zm,#o’)\o,ao,bo

In our case, the minimisation of K L(g||p) is performed with respect to the pn, Ayan, by parameters of the
approximating distribution 24 The simplest solution is to compute partial derivatives of the KL divergence
with respect to these parameters, and then perform gradient descend.

Let first derive the partial derivative for py:

OKL(qllp)
oun

= S /Nu\uzv, ") log N (ulpn, AN )du

N Ylog N Ao Hdu
@LN/ (1l , Ay") log N (plpo, Ag )

N

(,MN/ N (plun, Ay Gam(Nan,by) > log N (|, A" )dpd (26)
i=1

Before continuing, lets us recall the definition of the normal and the gamma distributions:

1/2
e e (27)
Gam(\a,b) = ﬁbfw—l exp{—bA}. (28)

11



Now substitute (27) and (28] into
oKLl o / e A
= AN _ 1 AN Ay -
Oun oun J, (2m)1/2 €Xp D) (1 —pn)~ ¢ log 2m)1/? exp 5 (u— pn) du
0 /\}\[/2 v ) /\(1)/2 o i
_M/H(%T)I/Qexp —7(N_NN) log WGXP _7(/‘_#0) du

0 A2 AN 1
 dun / (27?)71/2 P {Q(M - MN)Q} F(aN)b AT exp{ A}
N

los e p{—;(wi—u)Q}dudA

=1

However, this is typically difficult to solve this way. Therefore, another approach building on functional analysis,
where one tries to compute derivatives with respect to functions instead of parameters, is be easier to grasp:

9K L(q||p) /
e = N (plpn, Ay') log N (plpn, Ay )dp
8N(:“|MN’)‘N1) N'MN’
/NMIMN, )1og N (il o, Ag ) dpe
ul/uv,
9 N
- N(ulpn, Ay )Gam(Nan, by) Y log N (), A1) dpd\
aN(NWNa)‘Nl) JTP v Z

i=1

= (log N (ptlpen, Ay") + 1) — log N (| po, Mg ) /Gam Man,bn) ZlogN x|, A1) dA

i=1
Setting the derivative equal to zero, one can compute the approximation:

0 = (o N (sv. A1)+ 1) = log Nslio: Ag*) = [ Gam(Aax. ) 3 log N e A1) A

=1

log N (pt|pn, \y*) = log N (]po, Ag ) /Gam (Man,bn) ZlogN x|, A1) dA — 1
i=1

N (s Ay >o<exp{1ogN<uuo, / Gam(Nax, by) Zlogsz )dA}

1=1

N(plpn, Ay') o exp {/ Gam(A|an,by)log (N(Mﬂoa)\(?l) HN(%W,)\I)) dA} (29)

=1
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Using the results , can be written as:

N(aln AR o exp{ / Gam(MaN,bN)logN<u|uX7A;9>dA}
A

NAparr + Aotto
NA+ Ao
Ax = NA+ Ao

N(plpn, Ay") o< exp { EGamjax bn) 108 N (1t px, Ax) }

px =

(NA+ o) <u  Nouarr + AOMO)T }

(/J‘,U/Nv ) CXeXp{EGam(MaN,bN) 710g(N)\+>\0) - D) N>\+>\O

EGam(MaN,bN)

[ (VA + o) N A
Nl Ay )o<exp + (VA + o) ( Uy + 0N0> ]}

NA+ X
Nyl ) xexpd B (VA + (NA+ o) NAMML +Xotto [ NAparrn + dopo )
M :U‘Na p Gam(Xan,bn) NX+ )\O NX+ )\0
N)\+)\0 2 N)\-i-)\()) Nz + Aofo
E 2
(u‘ﬂNv ) X exp Gam(Xlan,bn) I 2 Y 9 2 NA+ o
[ (NXA+ )
N(plpn, Ay < exp § Egam(xjan bx) *%#2 + (N Az + )\ouo)ﬂ} }

ARYPRIPUN

N(plpn, AN") o< exD 2 Ecam(zan by) B RL iy NApparpp + /\ouoﬂ] }

Ao N
N(plun, Ay') o exp  — 2212 + Aoptott + Egam(zax by) K +N>\MMLM]}

/—/H/—/H/—/H/—/H/—/H/—/H/—M/—/‘\/—"«

2
)\ . EGam Aan,b [)‘]

N(plpun, AN') o exp 7# + Xopopt — (2| YO LN 4+ N - Ecam(an on)AHarLi
)\ N . EGam Alan,b [)‘]

N(plpn, Ay') o exp é)/f - (2 o D12 4 Mgt + N - Egamdan o) Ao
(V- Egamjay bx) [Al + Ao)

