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The course objective

 The course aims to provide students with basic
understanding of modern Bayesian inference
methods used in Bayesian Machine Learning.

e Being Bayesian is about managing uncertainty
and efficient use of data.

* In many tasks such as stock trading or speech
recognition, the uncertainty is inherent and there
IS always less data then we really need.
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What is Machine Learning?

* The design of computational systems that discover
patterns in a collection of data instances in an automated
manner.

* The ultimate goal is to use the discovered patterns to
make predictions on new data instances not seen before.
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 |nstead of manually encoding patterns in computer
programs, we make computers learn these patterns
without explicitly programming them.

Figure source [Hinton et al. 2006].
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Model-based Machine Learning

* We design a probabilistic model which explains how the data
IS generated.

* An inference algorithm combines model and data to make
predictions.

* Probability theory is used to deal with uncertainty in the
model or the data.

New Data
Data O
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Prediction
Inference 0: 0.900

Algorithm 1: 0.005
Prob. Model P 2:0.095
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Syllabus #1

* |ntroduction

 Random variables
 Sum rule, product rule, Bayes rule

Independence

Prior, likelihood, posterior, predictions

Basic probability distributions

* Types of priors
« Conjugate prior vs. Non-conjugate prior
* Proper prior vs. improper prior
* Informative prior vs. uninformative prior
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Syllabus #2

« Bayesian inference for parameters of the normal
distribution

« Unknown mean, known variance

« Known mean, unknown variance

 Unknown mean and variance, conjugate prior
 Unknown mean and variance, non-conjugate prior
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Syllabus #3

* Inference in discrete graphical models

« Variables, Parameters, Networks, Plate notation

e Conditional Independence

 Markov blanket

 Message passing, Belief propagation, Loopy belief propagation
* Approximate Inference

« Variational Inference / Bayes

« Expectation propagation

« Sampling methods

- Metropolis-Hastings, Gibbs, slice sampling, random walk
 Non-parametric Bayesian Methods

« (Gaussian processes
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Paradigm shift

* Point estimates vs. posterior estimates

An example:

* flip of coins (data): HT HH
e point estimate 3/4
 Bayesian estimate ?

* flip of coins (data) HTHHTHHH

e point estimate 3/4

 Bayesian estimate ?

* \We need distributions over parameters!
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True or False

- being Bayesian is just about having priors

+ being Bayesian is about managing uncertainty

- Bayesian methods are slow

+ Bayesian methods can be as fast as Expectation-Maximisation

- Non parametric means no parameters

+ Non parametric means the number of parameters grows as necessary
given the data

- Variational inference is complicated

+ Variational inference is an extension of Expectation-Maximization
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Course structure

 Mixed lectures and practicals
* Each of you will have its own lecture:

» description of some inference problem
 derivation of the solution

» presentation of implementation of the problem in
some programming language
- | prefer Python ;-) using only NumPy and SciPy
* Alot of work!
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Avallable problems

You can invent your own

Message passing, belief propagation, loopy belief propagation in discrete graphical models
Laplace approximation: The probit regression model

Variational inference: The probit regression model

Variational inference: 2D Ising Model

Variational inference: Unknown mean and variance of a Gaussian with improper priors.
Expectation Propagation: The Clutter Problem

Variational inference: The Clutter Problem

Expectation Propagation: The probit regression model

Bayesian inference for regression

Gibbs Sampling: Probit regression

Metropolis-Hastings Random walk: Logit regression

Gibbs Sampling: Probit regression in multi-class setting

Gaussian Processes: Sampling from a GP, inference GP with prior m(x) = 0 and k(x,x') = {squared
exponential, ration quadratic}, analyse impact of different covariance functions of the resulting
approximations.
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Basics of Probability Theory

Random variables

Sum rule, product rule, Bayes rule
Independence

Prior, likelihood, posterior, predictions
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Random variable

« Random variable (RV) is a variable whose value
IS subject to variations due to chance (i.e.
randomness, in a mathematical sense)

 Arandom variable conceptually does not have a
single, fixed value

* |t can take on a set of possible different values,
each with an associated probability

* We talk about a probabillity distribution for values

of some RV P( X)
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Examples of random variables

rolling a die (head or tail)

person's marriage status (no, yes)

person's number of children (0, 1, 2, ...)

person's height (real numbers between 0 and +inf)
temperature the next year the same day

parameters of the distributions of describing another RVs

Basic division of RV is:

e Discrete
 Continuous NPFL108 2014LS 16/37



Sum rule #1

e Let's have two RVs:

« X - person's marriage status

* Y - person's number of children
 Then

P(X=yes) is the probability that a person is married

P(Y=0) is the probability that a person has exactly one
child

P(X=yes, Y=0) is the JOINT probability that a person
IS married and has exactly one child

P(X=yes | Y=0) is the CONDITIONAL probability
that a person is married if we know that he/she has
exactly one child
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Sum rule #2

 Computes marginal probabilities from joint
probabillities.

 Sum rule says:

P(X)=2., P(X.Y)

P(X)=] P(X,Y)

* [n more precise notation:

P(X=x,)= ny P(X=x,, Y= yj)



Product rule

* Relates joint probability with conditional and
marginal probability marginal probability.

* Product rule says:

P(X,Y)=P(X|Y)P(Y)
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Bayes rule

* The theory of probability can be derived using just sum and product
rules

« Bayes' theorem gives the relationship between the probabilities of X and
Y and the conditional probabilities of X given Y and Y given Z

P(X,Y)=P(X|Y)P(Y)
_P(X,Y)_P(X]Y)P(Y)
P20 = Ry
P(X]Y)P(Y)
Y P(XIY) P y)




Independence

* Independence of X and Y-

P(X,Y)=P(X)P(Y)

* Conditional independence of X and Y given Z:

P(X,Y|Z)=P(X|Z) P Y|Z)



Bayesian Model Framework

* The probabilistic model M with parameters 0
explains how the data D is generated by
specifying the likelihood function p(D|6, M).

