
Expectation Propagation for the Clutter Problem –
Theory and Implementation

Matěj Korvas

May 23, 2013

Abstract

These lecture notes describe the algorithm of Expectation Propagation as
applied to the Clutter problem, touching on the underlying theory. Impor-
tant is also the practical part where I document my implementation of the
algorithm.

1 Introduction

Expectation Propagation (EP for short) was introduced in [2] as an iterated ver-
sion of the previously known Assumed-Density Filtering approximate inference
algorithm. In the work [2], the author also shows how EP is applied to the clutter
problem.

In the next section, we describe the EP algorithm in general, in Section 3, we
formulate the clutter problem and derive formulas used in EP to solve it, and the
final Section 4 discusses our implementation of EP applied to the clutter problem.

2 Expectation Propagation

Expectation Propagation is an approximate inference algorithm for graphical prob-
abilistic models that factorise as follows:

p(z, e) =
∏
i

fi(z, e) (1)

where z is the vector of latent variables, e is the vector of observed variables (evi-
dence), and fi are factors that depend on a non-empty subset of z and a subset of e.
This factorisation naturally emerges in experiments with i.i.d. observations where
f0 is the prior on z and fi the posterior for the i-th observation for i = 1, . . .

1

TODO: Draw a figure of a graphical model that is typically used for doing EP.
EP approximates the factors fi with factors f̃i that belong to a convenient prob-

ability distribution family. The approximation aims to minimise the KL-divergence
between a distribution computed using the exact factor fi, and a distribution using
the approximate factor f̃i. If the approximating distribution family is chosen from
the exponential family (which it typically is), minimising the KL-divergence is
reduced to matching moments, i.e. setting a few moments of the estimating distri-
bution (its sufficient statistics) to the values of corresponding moments of the dis-
tribution approximated. Choosing the family from the exponential family has also
other benefits, including the fact that this family is closed under the operation of
product (this property being assumed in the algorithm), and that Minka [2] proved
the existence of a fixed point for the solution provided the family is exponential.

Choosing the approximating family is the first thing done in the algorithm.
Next, approximated factors f̃i and their product Q =

∏
i f̃i are initialised to uni-

form. The algorithm then proceeds in iterations, iteratively updating all the ap-
proximating factors in each of the outer iterations. When convergence is reached,
the normalisation coefficient, an estimate of p(e), is computed. A more detailed
exposition of the algorithm follows.

1. Initialisation

All the approximate factors are initialised to uniform, meaning the initial approxi-
mation is non-informative. The product Q of the factors is computed accordingly.
Typically, all the factors, as well as their product, are initialised to constant 1.

Factors that already belong to the chosen family can also be computed dur-
ing initialisation, as such factors are always best approximated by themselves, not
needing to be updated iteratively.

2. Outer loop

Following four steps are repeated until convergence.

2.1. Choose a factor f̃i

Choose a factor to approximate.

2

2.2. Compute the cavity distribution Q\i

When updating the factor f̃i, we would ideally want to minimise the KL-divergence
between the true distribution and the resulting approximative distribution:

argmin
f̃i

KL(p ||
∏
i

f̃i). (2)

However, there we would need to compute moments of p in order to optimise
for this KL-divergence. If we were able to do that, we would not need to use
approximate inference in the first place, so let us assume this is intractable. In that
case, we have to substitute p with an approximation. The approximation used in
EP is the following:

p̂ =
1

Zi
fiQ\i (3)

where

Q\i ∝
∏
j 6=i

f̃j (= Q/f̃i). (4)

Here, Q\i is called the cavity distribution, as it is a distribution over z obtained by
multiplying all the approximate factors but the i-th one (thus creating the cavity in
the distribution) and normalising (in order to make it a distribution). p̂ is defined as
a product of the exact factor fi with the rest of the factors approximated, normalised
to 1, and the cavity distribution needs to be computed in order to express p̂.