N(plpen, Ay ) X exp am( |a2N v) 1+ (N - Ecam(Alan ba) [(AlarL 4 Aopo)

Completing the squares, one can derive the following parameters of the approximating normal distribution
N(:u'|/~LNv )‘;[1):
N - EGam(Aay o) [N parL + Aopo
N - EGam(Aay bx) (Al + Ao
AN = N - EGam(xlan o) A + Ao

1N =

This can be further simplified using the mean for the gamma distribution (Eggm(aje.p)[A] = a/b) as

N(ulpn, Ay') = N(ulpn, Ay an, by) (30)
iy = N - (an/bn)parr + Nofto
N - (aN/bN) +>\0

AN =N - (an/bn) + Xo

Similarly, one can derive the approximation for the posterior probability for .

OKL(qllp) B /
0Gam(May,by)  0Gam(Man,by) )\Gam(MaN,bN) log Gam(May, by )d\
0
B 1
5Gam()\\aN,bN)/AGam(/\‘aN’bN) og Gam(A|ag, bo)dA
0 N

/ N(ulpn, Ay )Gam(Man, b) Z log N (x|, A1) dpd\
JN

~ 0Gam(Nan,by) p

N
= (log Gam(Aan,by) + 1) — log Gam(A|ag, bo) — / N(plpn, Ay ZlogN(mi\u,Afl)d/\
A i=1

13



Setting the derivative equal to zero, one can compute the approximation:
N
0 = (log Gam(Aay, by) + 1) — log Gam(\ag, bo) — / N(plun, AN D log N (i, A )dA
A -

N
log Gam(\an,by) = log Gam(\|ag, by) + / N(plpn, Ay) ZlogN(xi\,u,)\*l)d)\ -1
A

i=1

N
Gam(Alan,bn) o exp {10gGam(>\|ao7bo)+/N(,u|uN,)\N1)ZIOgN($i|M, A—l)dk}
A i=1

N
Gam(Aan,bn) x exp {/ N(plpn, Ay )log (Gam Aao, bo) H (24|, A ) d)\}
(31)
Using the results , can be written as:

Gam(Aan,by) x exp {/ N(ulun, \y') log Gam()\|ax,bx)d)\}
A

aX:ao+5

N 1 &
(ao + 5~ 1) log A — boA — 52(% —,u)z)\

i=1

log A = boA ZENWN, A (s “)2}}
_I_

A
log A — boA — 5 Z (:1:22 — 21:73EN(#|#N,>\7V1) [u] + EN(#I#N,A;) [MZ])}

A
Gam(Aan,by) x exp log A — boA — 0 Z (27 — 2z + piy + )\Nl)}

Gam(Man,bn) o< exp

(05 1)
(05 1)
CEE SN iENWM)[ -zt
(05 1)
(05 1)
(05 1)

N -1
1 , N
log A — <bo+ 3 E (xi —pN)” + 2) )\}

N -1
ao+5 -1 1 Z ) 2 Ny
10g>\( 0T )* <60+2 (II?Z*MN) +2> )\}

14



Now, one can derive parameters for the approximating gamma distribution Gam(A|an,by):
Gam(Nan,by) = Gam(Man, by v, Ay') (32)

aN:aOJr?

N -1
1 N

by = b z P — 24 27N
N 0+2 gl(fc pN)” + 5

One can see that the formulae and depend on each other, therefore the process of Variational
Inference is based on iterative computation of the posterior approximations and , where the initial
values are guessed.

In the text above, the Variational Inference algorithm was derived for estimating posteriors of parameters
of a normal distribution with non-conjugate prior. However, this approach can be rather tedious if it has
to be done the same way for every new model. Therefore, it is convenient to derive some general results.
The aim of Variational Inference is to minimise the KL divergence between the approximating distribution
q(z;0) =11, ¢i(2; 0;) and the true distribution p(z). This can be done by manipulating the K L(q|p) divergence
and throwing away all terms that do not depend on ¢;(z;; 6;):

z
KLall) = [ alz)log 555z
Hk Qk(zk;ak)
_ (2.0 0.) log 21k Ak\k) Tk)
/qu](zJ,Gj) og 0z dz

J

/ Hq] 23 0; (Zloqu 25 O > dzf/Hq] zj;0;) log p(z)dz
=S / [T o5tz 65) tosan(eas )iz — [ []as(a5:05) lowmlz)iz

w2 27
:/qu(zj;ﬁj)logqi(zi;ﬁi)dz—/qu(zj;ﬁj)logp(z)dz+01

27 27
:/qi(zj,ﬁ log gi(2;; 60 qu 230, z—/qu(zj;ﬁj)logp(z)dz+01

p 27

J#i

:/ Qi(zjve )IOg(h Zz; 4 / H(h 2]7 /qu Z]v logp( )dz+cl

\#i i

:/ Qi(zi§9i)10qu’(Zi§9i)dzi_/HQj(Zj;oj)logp(z)dz"‘Cl
Z4 z ]

