
Expectation Propagation for a Probit Regression Model

Ondřej Dušek

May 28, 2013

1 The probit model

Suppose we have independent data points xni=1, each consisting of d features, thus building a matrix
X ∈ Rn×d. Each data point xi has a label yi ∈ {−1, 1}, i = 1 . . . n, which gives a vector of labels y.

We want to model this data using a probit model : P (yi|xi,w) = Φ(yi ·wTxi). Φ denotes a standard

Gaussian cumulative distribution function, i. e. Φ(z) =
∫ z
−∞

1√
2π
e−

1
2 t

2

dt.

In order to obtain a posterior estimate of the unknown parameters w (“weights vector”) given our
data {X,y}, we use the standard Bayesian estimation scheme:

posterior =
prior · likelihood

normalization
(1)

Since we can choose our own prior on w, we take the path of least resistance. We select a Gaussian
prior on w with a zero mean and known variance v0 and assume independence of wj in the individual
dimensions:

P (w)
def
= N (w|0, I · v0)

indep
=

d∏
j=1

N (wj |0, v0) (2)

The form of likelihood is given by the probit model (remember that the data points are assumed to
be independent, identically distributed):

P (y|X,w)
iid
=

n∏
i=1

P (yi|xi,w) =

n∏
i=1

Φ(yi ·wTxi) (3)

The posterior then has the following form (where Z is a normalization constant):

P (w|X,y) =
1

Z
· P (w) ·

n∏
i=1

P (yi|xi,w) (4)

Computing the posterior in this form is not tractable due to the product of probits in the likelihood.
Therefore, we must approximate the posterior by a simpler distribution. We can use the Expectation
Propagation (EP) algorithm to do that.

2 Expectation propagation algorithm

The EP algorithm assumes that we are given a joint distribution P (X,y,w) over observed data and
unknown parameters, i.e. likelihood · prior, in the form of a product of factors:

P (X,y,w) =
∏
i

fi(w) (5)

1

The EP then tries to find an approximation q(w) of the true posterior distribution p(w)
def
= P (w|X,y)

by minimizing the Kullback-Leibler (KL) Divergence:

KL(p(w)||q(w)) =

∫ ∞
−∞

p(w) log

(
p(w)

q(w)

)
dw (6)

It does so by gradually refining one of the factors f̂i(w), i = 1 . . . n while keeping rest of q(w) fixed. This
is repeated until convergence (i.e. until the refined factors are undistinguishable from the original factors)
and requires several passes over all factors in general.

The general flow of the algorithm looks like this:

1. Select a form of a distribution from the exponential family for your approximate posterior q(w).

It must be possible to express it as a product of approximate factors f̂i(w), each approximating
a factor fi(w) of the true posterior. We use the exponential family since it works nicely with KL
divergence minimization (see below).

2. Initialize the approximate factors to some (arbitrary, but reasonable) values. You now have the
first approximation of the posterior.

3. In several passes, select one factor f̂i(w) to refine; keep the rest of the factors intact:

(a) Take factor f̂i(w) out of the current posterior approximation q(w) to create a cavity distribution
q\i(w).

(b) Now create a new approximation f̂newi (w) of the true factor fi(w) by minimizing:

KL(fi(w) · q\i(w)||f̂i(w) · q\i(w)) (7)

Note that we are not minimizing the distance to the true posterior, but to a distribution
composed of the exact factor fi(w) and approximations of the rest, i.e. we are approaching
the true factor in the context of our current approximation.

The exponential family is very convenient here since we may use moment matching : we just
compute the sufficient statistics1 of the target distribution fi(w) ·q\i(w) and use them for our

approximation f̂i(w) · q\i(w). If an approximation from the exponential family has the same
sufficient statistics as the target distribution, it must have the lowest KL divergence.

(c) Now replace your old posterior approximation with qnew(w) ∝ f̂newi (w) · q\i(w).

4. Repeat previous step until convergence.

3 Form of the approximation in the probit model

We now return to our probit model. We denote our posterior distribution on weights (4) as p(w) and its
individual factors as fi(w), i = 0 . . . n (i.e. some functions of w):

f0(w)
def
= P (w) (8)

fi(w)
def
= P (yi|xi,w) i = 1 . . . n (9)

Note that f0 corresponds to the prior and fi, i = 1 . . . n correspond to the individual data points.

We now try to find an approximation q(w) of p(w). We choose the shape of q(w) ourselves, the only
requirement is that it has to be in the exponential family (see Section 2). A Gaussian with independent
dimensions is the best way to keep things simple:

q(w)
def
= N (w|m, I · v)

indep
=

d∏
j=1

N (wj |mj , vj) (10)

1Sufficient statistics is a set of moments that uniquely define a distribution from the exponential family. For Gaussians,

it is mean and variance.

2

Note that m = {mj}dj=1 and v = {vj}dj=1 denote means and variances in the individual dimensions.