2.3. Compute the approximative distribution Qnew

Whereas the previous step was concerned with computing the cavity distribution,
computing the normalisation coefficient Zi (as

∫
fi(z)Q\i(z)dz) and the approxi-

mative posterior distribution p̂ is reserved for this step.
Having computed p̂, we can minimise the KL-divergence to an updated Qnew

restricted to be in the approximating family F :

argmin
Qnew∈F

KL(p̂ || Qnew). (5)

As mentioned earlier, this minimisation is achieved by matching moments ofQnew
to those of p̂.

3

2.4. Update the factor

We can see the relation of the fi, which we wish to approximate, to Qnew by com-
bining formulas (3) and (5):

Qnew ≈ p̂ =
1

Zi
fiQ\i. (6)

From here, we easily obtain the formula for the approximation of fi:

fi ≈ f̃i = Zi
Qnew

Q\i
. (7)

Thanks to the right hand side of Eq. (7) consisting of a division of distributions
from the approximating family (and a coefficient), f̃i will also be from that family
(provided it is closed under division). Now, the approximate factor gets updated
according to Eq. (7), and the outer loop is repeated.

3. Evaluate the normalisation constant

After the algorithm has converged to a set of factors {f̃i}, an approximate posterior
p(z, e) can be computed as a product of the factors, according to the assumptions.
If we are interested in p(e), the model evidence, it can be computed now as

p(e) =

∫ ∏
i

f̃i(z)dz. (8)

3 The Clutter Problem

In the Clutter problem, we assume a sequence of i.i.d. observations being generated
either from a normal distribution with an unknown mean with some probability, or
from the “clutter” distribution. The model is specified by the following formulas:

Wi
i.i.d.∼ Bern(π) (9)

Xi | µ
i.i.d.∼ Wi N (0, aI) + (1−Wi)N (µ, I) (10)

The π parameter determines the proportion of clutter, Wi select for each obser-
vation whether it was generated from the distribution of interest, N (µ, I), or the
clutter, and finally, µ is the unknown mean of the distribution we are trying to
estimate. In the clutter problem, we adopt a broad Gaussian prior on µ:

µ ∼ N (0, bI). (11)

TODO: draw the graphical model
This problem fits nicely the assumptions for EP:

4

1. It is intractable to do exact inference to find the value of µ. This is due to the
fact that in the Bayesian network, the node for µ has (N + 1) independent
parent nodes, a prior and theN likelihood factors, of which theN likelihood
factors have 2 Gaussian components each. This results in the posterior for µ
consisting of 2N N -dimensional Gaussians, corresponding to the 2N subsets
of observations that could have been generated from the true distribution (as
opposed to the clutter).

2. The posterior is a product of factors that depend on a non-empty subset of
the latent variables (which is {µ} in this case) and a subset of the observed
variables (either {Xi} for the likelihood factors, or ∅ for the prior) – exactly
as required.

Instantiating the general Eq. (1) for the Clutter problem, we get the following:

p((µ), (x1, . . . , xN)) = p(µ) ·
N∏
i=1

p(µ | xi). (12)

In Eq. (12), the generic f0 is instantiated as the prior p(µ), and the generic fi, i =
1, . . . as the likelihood p(µ | xi). In the following, we may use one or the other
notation, whichever is more convenient.

We choose to approximate the factors, and hence also their product, by (un-
normalised) spherical Gaussians, with one stipulation: the factors approximating
the likelihoods may have their σ2 parameter negative. This is an inherent property
of the algorithm, and we discuss it later in Section 4. Still, each factor f̃i can be
represented by the triple 〈s̃i, m̃i, ṽi〉, describing its scale (

∫
f̃i(z)dz), mean, and

variance, respectively:
f̃i = s̃i N (m̃i, ṽiI). (13)

Besides that, also the approximate posterior has the same form, and we shall denote
its parameters as follows:

Q = N (m, vI). (14)

Note that Q is an approximating distribution, i.e. it is normalised to 1.
Since f̃0, the prior, already is a spherical Gaussian, its parameters can be set as

part of initialisation:

s̃0 = 1 m̃0 = 0 ṽ0 = b. (15)

This factor is exact and need not be updated anymore.
What remains is expressing the formulas (4), (5), (7) for a factor f̃i, i = 1, . . . ,

and (8). The following paragraphs are devoted to this.

