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Outline

● User simulation

● Dialogue act level simulations
● N-gram dialogue act model
● Agenda based simulation
● ISU based approach
● Bayesian user simulation

● Word level simulation

● Speech level simulation
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User simulation

● Ideally, the POMDP dialogue systems would be 
optimised in interaction with real users

● The problem
● state-of-the-art techniques still needs to more than 

10000 dialogues 

● User simulators are used to train and test 
POMDP techniques

● User simulators are mostly hand-crafted, though 
parametrised
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User simulation

● It is like building another SDS
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Error simulation
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Types of user simulation

● Dialogue act level, Word level, Speech level
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Dialogue act level simulation
● Dialogue act level

● S: request(food_type)
● U: inform(food_type=Chinese)

● Many different implementations
● bigram model for dialogue act types and random sampling slots
● agenda based simulator
● using user model to sample user dialogue acts

● Output dialogue act confusion model
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N-gram level user simulation

● Dialogue act level simulation

● Predict the next dialogue act given some context

● Sample from a distribution
● sampling insures variability in the output

● Typical context:
● None – unigram models
● Previous dialogue act – bigram models

P (d∣...)
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N-gram dialogue act user simulation 

● In general,             is too complex to model 
explicitly

● Model dialogue act type independently of the 
slots

● Slots names depends on DAT

● or are drawn from a uniform distribution

P (d∣...)

P (dat∣...)≈P (dat t+1∣dat t)≈P (dat t+1)

request → inform
inform → inform
inform → deny
inform → confirm
….

P (snt+1∣dat t+1)
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N-gram dialogue act user simulation

● Can be easily learned from the collected data
● These users are not rational due to small context 

considered

● Values are very often randomly selected
● there is not enough data to estimate probabilities for 

this
 

● Example:
● S: request(pricerange)
● U: inform(pricerange=cheap)
● S: request(pricerange)
● U: inform(pricerange=expensive)

The use did not changed 
its mind. He did not had a clue 

about what he said before.  
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Agenda based simulations
● Inspired by agenda based approach for SDS: 

● X Wei and AI Rudnicky. 1999. An agenda-based dialog man- agement architecture 
for spoken language systems. In Proc. of IEEE ASRU. Seattle,WA.

● In this case, the dialogue state is factored into 
● the goal – G
● the agenda – A

● The goal ensures that the user behaves in a consistent, 
goal-directed manner.

● For example in tourist information domain, the goal can 
be further factored into
● requirements - R
● constraints - C
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Agenda based simulations

● The user agenda is a stack-like structure 
containing the pending user dialogue acts 

● Note: the agenda is a special way of representing 
a dialogue policy and the context history at the 
same time 

● At the start of the dialogue the agenda contains
● Inform acts about all constraints
● Request act for all requirements
● Bye dialogue act
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Agenda update

● Based on the systems responses, update the 
agenda of the simulator, e.g. what to say next

● Although it can have probabilistic representation, 
it is mostly done deterministically, e.g.:
● If system misunderstands then the user simulator puts 

on the agenda a correction

● Since agenda operates with a stack-like structure, 
the allowed operation are:
● push and pop acts to and from agenda
● the dialogue end when bye() act is popped of the 

stack

P (a t+1∣a t , g t , ua : t)
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Example

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., & Young, S. (2007). Agenda-based User Simulation for 
Bootstrapping a POMDP Dialogue System. Proceedings of HLT/NAACL. Rochester, NY.
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Agenda update

● Agenda update tends to be complex
● due to limited number of ways of updating the agenda

● !!! the update is limited to make its use easier !!!

● Agenda update is unnecessary factored into to 
too small and specific operations

● Some trivial things are just too complex to be 
achieved with push and pop operations
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ISU based approach

● ISU based approach would simply build a 
dialogue system behaving like a user:

● Such system:
● would track what the dialogue systems said
● compared that information with the goals of the user
● then made it decisions using either:

– a handcrafted policy
– a stochastic policy

● To limit complexity of the dialogue policy
● summary action can be used
● they can be tuned to needs of a user simulator
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ISU based approach

● It is like building a dialogue system without 
reinforcement learning
● we can learn stochastic policy using maximum 

likelihood

● We do not want to be better than a user

● We want to do exactly what a user is doing

● Though, we could use reward function to 
constrain our model to, for example, cooperative 
policies
● e.g.: a user wants to succeed in a dialogue
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Bayesian approach

● Use model similar to the dialogue model in a 
dialogue manager
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Sample from the Bayesian model

● Sample next dialogue state

● Sample next user action

● Problem
● it is not always rational 
● this is similar to the

N-gram dialogue act 

level simulations

s∼P (st+1∣st , a t)
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Bayesian approach

● Ideally the model for simulations and the dialogue  
system would be the same

● However, as typical for generative models: 
● generative models can be useful for classification
● without being good for generation!

● The model for user simulations must be:
● more constrained → more (probabilistic) handcrafting 
● it needs longer context
● it turns out to be complex and hard to maintain

● However, it appears to be the principled way to do
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Error generation

● So far, we wanted from the user simulator 
reasonable behaviour

● However, for training a robust dialogue system 
we need a model of errors: ASR + SLU

● Ideally, we can control this error model using a 
simple variable: error rate
● measure of the number of errors in the N-best lists / 

top hypothesis

inform(food=Italian)&request(price): 1.0 inform(food=Italian) : 0.50
inform(food=Italian)&request(price) : 0.20
request(price) : 0.20
confirm(food=Italian) : 0.05
null() : 0.05
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Error generation

● We want to control both the accuracy of the top 
hypothesis and the distribution of the accuracy at 
different positions in the N-best list

N-best depth

accurac
y

N-best depth

accurac
y

VS.



