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Outline

e Variational inference
e Unknown Mean and Variance of a normal dist.
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Variational Inference: Introduction

Based on the calculus of variations, i.e., a generalization of
standard calculus.

Deals with functionals, functions and derivatives of
functionals rather than functions, variables and derivatives.

Similar rules apply.

Can be applied to models of either continuous or discrete
random variables.

Approximates both
* the posterior distribution: p(w|D)

* its normalization constant (model evidence): p(D)

- D: evidence — data
- W: unknown parameters NPFL108 3/19



Variational Inference

* |tis based on the following decomposition:

logp(D) = L(q) + K L(q||p)

e where

L(q) = / q(w) log {p (w, D) } dw lowerbound

q(w)

KL(q|lp) = / o(w) log {p?ﬁ})) } by Kidivergence

* L(q) approximates log p(D)

e \We want to maximise

« The Kullback-Leibler divergence measures the fit of q(w) to p(w|D)

e We want to minimise
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Verification: Workout




Decomposition of the Marginal Likelihood

- %

KL(QIP)

L(Q) In p(E)

Source Bishop, 2006



Choosing the approximation g

* One can use a gradient ascend on L(Q)
 Hill climbing

* One selects q to be a parametric distribution
* q(z|0) for which L(q) can be computed analytically

* The lower bound then becomes a function of 6
and can be optimized
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Alternative approximation of g

* An alternative is to assume that q factorizes with respect
to a partition of w into M disjoint groups w,,

e withi=1,...,M:
M
q(w) = Hqi(wz‘)

* no further assumptions are made about q

* This approach is known in the literature as variational
mean field or global variation inference
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Variational Inference

« Substituting q in KL(q||p) and looking for the dependence
with respect to q,

e Similar to coordinate ascend
M
g(w) = H%’(’wz’) = q1(w1)q2(w2) . .. qa(war)

* Optimising
- KL(q(w) || p(w|D))
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KL(qlp) =

Derivation 1
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/H (w;) log qx (W )dw — /qu w;) log p(w, D)dw + C}
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M
/qu w;)logq;(w;)dw — /qu w;) log p(w, D)dw + Cs

M
:/Qj(Wj)logqg’(Wj) 11 qi(Wz‘)dW—/qu’(wz‘)logp(wﬂ)dWJFCZ
i=1:i%] =
M
= /Qj(Wj)long(Wj)de —/Hqi(wi)logp(w, D)dw + Cy
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Derivation 2

K L(q|p) Z/%(Wj)log%'(wj)dwj —/Hqi(wz’)logp(w,D)dWJr@

i=1
M
—/qj(wj)logqj(wj)dwj—/qj(wj)/ H qi(w;) logp(w, D)dw + Cs
i=13i;

M
— /Qj(Wj)long(Wj)de —/qj(wj)log exp{/ H qi(w;) log p(w, D)dw\j}> dw; + Co
1=1;i#]

= / qj(w;)log - 9(%;) dw; + C2
exp {f Hi:l;z’;ﬁj di (Wz) logp(w, D>dw\3}

= KL (qj(wj)exp {/ H qi(wi)logp(W,D)dW\j} de) + Co

i=1;1#7
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Variational Inference: Variational Mean-Field

* The KL( q || p ) is minimised when both g = p

- The optimal g, given that the other factors are kept fixed is:

4 M \

4 (W;) o exp ¢ / TT i (w:)logp(w, D)dw,
L 1=1;1%£73 )

x Eq,; [logp(w,D)]

V

* |teratively

« Compute this for all q,- multiple times

« This is a “coordinate” optimisation over factors q, with respect to others.
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Properties of Variational Approximations

 The KL divergence KL(q||p) favours solutions that take

high probability where p takes high probability, but can
ignore important regions.

* The optimization problem is not convex and can have
multiple local optima.

 Though, convergence is guaranteed
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Example: Unknown Mean and Variance of a normal dist. #1

» Goal: infer the posterior distribution of the mean p
and precision T of a normal distribution given a
dataset D = {x,, ..., x} of independent samples.

* The log likelihood of y and T is:

N _ T
logp(Dlp, 7) = - log 2m7 1 — 5 Z(acn — 1)?
n=1
N
— ElogT—% [N(;L—E)QJrS] + const,

S — Zn(a’;n — 5)2 and T is empirical mean
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Example: cont.

* The priors for y and 1 are uniform and conjugate :

p(p) =1/ou, p(T) =1/7
 These are improper priors!
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Example: cont.

* \We enforce that the posterior approximation factorizes
q(H, T) = q,(M)q,(T) and solve for the optimal factors

log qu(ﬂ) — EqT [IOgP(Da M T)]
log q-(17) = E,, (logp(D, u, )]

* This gives the following optimal factors given that the
other factor is fixed

u(p) = N(p|z, A7)

1
q-(7) = Gamma(7|a,b) = b*

['(a)

7 texp{—br}
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Example: cont.

* This gives the following optimal factors given that the
other factor is fixed

qu(p) = N(p|z, A7)

q-(7) = Gamma(T|a,b) = ba%a)Ta’_l exp{—b7}
* Where
A= NE, [r] = Na/b
a= N/2

b= N/2(A"1 +9)
- We iteratively optimize q, and q, until convergence
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Mean Field: Unknown Mean and Variance of a

Gaussian
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Thank you!

Filip JurCicek
Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek
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