5

Update formula for the cavity distribution

The general formula is as follows:

Q\i ∝ Q/f̃i. (4 – repeated)

After substituting the values of Q and f̃i, represented as shown in Eqs. (14) and
(13), respectively, we obtain the following:

Q\i ∝ N (m, vI)

s̃i N (m̃i, ṽiI)
. (16)

The parameters of Q\i can be computed using the formula for the ratio of Gaus-
sians,

N (µ1,Σ1)/N (µ2,Σ2) = C N (µ,Σ) (17)

where

Σ =
(
Σ−11 −Σ−12

)−1
µ = Σ

(
Σ−11 µ1 −Σ−12 µ2

)
C =

√
|Σ| |Σ2|
(2π)d|Σ1|

exp

{
−1

2

(
µT1 Σ−11 µ1 − µT2 Σ−12 µ2 − µTΣ−1µ

)}
.

(18)

As the result, we can express Q\i in terms of its parameters m\i (mean) and v\i

(v\iI being the variance) as follows:

m\i = v\i(mv−1 − m̃iṽ
−1
i) (v\i)−1 = v−1 − ṽ−1i . (19)

Update formula for Q

In computingQnew according to Eq. (5), we have to compute p̂ and then its first and
second moment in order to arrive at the spherical normal distribution minimising
the KL-divergence to p̂. In the definition of p̂ in Eq. (3), the quantity Zi is yet to be
computed. It is the normalisation constant of fiQ\i, i.e.:

Zi =

∫
fi(µ)Q\i(µ)dµ. (20)

Parameters ofQ\i were obtained in the previous step, and fi was defined as the
likelihood of xi (cf. Eq. (10)):

fi(µ) = wi N (xi;0, aI) + (1− wi)N (xi;µ, I). (21)

6

Substituting to Eq. (20), we get

Zi =

∫
[wi N (xi;0, aI) + (1− wi)N (xi;µ, I)] N (µ;m\i, v\iI)dµ (22)

=

∫
wi N (xi;0, aI)N (µ;m\i, v\iI)dµ

+

∫
(1− wi)N (xi;µ, I)N (µ;m\i, v\iI)dµ

(23)

= wi N (xi;0, aI) + (1− wi)

∫
N (xi − µ;0, I)N (µ;m\i, v\iI)dµ (24)

= wi N (xi;0, aI) + (1− wi)N
(
xi;m

\i, (v\i + 1)I
)

(25)

where, going from (24) to (25), we used the result [1] about convolution of Gaus-
sians.

Update formula for f̃i

Formula for the normalisation constant

TODO: how the results are read off

4 Implementation

TODO: how some parameters were instantiated, how uniform factors were ex-
pressed as Gaussians (infinite variance)

TODO: general properties of the implementation: Python, uses numpy, can be
configured inside the source code, can be asked to draw plots interactively

TODO: example pictures from the algorithm
TODO: problems encountered (negative variance, infinities, unsensible nor-

malisation constants). . . but the algorithm converges well. Include some statistics
of convergence properties (or, say, distance of the estimated mean from the true
one)

References

[1] BROMILEY, P. Products and convolutions of Gaussian distributions. Internal
Report 2003-003, TINA Vision, 2003.

[2] MINKA, T. P. Expectation Propagation for approximate Bayesian inference.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence
(2001), Morgan Kaufmann Publishers Inc., pp. 362–369.

7

	Introduction
	Expectation Propagation
	Initialisation
	Outer loop
	Choose a factor
	Compute the cavity distribution
	Compute the approximative distribution
	Update the factor

	Evaluate the normalisation constant

	The Clutter Problem
	Implementation