Z/ Qi(Zi;ei)logQi(Zi;@)dzi—/ Qi(zi§9i)/ an (zj:6;)log p(z)dz + Cy
Z; Zq z\zl

J#i

=/ Qi(zi§9i)10gQi(Zi§9i)d3i_/ qi(zi;6;) log | exp / [T a5z 05) logp(z)dz\z p | dzi + C

i \zi EL
- / g (2i:0:) log 4i(zi:6:) dz + C,
2 exp {fz\Zi [T, 45 (2:65) logp(z)dz\zi}

=KL | ¢;l|exp / qu zj;0;) log p(z)dz\z; +C
Z\% Gt

= K L(gi||exp Eg\q, [log p(2)]) + C1
where 2\2; = [20, ..., zi—1, 2i41,.]s 0\ = @(2)/qi(2i;0:) = 1, 4;(2j:0;) and C1 = 37, L1 05(255.05) log qi. (25 Ok )dz.
Since the KL divergence is minimised when the two arguments are the equal, the optimal approximation for
QZ(Z“ 91) IS
qi(2i3 6;) o< exp Eg\ g, [log p(z)] (33)
Now going back to our example, and can be computed from when all necessary terms are
substituted and simplified.
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Theoretical properties of the Variational inference are very favourable. Although it is an approximation,
it is guaranteed to converge to a local optimum. Let assume that x are observed data and z are unknown
variables/parameters. Our probabilistic model specifies joint distribution p(x,z) and our goal is to find an
approximation to p(z|x). Then, the log marginal probability of the data can be decomposed as follows:

log p(z) = L(q) + K L(ql|p),

where we have defined

L@ = [ atz)10g 222 i

q(2)
KL(q|lp) = —/Q(Z)log pfig)dz

Because the KL divergence satisfies K L(g||p) > 0, one can see that the quantity L(g) is a lower bound on the log
likelihood function log p(x). The goal of Variational inference is the variational lower bound L(q) with respect
to the approximate ¢(z) distribution, or to minimise the K L(q||p) divergence.

Alternative derivation of the lower bound L(q) is based on the Jensen’s inequality:

=lo x,z)dz = lo Zp(:c,z)z
logp(x) =1 g/zp( ,2)d lg/z(J( ) 2 d
p(x, 2)
Z/Zq(Z)log ) dz
> L(q)

The presented version of the Variational inference is sometimes called “global” since it tries to optimise the
full joint probability. Since even this can be found intractable, one can derive a local version of the Variational
inference, where only individual factors are independently optimised using the Variational inference.

4.4.3 Expectation Propagation
TBD

5 Hierarchical Bayesian model for the real observations

In this section, we will model the observations using hierarchical Bayesian model. The observations are still
real; however, we observe additional information about the observations. The situation can by described by
the model depicted on Figure [7] In this case, we model real valued observations z which depend on s and
u. This can be a model of a fundamental frequency (an inverse of a pitch period) of speech of the user u
when communicating with the system s. It is known that the fundamental frequency is defined by the physical
properties of the user’s vocal tract. However, users tends to adapt the frequency based on the partner they are
communication with.

The model is equivalent to predicting x given s and u using the probability distribution p(z|s,u). We can
assume that the observations x are generated from a normal distribution where the mean of the distribution
depends on both the system and user. If we had enough data, then we could estimate a specific mean for each
combination of the system and user. We would need S x U parameters, where S represents the number of
systems and U represents the number of users, to specify the distribution p(z|s,u) = N(z|us ., o). However,
we aim to develop a more compact probabilistic model.

Instead, we will try to make use of the knowledge that there is similarity between the observations for the
same systems as well as that there is similarity between the observations for the same users. More precisely, we
will assume that the probability distribution of the observations can be described by the distribution N (x|us +
Nu, o). In this case, we will need only S + U parameters. In addition, we will add unknown priors for ps and 7
which will be inferred from the data. These priors will enable sharing information about the means among the
systems and the means among the users, e.g. the prior for one user will be affected by observations from other
users. Such model is depicted on Figure

The model depicted on Figure [§] assumes the following generative process:

L po ~ N(-[p—1,0-1)
2. mo ~ N([n-1,7-1)
3. ps ~ N(-|po,00)
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Figure 7: The probabilistic model for the prediction of the observation x given s and w.

OO OO

@ ol eld

L \N

Figure 8: Graphical model factoring the system and user parameters represented by a hierarchical Bayesian
model. The model is modelling only the mean and the variance is assumed to be known.

