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The course objective

● The course aims to provide students with basic 
understanding of modern Bayesian inference 
methods used in Bayesian Machine Learning.  

● Being Bayesian is about managing uncertainty 
and efficient use of data.

● In many tasks such as stock trading or speech 
recognition, the uncertainty is inherent and there 
is always less data then we really need.
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What is Machine Learning?

● The design of computational systems that discover 
patterns in a collection of data instances in an automated 
manner.

● The ultimate goal is to use the discovered patterns to 
make predictions on new data instances not seen before.

● Instead of manually encoding patterns in computer 
programs, we make computers learn these patterns 
without explicitly programming them.
Figure source [Hinton et al. 2006].
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Model-based Machine Learning
● We design a probabilistic model which explains how the data 

is generated.

● An inference algorithm combines model and data to make 
predictions.

● Probability theory is used to deal with uncertainty in the 
model or the data.
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Syllabus #1

● Introduction

● Random variables
● Sum rule, product rule, Bayes rule
● Independence
● Prior, likelihood, posterior, predictions
● Basic probability distributions

● Types of priors
● Conjugate prior vs. Non-conjugate prior
● Proper prior vs. improper prior
● Informative prior vs. uninformative prior
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Syllabus #2

● Bayesian inference for parameters of the normal 
distribution

● Unknown mean, known variance
● Known mean, unknown variance
● Unknown mean and variance, conjugate prior
● Unknown mean and variance, non-conjugate prior
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Syllabus #3
● Inference in discrete graphical models

● Variables, Parameters, Networks, Plate notation 

● Conditional Independence
● Markov blanket
● Message passing, Belief propagation, Loopy belief propagation

● Approximate Inference

● Variational Inference / Bayes 

● Expectation propagation

● Sampling methods

– Metropolis-Hastings, Gibbs, slice sampling, random walk
● Non-parametric Bayesian Methods

● Gaussian processes 

● Dirichlet processes
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Paradigm shift

● Point estimates vs. posterior estimates
●  An example:

● flip of coins (data): H T H H
● point estimate 3/4
● Bayesian estimate ?

● flip of coins (data): H T H H T H H H
● point estimate 3/4
● Bayesian estimate ?
● We need distributions over parameters!
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True or False
● - being Bayesian is just about having priors

● + being Bayesian is about managing uncertainty

     

● - Bayesian methods are slow

● + Bayesian methods can be as fast as Expectation-Maximisation

     

● - Non parametric means no parameters

● + Non parametric means the number of parameters grows as necessary 
given the data

  

● - Variational inference is complicated

● + Variational inference is an extension of Expectation-Maximization
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Course structure

● Mixed lectures and practicals
● Each of you will have its own lecture:

● description of some inference problem 
● derivation of the solution
● presentation of implementation of the problem in 

some programming language
– I prefer Python ;-) using only NumPy and SciPy

● A lot of work!
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Available problems
● You can invent your own

● Message passing, belief propagation, loopy belief propagation in discrete graphical models

● Laplace approximation: The probit regression model

● Variational inference: The probit regression model 

● Variational inference: 2D Ising Model

● Variational inference: Unknown mean and variance of a Gaussian with improper priors.

● Expectation Propagation: The Clutter Problem

● Variational inference: The Clutter Problem 

● Expectation Propagation: The probit regression model

● Bayesian inference for regression 

● Gibbs Sampling: Probit regression

● Metropolis-Hastings Random walk: Logit regression

● Gibbs Sampling: Probit regression in multi-class setting

● Gaussian Processes: Sampling from a GP, inference GP with prior m(x) = 0 and k(x,x')  = {squared 
exponential, ration quadratic}, analyse impact of different covariance functions of the resulting 
approximations.
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Basics of Probability Theory

● Random variables

● Sum rule, product rule, Bayes rule

● Independence

● Prior, likelihood, posterior, predictions
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Random variable

● Random variable (RV) is a variable whose value 
is subject to variations due to chance (i.e. 
randomness, in a mathematical sense)

● A random variable conceptually does not have a 
single, fixed value

● It can take on a set of possible different values, 
each with an associated probability

● We talk about a probability distribution for values 
of some RV

P (X)
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Examples of random variables

● rolling a die (head or tail)

● person's marriage status (no, yes)

● person's number of children (0, 1, 2, ...)

● person's height (real numbers between 0 and +inf)

● temperature the next year the same day

● parameters of the distributions of describing another RVs

● Basic division of RV is:
● Discrete
● Continuous
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Sum rule #1

● Let's have two RVs:
● X - person's marriage status
● Y - person's number of children

● Then 

● P(X=yes) is the probability that a person is married
● P(Y=0) is the probability that a person has exactly one 

 child
● P(X=yes, Y=0) is the JOINT probability that a person 

is married and has exactly one child
● P(X=yes | Y=0) is the CONDITIONAL probability 

that a person is married if we know that he/she has 
exactly one child
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Sum rule #2

● Computes marginal probabilities from joint 
probabilities.