» Our initial uncertainty on 6 is encoded in the prior
distribution p(6|M).

 Bayes' rule allows us to update our uncertainty on
O given D (posterior):

P(D|0, M) P(6|M)
P(D|M)

P(0|D, M)=
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Bayesian predictions

* \We can then generate probabilistic predictions for
some new data point x given D and M using:

P(x|D,M)= | P(x|6)P(6|D, M)d®

 Example: Buttered toast phenomenon
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Probabilistic Graphical Models

The Bayesian framework requires to specify a high-dimensional
distribution p(x, , . .., X ) on the data, model parameters and

latent variables.
Working with fully flexible joint distributions is intractable!

We will work with structured distributions, in which the random
variables interact directly with only few others. These distributions
will have many conditional independences.

This structure will allow us to:
e Obtain a compact representation of the distribution.

« Use computationally efficient inference algorithms.

The framework of probabilistic graphical models allows us to
represent and work with such structured distributions in an
efficient manner.
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Examples of Probabilistic Graphical Models

Bayesian Network Markov Network

Season

t

Congestion

(FLH|C), (CLS|F,H) (ALC|B, D), (BLDIA, C)
(MLH, C|F), (MLC|F), ...

Graphs

Independencies

Figure source [Koller et al. 2009].
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Examples of Probabilistic Graphical Models

BN Examples: Naive Bayes BN Examples: Hidden Markov Model
~ ™
QQO con
X'é,l Xiz ? Xia
. ,
0,
Figure source [Murphy 2012]. Figure source [Murphy 2012].
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Basic probability distributions

» Bernoulli, Binomial

* Beta

» Categorical (Discrete), Multinomial
* Dirichlet

* (Multivariate) Normal

« Gamma and inverse gamma

e Wishart
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Bernoull

» Distribution for x € {0, 1} governed by p & [0, 1] such that p = p(x

= 1).

Bern(x;u)=u*(1—pn)" "
« E(x)=¢
« Var(x) = p(1 - )
A (- p)
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Binomial

 Binomial distribution is a variation of Bernoulli distribution for

multiple trials.

» Distribution form &€ {0, 1, .., N} governed by y € [0, 1] probability

of success in N trials.

Bin(m;N,u)=

« E(m)=Np
e Var(m) = Npu(1 — p).

o\ B
M (1—u)Y

E

0.05 0.10 0.15 0.20 0.25
L L 1 1 |

0.00

t - - -
iiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Beta

 Distribution for y &€ [0, 1] such as the probability
of a binary event.

Beta(ula, b) = Fsprpyk” (- w)Ph

cooo
ononon

PO w =l

T
|1

E(x) = a/(a+ b).
Var(x) = ab/((a+ b)*(a + b+ 1)).

pdf
0.0 0.5 1.0 =5 2.0 25 3.0

NAVS
—<

0.0 0.2 0.4 0.6 0.8 1.0

» Beta is very often used as a prior for parameters
of Bernoulli and Binomial distributions
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Multinomial

* We extract with replacement n balls of k different
categories from a bag.

- Let x and denote the number of balls extracted and P,
the probability, both of categoryi=1,...,k
* e.g.{0,0,5,2,4,0,0}

(_nl o xa Xk k _
ToiPr P it D i1 Xk=n

p(xlﬁ"'aXI('n:pla"'ﬂpk) — <

{ 0 otherwise
E(x;) = np;.

Varlg) —npil—n)

Cov(xi, x;) = —npip;(1 — pi).

NPFL108 2014LS 31/37



Dirichlet

Multivariate distribution over pu1, ..., ux € [0,1], where D% u; = 1.
Parameterized in terms of o« = (a1, ..., k) with a; >0 fori=1,..., k.
k k
Dir( ) M (2 im1 o H o
Ir( 1, ..., Mg|lox) = R
fipcano R L
1,
a;
E(ui) = k : >
63

Figure source [Murphy 2012].

* Dirichlet is very often used as a prior for parameters
of a Multinomial distribution

NPFL108 2014LS 32/37



Multivariate Gaussian

p(x|p, X) = : : exp{%(xu)TE_l(xu)} -

(2,”.).'1/2 |E|1/2

0.2

0.15

0.1

0.05

Figure source [Murphy 2012].
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Gamma

 Distribution for t>0governedbya>0and b >0

Gam(t;:a,b)= 1 bt e "

I'(a)

e E(t)=a/b
 Var(t) = a/b?

« Gamma is very often used as
a prior for a precision of a
normal distribution

* Inverse Gamma is typically

I e o= - — S

used as a prior for variance
Source Wikipedia  npFL108 2014Ls 34137



Wishart

* Wishart is an multivariate equivalent of gamma
distribution.

Distribution for the precision matrix A = X! of a Multivariate Gaussian.

W(Alw, v) = B(W, 2)|A|Y"P~1 exp {%Tr(W_lf\)} ?

where

D .
~ har—v 2 auDi? - DD—1)/4 v+1—1
B(W,v) = |W| (2 ™ Hr( 5 )) .

=1

E(A) = vW.
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Summary

With ML computers learn patterns and then use them to make
predictions.

With ML we avoid to manually encode patterns in computer programs.

Model-based ML separates knowledge about the data generation
process (model) from reasoning and prediction (inference algorithm).

The Bayesian framework allows us to do model-based ML using
probability distributions which must be structured for tractability.

Probabilistic graphical models encode such structured distributions by

specifying several Cls (factorizations) that they must satisfy.
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Thank you!

Filip JurCicek
Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek
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