4. mu ~ N(:[n0,70)
5. ¢ ~ N(|us + 1, 0)

where the parameters p_1, 0_1, 09, 0, N—1, Y—1, and 7o are priors set manually and s, u, and x are the
observations.

Given the parameters p_1, 0_1, 09, 0, 7—1, 7—1, Yo and the observations s and wu, the joint distribution of
the observations x, the system mean values p, the prior of the system mean values pg, the user mean values 7,
the prior of the user mean values 7 is given by:

p(wwu’?,u(%na770‘8711’?“—1)0'—1’0-07("7 77—177—1770) =

N
= p(p|po, o0)p(polp—1,0-1)p(Mln0, v0)P(Noln-1,7-1) Hp(fﬁilsi, K, u;M,0) (34)
i=1

Note that the system s (more precisely s;) and the user u (u;) are represented by a unit-basis vectors that have
a single component equal to one and all other components equal to zero. For example, the jth system in ith
sample is represented by S-vector s such that s;; = 1 and s;; = 0 for k # j for all 4.
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This can be further factored according to the components of the vectors p and n:

p(ma M, Ko, nan0|35 u,p—-1,0-1,00,0, 77—177—1/70) =
S

U N S U
= p(polp—1,0-1) [T (5110, 00) - plnoln-1,7-1) H pOmno.vo) - [T TT TT pilmsme, o) (35)
j=1 k=1 i=1j=1 k=1

Note that now the system and user are represented by indexes j and k respectively. Given the generative model
and the assumptions on the normal distribution of the observations, the probability distributions are represented
as follows:

p(polp—1,0-1) = N(polp—1,0-1) (36)
p(jlpo, a0) = N (110, 00) (37)
p(moln-1,7-1) = N(no|n-1,7-1) (38)
P(k(m0;7v0) = N (1|10, 70) (39)
p(@ilpg, e, 0) = N3l p; + e, 0) (40)

5.1 Gibbs sampling

In this section, we will describe inference using Gibbs sampling in the model described above. The Gibbs
sampling was already detailed in Section [£:4.] In summary, the samples from the joint posterior for all
hidden variables p(, po,m, n0l, S, w, i—1,0-1,00,0,1m-1,7—1,%) can be obtained by iterative sampling from
posteriors for individual hidden variables. This turns out to be very often simpler than sampling from the full
joint distribution.

To apply Gibbs sampling method, posterior distributions for each hidden variable u, pg,n,n79 must be de-
rived. More precisely, we must derive the following posteriors:

N
—

p(polpt, pp—1,0-1,00)

p(pjle, s, p_j, po,u,m,0,00) Vje{l,...,S}
(m
(

W
[\)

p(10]m,m-1,7-1,7%)
p(nkle, s,y w, Mg, Mm0,0,%) Vke{l,...,U}

N N N N
=
=~ W
S N N N

where p_; is the vector p without u; and n_; is the vector n without ;.

Note that in situation where all latent variables are know except for the latent variable for which we want
to compute the posterior, the posterior depend only on the parents, children and parents of the children (aka
Markov blanket).

5.1.1 Posterior of the hyper-parameters
The easiest way to start is to compute posterior of . Using the joint distribution and the Bayes rule:
p(a:a M, o, 7, ?’]0|$, U, f—1,0-1,00,0,7N—-1,7Y-1, ’YO) =
= p(M0|$, M, 1n,70,8, U, 1—1,0-1,00,0,7—-1, 7717’70)1)(1:7 M, 7, 770‘87 u,—-1,0-1,00,0,71N-1,7-1, 70)
Therefore the posterior is computed as:
p(MO‘xa K, 7,70, S, Uy, 4—1,0-1,00,0,7N—1,7—1; 70) =
p(ma M, o, 77, 770|Sa U, —1,0-1,00,0,7-1,7-1, FYO)

N p(wal‘l'7n7770|suuaﬂfh0'7170—070777717’771770)
p(wv M, Ko, 777770|3a u,f—-1,0-1,00,0, 77*1»’771770)

= 45
fp(wvH»N0777>770|37U,/~L—1,0—1a0070777—17771,’70)05/10 ( )
When is substituted into , then it results in:
p(/l0|$> K, 7, 70,8, U, 4—1,0-1,00,0,1—-1,7—1, ’YO) =
_ p(x|s, p, u,m, 0)p(p| 1o, o0)p(pol -1, o—1)p(M|M0, ¥0)2(M0|N=1, 7-1)
S p(|s, g, u,m, 0)p(plpo, 00)p(tol -1, a—1)p(n1M05 ¥0) 2 (10111, ¥—1)dpto
p(plpo, o0)p(polp—1,0-1) (46)

