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Outline

● Variational inference
● Unknown Mean and Variance of a normal dist.
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Variational Inference: Introduction
● Based on the calculus of variations, i.e., a generalization of 

standard calculus.

● Deals with functionals, functions and derivatives of 
functionals rather than functions, variables and derivatives. 

● Similar rules apply.

● Can be applied to models of either continuous or discrete 
random variables.

● Approximates both 

● the posterior distribution: p(w|D) 

● its normalization constant (model evidence): p(D) 

– D: evidence – data
– w: unknown parameters 
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Variational Inference
● It is based on the following decomposition:

● where

● L(q) approximates log p(D) 

● We want to maximise

● The Kullback-Leibler divergence measures the fit  of q(w) to p(w|D)

● We want to minimise

lowerbound

KL-divergence
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Verification: Workout
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Decomposition of the Marginal Likelihood

Source Bishop, 2006
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Choosing the approximation q

● One can use a gradient ascend on L(q)
● Hill climbing 

● One selects q to be a parametric distribution 
● q(z|θ) for which L(q) can be computed analytically

● The lower bound then becomes a function of θ 
and can be optimized 
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Alternative approximation of q

● An alternative is to assume that q factorizes with respect 
to a partition of w into M disjoint groups w

i
, 

● with i = 1, . . . , M:

● no further assumptions are made about q

● This approach is known in the literature as variational 
mean field or global variation inference
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Variational Inference

● Substituting q in KL(q||p) and looking for the dependence 
with respect to q

j

● Similar to coordinate ascend

● Optimising 

– KL( q(w) || p(w|D) )
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Derivation 1
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Derivation 2
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Variational Inference: Variational Mean-Field

● The KL( q || p ) is minimised when both q = p

● The optimal q
j
 given that the other factors are kept fixed is:

● Iteratively

● Compute this for all q
j  
- multiple times 

● This is a “coordinate” optimisation over factors q
j  
with respect to others.
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Properties of Variational Approximations

● The KL divergence KL(q||p) favours solutions that take 
high probability where p takes high probability, but can 
ignore important regions.

● The optimization problem is not convex and can have 
multiple local optima.

● Though, convergence is guaranteed
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Example: Unknown Mean and Variance of a normal dist. #1

● Goal: infer the posterior distribution of the mean µ 
and precision τ of a normal distribution given a 
dataset D = {x

1
, . . . , x

N
} of independent samples.

● The log likelihood of µ and τ is:

is empirical mean
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Example: cont.

● The priors for µ and τ are uniform and conjugate :

● These are improper priors!

τ

x
i

N

μ

.σ
μ
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Example: cont.

● We enforce that the posterior approximation factorizes 
q(µ, τ) = q

µ
(µ)q

τ
(τ) and solve for the optimal factors

● This gives the following optimal factors given that the 
other factor is fixed
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Example: cont.

● This gives the following optimal factors given that the 
other factor is fixed

● Where

● We iteratively optimize q
µ
 and q

τ
 until convergence
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Mean Field: Unknown Mean and Variance of a 
Gaussian 

Source Bishop, 2006
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Thank you!
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