 NPFL099 2013LS   24/38

Model for error generation

● Error model : accuracy = P(position in the N-best list)

● Sample position of 
the correct hypothesis

N-best depth

accurac
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N-best depth

accurac
y

This is multinomial, 
possibly infinite, distribution.
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Model for error generation

● Example implementation

● Having a position of the correct hypothesis

● We have to fill in the missing hypotheses

P (n∣err ;α)≈e
−α

n
err

inform(food=Italian)&request(price): 1.0 … : 0.50
inform(food=Italian)&request(price) : 0.20
… : 0.20
… : 0.05
… : 0.05
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Model for error generation

● Sample from a dialogue act confusion model

● This is usually factored into

● And then the individual probabilities are usually 
handcrafted:

● typically ignores err and n

d∼P (d err∣d , err , n)

d∼∏i
P (dact err

i
∣dact i , err , n)P (snerr

i
∣dact err

i , sni , err , n)

P (sverr
i ∣snerr

i , err , n)
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Trained model for error generation

● Use logistic (multiclass) regression to train the 
model from errors generated by ASR, SLU

● Every time you change ASR (AM, LM) or SLU, 
you have to re-train these models

P (dact err∣dact , err , n)≈e
θ
T
Φ(dacterr , dact ,err , n)

P (snerr
i
∣act err

i , sni , err , n)≈eθ
T
Φ(snerr , acterr , sn , err , n)

P (sverr
i
∣snerr

i , err , n)≈eθ
T
Φ( sverr

i , snerr
i ,err , n)
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Word level user simulation

● In addition to dialogue act level simulation
● implements reasoning and goal oriented behaviour

● It include the generation of sentences
● e.g. using a corpus of dialogue act annotated sentences

● The confusion model then operate on words
● it learns mapping between correct word strings and 

confused words
● it can use again pre-recorded and consequently 

recognised corpus
● however, some generalisation is needed to obtain larger 

variability in the output
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Word level user simulation

● Tries to solve the problem of similarity of 
● inform(type=bar) - “A bar please!” 
● inform(drinks=beer) - “Uh beer please!”

● and dissimilarity of 

● inform(type=restaurant) - “A restaurant please!”

● In general, semantically similar items does not 
have to be similar on the word/phone level
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Word level simulation

● Phone level simulation would be ideal
● However, this is far too complex

● It is more efficient to learn how to confuse 
individual words or word sequences

● Note: this is still too computationally expensive 
anyway
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Word level confusion model

Schatzmann, J., Thomson, B., & Young, S. (2007). Error Simulation for Training Statistical 
Dialogue Systems. ASRU (pp. 2-7). Kyoto, Japan.

P (w̃u∣wu)=∑
λ
P (w̃u ,λ∣wu)
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Utterance generation model

● For error generation, a simple template 
generation model can be considered

● Templates can be easily derived from the corpus 
using a database of slot values

● P(template|dialogue act) can be also collected

Source: inform(food=Chinese, pricerange=cheap) 
CHINESE FOOD IN THE CHEAP PRICERANGE

Template: inform(food=$X, pricerange=$Y) 
$X FOOD IN THE $Y PRICERANGE

Unseen: inform(food=French, pricerange=expensive) 
FRENCH FOOD IN THE EXPENSIVE PRICERANGE
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Word confusion model

● At the word-level, ASR confusions can be viewed 
as translations of a source utterance w_s to a 
confused target utterance w_t

P (w̃u∣wu)=∑
λ
P (w̃u ,λ∣wu)
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Word confusion model

● There are many ways how to define this 
confusion model 

● Nevertheless, all depend on some alignment of 
between w_s and w_t

● The easiest is to use a Levenshtein distance
● automatically generated alignment
● word level with costs defined on the letter/phone level

● This is a bit different from machine translation 
since we work with the same language on both 
sides
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Word confusion model

● Once you get the alignments, 
● you can compute word / word sequence confusion 

model
● e.g. "A BAR"  maps to 

– "ALL", "ART", "A BAR", "A BAR", "A CAR", "BAR", "BAR", 
"BAR", "BAR", "CAR"

● and corresponding probabilities

● Then the following can be used compute the 
probability of the alignment

P (w̃u ,λ∣wu)≈∏i
P (w̃λ i

∣wλ i
, wλ i−1

, ̃wλ i−1
)

≈∏i
P (w̃λi

∣wλ i
)
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Types of user simulation

● Dialogue act level, Word level, Speech level
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Speech level user simulation 

● In addition to word level simulation, it generate speech

● The generation of speech is done using TTS on correctly 
generated text

● The noise is added by simply mixing generated speech 
and some artificial noise

● The noise is controlled by its volume and type

● Problems:
● The generated text has low variability and can be 

unnatural in some cases
● The synthesised speech has low variability
● Obviously, the acoustic noise is not responsible for all 

uncertainty in the SDS input
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Thank you!

Filip Jurčíček
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Charles University in Prague

Czech Republic
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