~ [ p(eluo, o0)p(polp—1,0—1)dpo
:P(MO\MM—hU—hUO)
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One can see that the result is exactly what we need for Gibbs sampling as described in . Now using (35
and substituting and into , results in:

p(po|p, pi—1,0-1,00) o< p(pe|po, o0)p(polp—1,0-1)
s

OCN(M0|M—17U—1)HN(Mj|M07Uo) (47)
j=1

Recall that we already derived the posterior for the mean in Section Therefore, we already know that:

p(tolpes p1,0-1,00) = N(Mo\#sﬂ%)

- 50'2_1 i+ (2)
fs 5021+08M og+ 8 21,u !
1 S 1

where i = % Zle i; and S is the number of the modelled systems. Similar results can be obtained for 7:

p(no|m, n-1,7-1,%) = N(770|77U7’712])

nu = GA n L n-1
Y2048 W+ 92
1 s 1

:——'—7
R

where 7] = % Zgzl N, and U is the number of the modelled users.

5.1.2 Posterior of the parameters

Now, we will compute the posterior for p. Using the joint distribution and the Bayes rule:

p(wvll'a Ko, M, 770"57“; H-1,0-1,00,0, 77717771)70) =
= p(”j|m7 H—j, ko, 7, 0,8, U, l—1,0-1,00,0, 77—177—1a70)p(ma H—j,17, 770|S7ua H-1,0-1,00,0, 77—17/7—1370)

Therefore the posterior is computed as:

p(pjle, gy f10, M, M0, 8, U, fi—1,0-1,00,0,1-1,7-1,%0) =

_ p(x, @, po; M, Mol S, U, fi—1,0-1,00,0,1-1,7-1,%)

B p(xv H—j, 71a770|5, u,p—-1,0-1,00,0, 77—177—1’70)

_ P, s o, M, M0| S, W, f1-1,0-1,00,0,7-1,7-1,%0) (48)
I o, g, 11, o, m,1m0l8, %, i1, 01, 00, 0,m-1,7-1,70)dps;

When is substituted into , then it results in:

p(uile, p—j, 1o, M, M0, 8,8, f1-1,0-1,00,0,10-1,7-1,%) =
_ ppolpv,o-1) Ty p(ulio; 00) - Ponoln—1,v-1) Ty P(milnos v0) - TTiey Ty TTemy p(ilpir, miey @)%
- S p(polp—1,0-1) HzS:1 p(tulpo, o0) - p(noln-1,v-1) ngl P(Mk[M0: 0) - Hij\; Hf:1 ngl (s |y, M, o) St i dpu
_ IIL p(uilpo, 00) - Ty TIy Ty p(@ilius g, o)
TS pudlio, 00) - TI T Ty Pl e, o) dp
— p(yl0,00) T gy P(ali0, 00) - Tty Tmy Pl mes )75 T sy ol g, mis o)
I psli0,00) Ty sy (o, 00) - TLy Tl Pl i )25 TLy oy 9wl g, 1, ) Ssttsk
__ p(plpo, 00) - 1L, [Ty pwil g, me, )% (49)
I 2510, 00) - TLLy Tlemy P(@ilg, mi, 0) %k dp
= p(ujle, s, p—j, po, u, M, 7, 00)
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Substituting and into results into:

p(“j‘m’S)H'—j7,u’07u77770'70'0) =
N U
p(wlto, 00) - P(fﬂz‘\lﬁjﬂ?kﬂ)
i=1k=
N U

N(pjluo,o0) - [T TT N (ilws + mw, o)
i=1k=1

Sij Uik

SijUik

1

1 1 )
CX(ng)l/?(%Xp{ 7 ~ Ho) } HH 2mz o)1z © { %2(%‘—#;‘—%)}
1 A |
_;('uj — ,UO)2} exp {—ZZ @(L —Hj nk)QSijuik}
1 A
_m(ﬂj—uo)z—zzﬁ(mi 1 = T) Szjuik}

N U
1 1 1
o expq —5 ((M? =20+ pd) + > Y 5 (@F 4 pd + 2k — 25w — 277k96i)5ij“ik> }

11 A )
X exp D) %(Mj—uo) +ZZ§($i_Mj_nk) SijUik

N U 1 N U 1 N U 1
+Y > 5 Sk + » 2 2H5 (M — @i)sijuin + > el G 2nkﬂﬁi)8ijuik> }

i=1 k=1 i=1 k=1 i=1 k=1

M\H

N U N U
1(1 1
OCGXP{ - 2((7(%#? 2 2#3M0+ E E /LJSUUUH- E E s 2#; l’i)%%‘k)}
i=1 k=17 i=1 k=1

Note that sz\; ZkU:1 #(mf + 77,3 — 2mp;) iU, and %u% are independent of u; and therefore a multiplying
0
constant. Next, we just reorder the expression.

