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Outline

● Laplace approximation
● Probit regression model



 NPFL108 3/19

The Laplace Approximation

● The simplest deterministic method for 
approximate inference

● Restricted to models in which the variables of 
interest are continuous

● The factors for the continuous random variables 
will generally be some continuous parametric 
functions
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The Laplace Approximation: Univariate case 1

● The Laplace approximation will find a Gaussian approximation to 
the conditional distribution of a set of continuous variables

● We are interested in approximating posteriors

● Consider a single scalar variable w:

● D are observed variables, therefore fixed and can be omitted 

● Z is a normalisation constant

●  We want to find w
0 
and A such that 
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The Laplace Approximation: Univariate case 2

● First, find a mode (i.e. local maximum w
0
) of p(w|D)

=> w
0

● Any algorithm can be used 

● including numerical solution

● We do not work with p(w|D) because we do not know Z!

● We do not need it to find maximum!

● Instead we work with f(w) which is typically easily available.
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The Laplace Approximation: Univariate case 3

● Second, compute a truncated Taylor expansion of log f(w) centre 
at the mode

● where

● Taking the exponential:

● One can see that this looks like a normal distribution

meanvariance
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The Laplace Approximation: Multi-variate Case

● The same principle can be applied to approximate an 

● M-dimensional distribution

● The approximation has mean of w
0 
and covariance matrix A -1 
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The Laplace Approximation: example

● The Gaussian approximation will only be defined if A is 
positive semidefinite, i.e., w

0
 must be a local maximum not a 

minimum or a saddle point.

f(w) log f(w)

~f(w)~log f(w)
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Probit regression model
● Similar to logistic regression

● Useful for binary classification
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Probit regression: graphical model
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● w are our parameters

● y
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i
 are our observations – data D

Probit function
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● For the sake of completeness, probit function

● We want to make inference of w given some observed labels 
y and x

Probit regression model
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The Laplace Approximation: Probit Regression 1

● For simplicity, we consider that σ2 = 1 and that α = 1.

● The posterior distribution is:

● Recall 1

● Recall 2
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The Laplace Approximation: Probit Regression 2

● Using some numerical optimisation algorithm 

● find w
0  

– a local maximum of

● Perform Taylor expansion of
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The Laplace Approximation: Probit Regression 3

● Let w
0
 be a maximum of f(w) 

● Computing the negative Hessian at w
0 
of log f(w)

● Approximation of                  is
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Predictive distribution
● We also want to compute a predictive distribution for new 

unlabelled instances
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The Laplace Approximation: Probit Regression 4

● Thanks to probit model and the Laplace Approximation 

● It is possible to compute an approximate predictive distribution

Hurray! We know how to compute the integral.
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The Laplace Approximation: Probit Regression 5

● Uncertainty is high near the decision boundary and 
progressively decreases as we move away from it.

● Uncertainty is significantly larger in regions where there 
is no data.
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The Laplace Approximation: Considerations

● The mode of log f can be found using a numerical optimization 
method.

● The Hessian can be approximated by di erences.ff

● Many distributions can be multi-modal, what leads to many 
di erent Laplace approximations, depending on the mode.ff

● In many cases, the posterior distribution of z will converge to a 
Gaussian as the number of observations (evidence) increases.

● Only applicable on real variables.

● Only focuses around the mode and can fail to capture global 
properties.

● No need to know Z.
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