● Sum rule says:

● In more precise notation:

P (X)=∑Y
P(X , Y)

P (X=x i)=∑y j
P(X=x i ,Y=y j)

P (X)=∫Y
P(X , Y)
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Product rule

● Relates joint probability with conditional and 
marginal probability marginal probability.

● Product rule says:

P (X ,Y)=P (X∣Y)P (Y)
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Bayes rule 
● The theory of probability can be derived using just sum and product 

rules

● Bayes' theorem gives the relationship between the probabilities of X and 
Y and the conditional probabilities of X given Y and Y given Z

P (X ,Y)=P (X∣Y)P (Y)

P (Y∣X)=
P (X ,Y)

P (Y)
=
P (X∣Y)P(Y)

P (Y)

=
P(X∣Y)P(Y)

∑X
P (X∣Y)P(Y)
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Independence

● Independence of X and Y:

● Conditional independence of X and Y given Z:

P (X ,Y)=P (X)P(Y)

P (X ,Y∣Z)=P(X∣Z)P(Y∣Z)
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Bayesian Model Framework

● The probabilistic model M with parameters θ 
explains how the data D is generated by 
specifying the likelihood function p(D|θ, M).

● Our initial uncertainty on θ is encoded in the prior 
distribution p(θ|M).

● Bayes’ rule allows us to update our uncertainty on 
θ given D (posterior):

P (θ∣D,M)=
P(D∣θ ,M )P(θ∣M )

P(D∣M )
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Bayesian predictions

● We can then generate probabilistic predictions for 
some new data point x given D and M using:

● Example: Buttered toast phenomenon

P (x∣D,M )=∫P(x∣θ)P (θ∣D,M)dθ
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Probabilistic Graphical Models
● The Bayesian framework requires to specify a high-dimensional 

distribution p(x
1
 , . . . , x

k
 ) on the data, model parameters and 

latent variables.

● Working with fully flexible joint distributions is intractable!

● We will work with structured distributions, in which the random 
variables interact directly with only few others. These distributions 
will have many conditional independences.

● This structure will allow us to:

● Obtain a compact representation of the distribution.
● Use computationally e cientffi  inference algorithms.

● The framework of probabilistic graphical models allows us to 
represent and work with such structured distributions in an 
e cient manner.ffi
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Examples of Probabilistic Graphical Models

Figure source [Koller et al. 2009].
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Examples of Probabilistic Graphical Models

BN Examples: Naive Bayes BN Examples: Hidden Markov Model
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Basic probability distributions

● Bernoulli, Binomial 
● Beta
● Categorical (Discrete), Multinomial
● Dirichlet
● (Multivariate) Normal 
● Gamma and inverse gamma
● Wishart 
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Bernoulli
● Distribution for x  {0, 1} governed by µ  [0, 1] such that µ = p(x ∈ ∈

= 1).

● E(x) = µ
● Var(x) = µ(1 − µ)

Bern (x ;μ)=μ
x
(1−μ)

1−x



 NPFL108 2014LS   29/37

Binomial
● Binomial distribution is a variation of Bernoulli distribution for 

multiple trials.

● Distribution for m  {0, 1, .., N} governed by µ  [0, 1] probability ∈ ∈
of success in N trials.

● E(m) = Nµ
● Var(m) = Nµ(1 − µ).

Bin (m ; N,μ)=(Nm)μm(1−μ)
N−m

Source Wikipedia
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Beta

● Distribution for µ  [0, 1] such as the probability ∈
of a binary event.

● Beta is very often used as a prior for parameters 
of Bernoulli and Binomial distributions
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Multinomial

● We extract with replacement n balls of k di erent ff
categories from a bag.

● Let x
i
 and denote the number of balls extracted and p

i
 

the probability, both of category i = 1, . . . , k 

● e.g. {0,0,5,2,4,0,0}
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Dirichlet

● Dirichlet is very often used as a prior for parameters 
of a Multinomial distribution
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 Multivariate Gaussian
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Gamma

● Distribution for τ > 0 governed by a > 0 and b > 0

Gam (τ ;a , b)=
1

Γ(a )
ba τa−1e−b τ

● E(τ) = a/b
● Var(τ) = a/b2

● Gamma is very often used as 
a prior for a precision of a 
normal distribution

● Inverse Gamma is typically 
used as a prior for variance

Source Wikipedia
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Wishart

● Wishart is an multivariate equivalent of gamma 
distribution.
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Summary

● With ML computers learn patterns and then use them to make 
predictions.

● With ML we avoid to manually encode patterns in computer programs.

● Model-based ML separates knowledge about the data generation 
process (model) from reasoning and prediction (inference algorithm).

● The Bayesian framework allows us to do model-based ML using 
probability distributions which must be structured for tractability.

● Probabilistic graphical models encode such structured distributions by

specifying several CIs (factorizations) that they must satisfy.
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Thank you!
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