N U
1 1 1
S| YYD 9) SR TVEEEVIED 3 SR USRI |

i=1 k= 1 i=1 k=1
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Completing the squares of the exponent in gives:

p(,ujlwa S, KH—j, Ho, U, 1,0, 00) = N(MJ'M]N; U]2N)

1 & N 21
HjN = [08 + 4 Z stijuik] lgguo + Z Z ;(ﬁi - nk)sijuik]

i=1 k=1 i=1 k=1
N U
Ly
- == — SijUik
o2y o5 - o2
J i=1 k=1

Note that similar results can be obtained for 7.

5.1.3 Inference

As described in Section the Gibbs sampling algorithm proceeds by iterative sampling from posteriors of
individual hidden variables. Since we already derived posteriors for p, f10,m,m0 in Section [5.1.1] and Section
we can use these posteriors to obtain samples from the true posterior

p(N7MO77777]0|$a s, u,f4-1,0-1,00,0, 7771/771770)'

After some burn-in period, e.g. M samples, we collect N samples of u, pig, 1,79 and use them to estimate
the parameters the approximating posterior

p(l'L?/J'O?nunO‘ﬁON753N7ﬂN7&]2\[7770N7’?3N777]N7’?]2\7) =
S

s
= N(M0|ﬂ0N753N) H N (pslign, 5J2'N) ‘ N(770|ﬁ0N7:YgN) H N(Uk\ﬁkNﬁ;%N)
j=1 k=1

where the parameters can be computed as follows:
| N
HoN = N Z; Hoi
=

~2

N
1 -
9N T N Z(Hm‘ — jion)®
i=1

N
1 ‘
'ujN:NZMji V]G{L,S}
i=1
1 N
Gy = N Z(Nji — jijN)* vje{1,...,S}
i=1

1 N
TloN = N;%i

N
- 1 _
Ao = N > (noi — fion)?
i=1
| N
kN = ~7 : L,...
TN N;mﬂ Vke{l,...,U}
| X
~2 = 2
’YkN*NZ(nkz kN ) VEe{l,...,U}

«
I
—

6 Mixture model

TBD
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7 Hidden Markov Model (HMM)

TBD

8 The Laplace Approximation

TBD

9 Variational Inference

Variational Inference (VI) is based on the calculus of variations, i.e., a generalisation of standard calculus. VI
deals with functionals, functions and derivatives of functionals rather than functions, variables and derivatives.
In variational calculus similar rules apply. VI can be applied to models of either continuous or discrete random
variables. VI approximates both the posterior distribution: p(w|D), and its normalisation constant (model
evidence): p(D), where D is the evidence — data, and w are unknown parameters.

Variational inference is based on decomposition of model evidence

p(D) = / p(w, D)dw = / p(DJw)p(w)dw
as follows

logp(D) = L(q) + K L(q|lp)
logp(D) = L(g(w)) + K L(g(w)||p(w| D))

where p(w|D) is our true distribution and g(w) is its approximation. L(q) approximates log p(D) and we want
to maximise it. The Kullback-Leibler divergence measures the “distance® from g(w) to p(w|D) and we want to
minimise it.

Llaw)) = [ a(w)tog {pgg’l’f)” } o

is lower bound and

Ke(atw)lptwlD) = [ otw)toe { L dw

is the Kullback-Leibler divergence.
Decomposition of the p(D) evidence can be verified as follows:

logp(D) = L(q) + KL(q||p)

o g 2
otw) {os {05 1o { 2
q“")k’g{ pRas <(|)>}d“’

/

/

/ e
= [atwyios {0

/

/

o5 o
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9.1 Gradient ascend

First, one selects ¢ to be a parametric distribution: ¢(w|@) for which L(g) can be computed analytically. Then,
one can use a gradient ascend (hill climbing) to maximise L(q) with respect of parameters, 0, of ¢(w;8). The
lower bound then becomes a function of 8 and can be optimised. This can be very tedious.

9.2 Variational Mean Field

An alternative is to assume that ¢ factorises with respect to a partition of w into M disjoint groups w;, with
i={1,...,M}. No further assumptions are made about gq.

M
o(w) = [Jatwo)
i
which can be written with explicit parameters, 6, for the the approximation as
M
g(w;0) = [ [ a:(wi; 6:)
i

where 8 = [01,...,6;]. This approach is known in the literature as variational mean field or global variation
inference.

Substituting ¢ in K L(g||p) and looking for the dependence with respect to g; is similar to coordinate ascend
when optimising K L(q(w; 0)||p(w|D)).