We also want our q(w) to be a product of factors of a similar form to (8,9), but simpler. We thus
denote:

q(w)
def
=

1

Z

n∏
i=0

f̂i(w) (11)

Where:

f̂0(w)
def
= f0(w) = P (w) (12)

f̂i(w)
def
= N (w|mi, I · vi) · si =

d∏
j=1

N (wj |mij , I · vij) · sij i = 1 . . . n (13)

I.e. we use the exact prior (since it is a plain Gaussian) and choose the other factors f̂i(w), i = 1 . . . n as
unnormalized Gaussians with independent dimensions. We know that the original factors fi(w), i = 1 . . . n
are not normalized with respect to w (since they are normalized with respect to yi), but want them to
have a simple form. We therefore use a Gaussian multiplied by a “de-normalization constant” sij .

We now aim to find q(w) with such parameters m,v that it is as close to p(w) as possible. This is
the task of the EP algorithm.

4 EP initialization step

We initialize our approximation q(w) by setting f̂0(w) to the prior and f̂i(w) to uniform distributions.2

The parameters of the approximate factors then look as follows:

m0j := 0, v0j := v0 j = 1 . . . d (14)

mij := 0, vij :=∞ j = 1 . . . d, i = 1 . . . n (15)

Now our posterior approximation is in fact equal to our prior (if we view it as prior ·
∏n
i=1 uniform).

5 Refining one factor

We select an approximate factor f̂i(w) to be refined. The order of factors selected for refining is arbitrary
and all factors should be refined multiple times.

5.1 Computing the cavity distribution

First, we compute the cavity distribution from our current posterior approximation q(w) and the current

approximate factor f̂i(w):

q\i(w) =
q(w)

f̂i(w)
(16)

Since q(w) and f̂i(w) are both Gaussian from (10, 13), we can use the formulas for Gaussian identities
to obtain an (unnormalized) Gaussian shape of q\i(w):

q\i(w) ∝ N (w|m\i,v\i) indep
=

d∏
j=1

N (wj |m\ij , v
\i
j) (17)

Where:

v
\i
j = (v−1j − v

−1
ij)−1 (18)

m
\i
j = v

\i
j (v−1j mj − v−1ij mij) (19)

Note that mij , vij refer to the current approximation of f̂i(w) and mj , vj refer to the current approxima-
tion of q(w).

2Or as close to uniform distributions as we can get in practice since f̂i(w) are assumed to be Gaussian.

3

5.2 Minimizing KL-divergence

Having fixed our cavity distribution, we want to minimize the KL divergence of our factor approximation
in the context of the cavity distribution (7) to obtain a new, better approximation of the posterior, qnew.
We have:

qnew(w) = arg min
q′∝f̂i(w)q\i(w)

KL

(
1

Zi
fi(w)q\i(w) || q′

)
(20)

The KL-divergence for distributions in the exponential family is minimized by moment matching: setting
the sufficient statistics, i.e. mean and variance in our case, equal to those of the distribution we want to
approximate.

To do this, we will use the following clever formulas (from José’s slide 15) for the moments of a
Gaussian multiplied by some arbitrary factor. Given a distribution r(x) in the following form:

r(x) =
1

Z
t(x)N (x|µ,Σ) and Z =

∫
t(x)N (x|µ,Σ) dx (21)

We can express its mean and variance as:

Er[x] = µ+ Σ · ∂ logZ

∂µ
(22)

Er[xxT]− Er[x](Er[x])T = Σ− Σ ·

(
∂ logZ

∂µ

(
∂ logZ

∂µ

)T
− 2

∂ logZ

∂Σ

)
· Σ (23)

As the clever formulas are not clever enough to rid us of the normalizing constant, we must first
compute Zi:

Zi =

∫
fi(w)q\i(w) dw =

∫
P (yi|xi,w)q\i(w) dw =

∫
Φ(yi ·wTxi)

d∏
i=1

N (wj |m\ij , v
\i
j) dw (24)

= Φ

 yi ·
∑d
j=1m

\i
j xij√∑d

j=1 v
\i
j x

2
ij + 1

 (25)

If you know how we got the exact result, let me know. I don’t. José just said it’s relatively simple.

Now we can just fill in our values into (22, 23), using the value of Zi computed in (25). We obtain
the mean and the variance of the new approximate posterior qnew(w):

mnew
j = m

\i
j + v

\i
j ·

∂ logZi

∂m
\i
j

(26)

vnewj = v
\i
j −

(
v
\i
j

)2(∂ logZi

∂m
\i
j

)2

− 2
∂ logZi

∂v
\i
j

 (27)

5.3 Obtaining the new approximate factor

We now have the new approximate posterior qnew(w) and need to obtain our new approximate factor

f̂newi (w) for later use. We use an equation obtained from (20) by forcing Zi as our new normalization
constant:

qnew(w) :=
1

Zi
f̂i(w)q\i(w) (28)

f̂i(w) = Zi
qnew(w)

q\i(w)
(29)

4

The parameters mnew
ij , vnewij , snewij are obtained from the Gaussian identities formulas:

vnewij =

(
v−1j −

(
v
\i
j

)−1)−1
(30)

mnew
ij = vnewij ·

(
mjv

−1
j −m

\i
j

(
v
\i
j

)−1)
(31)

snewij = Zi · Cj , where (32)

Cj =

√√√√ vnewij v
\i
j

(2π)
d
vj

exp

(
−1

2

(
m2
jv
−1
j −

(
m
\i
j

)2 (
v
\i
j

)−1
−
(
mnew
ij

)2 (
vnewij

)−1))
(33)

We can now use f̂newi (w) and qnew(w) in the next iterations.

5