M
q(w) = HQi(wi) = q1(w1)g2(w2) . .. g (wir)

K2

We iteratively optimise ¢(w) with respect to g;(w;|6;) for i € {1,...,M}.
Derivation:

M M w
i=1

M M
= / TT ai(ws) {Z log gk (wy.) — logp(wlD)} dw
i=1 k=1
M M
= / 1T a:(ws) {Z log qx (wy,) — log p(w, D) + 10gp(D)} dw
i=1 k=1
M M
- / IT a(ws) {Z log g (wi) — log p(w, D)} dw + C;
i=1 k=1
M M M
= / T a:(wo) {Z loqu(wk)} dw — / T @ (wi) {log p(w, D)} dw + C,
i=1 k=1 =1
M M M
=> / TT @i (w:) log ar (wr ) dw — / 11 @i (w:)log p(w, D)dw + Cy
k=1 i=1 i=1

M M M M
= [Mawoioggwaw+ > [ Tatwtogantwidw - [ T] a(w)log p(w, D)dw + €3
=1 i=1 =1

k=1;k#j
M

M M M
— [Ta@ooeg@ndws > [atosate) [T atwidw - [T]awi)losp(w, Dydw +Cy
i=1 j i=1

k=1;k#j i=1;i1#k

M M M M
= / 11 a5 (wi) log g; (wj)dw + > /qk(wk)log Qk(wk)/ [T a(w)dw pdwy, — / 11 ¢ (ws) log p(w, D)dw + C1
i=1 j i i=1

k=1;k#j i=1ji#k

M M M
= /Hqi(wi)logqj(wj)dw+ Z /qk(wk)loqu(wk)dwk — /Hqi(wi)logp('w7D)d'w+C1
i=1 j i=1

k=1;k#j

M M
= / 1T ai(wi) log g; (w;)duw — / [T 4:(w:i)log p(w, D)dw + Cs
i=1 =1
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Derivation continuation:
. M M
KL(qlp) = / H qi(w;) log g; (w;)dw — / H qi(w;) log p(w, D)dw + C;

— [ 45w tog s (wy) T g (o) — I8 quw log p(w, D)dw + Ca

i=1;i%j

= /qj(wj)logqj(wj)dwj */Hqi(wi)logp(w,D)dw+CQ

= [ @it ton g wydw; ~ [ azwy) [ T] o) log pw, Dy + Cs

i=1;i%5

= /qj(wj)log q; (wj)dw; — qJ (wy) log (exp {/ H qi(w;) log p(w, D)dw ; dw; + Ca

i=1;i%j

i=1;i%j

- CQ QJ wj)dw;

— /qj(wj)logqj(wj)dwj — q;j(wj)log | exp / H (w;) log p(w, D) dw\7}> dwj + Cs - 1

i=1;i%]

= /qj(wj)logij(wj)dwj — [ ¢j(w;)log (eXp {/ TI  ai(w:)logp(w, D)dw;

:/%(wj')logqj(wj‘)dwj - q;(wj)log exp / H qi(w;) log p(w, D)dw\J}> wj _/QJ(wj)IOgEXP(—C2)dwj

i=1;i%j

= /qj(wj)logqj(wj)dwj — /q](wj)log (exp {/ H qi(w;) log p(w, D)dw\ ; — Cz}) dw;

i=1;i#7

g5 (wy) ,
= q](w7 log dw;
exp{fl_[l Lty qi(w;) log p(w, D)d’ID\J"—C‘}}

i=1;i%]

=KL <q7(w7)||cxp{/ H qi (w;) log p(w, D)dw ; +03}dw )

In general, K L(q||p) is minimised when both ¢ = p. The optimal ¢; given that the other factors are kept
fixed is:

g;j(w;; 8;) x exp / H ¢i(w;) log p(w, D)dw\ ;
i=1;i#7

oc exp By, ; [log p(w, D)]

Please note that equality does not apply here because of the constant C3. More often, we work with the log
version and the normalisation constant is found by introspection.

log qj(wy;0;) = Ey,., [logp(w, D)] + Cs

9.3 Example: Unknown Mean and Variance of a normal distribution, with im-
proper priors

Goal: infer the posterior distribution of the mean p and precision 7 of a normal distribution given independent
observations D = {z1,...,xn}.
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The likelihood of p and 7 is
p(Dlp,7) Hp ilp,7) = [ [ N(@ilp,7)

log p(D|p, 7) ZlogN |, 7)

=1

= Z log —— exp { 5 u)Q}

:fglog%m- gg

= glogT— gloggﬁ_ ;é(w’ _N)2

= glogf— glog%— ;ﬁ;(w —T+T—p)?

= glogr— %logZﬂ— ;ﬁ:((@ _E)_(M—f))Q

SlogT— 3 log2m = 23" (@ — ) — 2(ws — 7 (u— 1) + (4 — 7))

%logr— %logZﬂ—g N(M—E)Q—i—Z(a@i - z)° —22(3@- —x)(u—x):|

[ N
%bgT— %bg%—% N(u-2)*+ (v —7)° —2(M—m)2(azi—x)}

:glogT—%log%r—% N(u—x)2+2(xi—a:)2—2(,u—x)(

i=
N N

N N T —\2 —\2 —

ElongglogQWfi N(p—7) +Z(mifx) —2(p—17) Z&Zx])]

N N T [ 2 al 2
:Elogr—glog%r—i N(p—7) +;(xz—x) —2(p—7) 0:|
:ﬁlogT—I N(u—i)2+§:(azi—§)2 + const

2 2

i=1

where T is empirical mean.
Set the priors for u and 7 to be improper priors:

p(p) =1/0,
p(r) =1/

While these priors are computationally convenient, they are not conjugate. Therefore, the posterior will have a
different form compared to the priors.
We enforce that the posterior approximation factorises

q(p, 1) = qu(p)g-(7)

and solve for the optimal factors

g log p(D, 1, 7)]
‘m [lng(D, 12 T)]

log g, (1)

E
log q- (7—) =E
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9.3.1 logq,(p)

Derivation:

where A = NE_[7].

9.3.2 logg,(7)

Derivation:

= By, [log p(D|u, 7)p(p)p(T)]
= Eq, [logp(D|p, T) 4 log p(p) + log p(7)]

¢+ (7) [log p(D|p, ) + log p() + log p(7)] dr

q- (1) log p(D|p, T)dT + / q- (1) log p(p)dr + / q- (1) log p(7)dT

q-(7) log p(D|p, T)dr +log(1/0y) - 14 C1

/
/
— [ @ 10gp(Dln,rydr +10gp(0) [ a-(r)dr + €
/
/

auto) o exp { -5 2
= N(;z, A7)

log g-(7) = Eq,, [logp(D, p, 7)]
= Eq, [log p(D|p, 7) + log p(1) + log p(7)]
= Eq, [logp(D|p, 7)] + Eq, [log p()] + Eq,, [log p(7)]
= Eq, [log p(D|p, )] + Eq,, [log p(7)] + C1
= Eq, [log p(D|p, 7)] + Eq,, [log p(7)] + C1
= Eq, [log p(D|p, 7)] + log p(7) + C1
= logp(7) + Eq,.[log p(D|u, 7)] + C1

N
_ N T 2 2
= —logT+ Eg, |:210g7'—2 N(p—T) —I—Zl(xl— ) + Cy
- T —\2 - —\2
== logT—iEq“ N(pu—T) —1—2(331'—23) +C1
i=1
-2 T 2 _ . _2 a —\2
= lo _TEQ“ uw —2uT+7T +Z(wi—:c) + C1
i=1
Ny N 2 — =2 . —\2
= log 7 —Z(Equ[u]—QEqu[u]Hw +Y (wi—7) )T+Cl
i=1
N, N -1, =2 | =2 il —\2
=logT?2 —2()\ +zT° -2+ 7T +Z(:v,——x)>7’+01
i=1
_ N (. ._
:long 1_2()\ 1+Z(azl—x) )T-I—Cl
i=1



By introspection, one can observe that

N
¢ (1) x 77 Lexp {—Z; ()\_1 + Z(ml - x)2> T}
= Gam(T;a,b)

where

. __1a 1 a—1 o
Gam(t;a,b) =b —F(Q)T exp(—b7)

NI

b=

N
</\_1 + Z(xz — $)2>
=1

9.3.3 Summary
This gives the following optimal factors given that the other factor is fixed
Gu(p) = N(ufz, A7)

0r(7) = Gam(r|a,b) = b*—— 771 exp{—br}

I'(a)
where
a
A= NE, [r]= N7}
_N
75
b= (g (4] = 2B, [T + 7 + ) (2 — F)°
2 QM:LL q,“U' )

N N
= 5 <)\_1 + Z(ZCZ — .’E)2>
=1
We iteratively optimise ¢, and ¢, until convergence.

9.4 Example: Unknown Mean and Variance of a normal distribution, with con-
jugate priors

Set the priors for u and 7 to be improper priors:

(1) = N(plo, A7)
p(1) = Gam(t|a,b)

We enforce that the posterior approximation factorises

q(pt, 7) = qu(p)g-(7)

and solve for the optimal factors

log qu. (1) = Eq, [logp(D, pi,7)]
log ¢-(7) = E, [logp(D, p1, T)]
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