NPFL099 - Statistical dialogue systems

User simulation

Filip Jurčíček

Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

Version: 14/05/2013

Outline

- User simulation
- Dialogue act level simulations
 - N-gram dialogue act model
 - Agenda based simulation
 - ISU based approach
 - Bayesian user simulation
- Word level simulation
- Speech level simulation

POMDP Dialogue systems

Ideally the policy is optimized to maximize the reward function

User simulation

- Ideally, the POMDP dialogue systems would be optimised in interaction with real users
- The problem
 - state-of-the-art techniques still needs to more than 10000 dialogues
- User simulators are used to train and test POMDP techniques
- User simulators are mostly hand-crafted, though parametrised

User simulation

• It is like building another SDS

Error simulation

Types of user simulation

• Dialogue act level, Word level, Speech level

Dialogue act level simulation

- Dialogue act level
 - S: request(food_type)
 - U: inform(food_type=Chinese)
- Many different implementations
 - bigram model for dialogue act types and random sampling slots
 - agenda based simulator
 - using user model to sample user dialogue acts
- Output dialogue act confusion model

N-gram level user simulation

- Dialogue act level simulation
- Predict the next dialogue act given some context P(d|...)
- Sample from a distribution
 - sampling insures variability in the output
- Typical context:
 - None unigram models
 - Previous dialogue act bigram models

N-gram dialogue act user simulation

- In general, P(d|...) is too complex to model explicitly
- Model dialogue act type independently of the slots

$$P(dat|...) \approx P(dat_{t+1}|dat_t) \approx P(dat_{t+1})$$

request \rightarrow inform inform \rightarrow inform inform \rightarrow deny inform \rightarrow confirm

Slots names depends on DAT

 $P(sn_{t+1}|dat_{t+1})$

• or are drawn from a uniform distribution

NPFL099 2013LS 10/38

N-gram dialogue act user simulation

- Can be easily learned from the collected data
- These users are not rational due to small context considered
- Values are very often randomly selected
 - there is not enough data to estimate probabilities for this
- Example:
 - S: request(pricerange)
 - U: inform(pricerange=cheap)
 - S: request(pricerange)
 - U: inform(pricerange=expensive)

The use did not changed its mind. He did not had a clue about what he said before.

Agenda based simulations

- Inspired by agenda based approach for SDS:
 - X Wei and AI Rudnicky. 1999. An agenda-based dialog man- agement architecture for spoken language systems. In Proc. of IEEE ASRU. Seattle, WA.
- In this case, the dialogue state is factored into
 - the goal G
 - the agenda A
- The goal ensures that the user behaves in a consistent, goal-directed manner.
- For example in tourist information domain, the goal can be further factored into
 - requirements R
 - constraints C

Agenda based simulations

- The user agenda is a stack-like structure containing the pending user dialogue acts
- Note: the agenda is a special way of representing a dialogue policy and the context history at the same time
- At the start of the dialogue the agenda contains
 - Inform acts about all constraints
 - Request act for all requirements
 - Bye dialogue act

Agenda update

• Based on the systems responses, update the agenda of the simulator, e.g. what to say next

$$P(a_{t+1}|a_t, g_t, u_{a:t})$$

- Although it can have probabilistic representation, it is mostly done deterministically, e.g.:
 - If system misunderstands then the user simulator puts on the agenda a correction
- Since agenda operates with a stack-like structure, the allowed operation are:
 - push and pop acts to and from agenda
 - the dialogue end when bye() act is popped of the stack

Example

C_0	=	$\begin{bmatrix} type = bar \\ drinks = beer \\ area = central \end{bmatrix}$	Usr 2 Sys 2		No, beer please! A bar serving beer, correct?
R_0	=	$\left[\begin{array}{c}name = \\ addr = \\ phone = \end{array}\right]$	4		$\begin{bmatrix} affirm()\\ inform(pricerange = cheap)\\ inform(area = central) \end{bmatrix}$
Sys 0		Hello, how may I help you?	A_3	=	request(name)
		$\begin{bmatrix} inform(type = bar)\\ inform(drinks = beer)\\ inform(area = central) \end{bmatrix}$			$\begin{bmatrix} request(addr) \\ request(phone) \\ bye() \end{bmatrix}$
A_1	=	request(name)	Usr 3		Yeah something cheap in the town centre.
		request(addr)	Sys 3		Murphy's on Main Square serves cheap beer.
Usr 1		$\begin{bmatrix} request(phone) \\ bye() \end{bmatrix}$ I'm looking for a nice bar serving beer.	A_4	=	$\left[\begin{array}{c} request(phone) \\ bye() \end{array}\right]$
Sve 1		Ok a wine bar. What pricerange?	Usr 4		Ok, and what's the phone number?
5y5 1		Sk, a white bail. What pricerange:	Suc A		The number is 706 60 94
A_2	=	$ \begin{array}{c} \underline{negate(drinks = beer)}\\ inform(pricerange = cheap)\\ inform(area = central)\\ request(name)\\ request(addr)\\ request(phone)\\ bue() \end{array} $	Sys 4 A_5 Usr 5	=	The number is 796 69 94. $\begin{bmatrix} bye() \end{bmatrix}$ Thanks, goodbye!

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., & Young, S. (2007). Agenda-based User Simulation for Bootstrapping a POMDP Dialogue System. Proceedings of HLT/NAACL. Rochester, NY. NPFL099 2013LS 15/38

Agenda update

- Agenda update tends to be complex
 - due to limited number of ways of updating the agenda
 - !!! the update is limited to make its use easier !!!
- Agenda update is unnecessary factored into to too small and specific operations
- Some trivial things are just too complex to be achieved with push and pop operations

ISU based approach

- ISU based approach would simply build a dialogue system behaving like a user:
- Such system:
 - would track what the dialogue systems said
 - compared that information with the goals of the user
 - then made it decisions using either:
 - a handcrafted policy
 - a stochastic policy
- To limit complexity of the dialogue policy
 - summary action can be used
 - they can be tuned to needs of a user simulators 2013LS 17/38

ISU based approach

- It is like building a dialogue system without reinforcement learning
 - we can learn stochastic policy using maximum likelihood
- We do not want to be better than a user
- We want to do exactly what a user is doing
- Though, we could use reward function to constrain our model to, for example, cooperative policies
 - e.g.: a user wants to succeed in a dialogue

Bayesian approach

Use model similar to the dialogue model in a dialogue manager

Sample from the Bayesian model

• Sample next dialogue state

$$s \sim P(s_{t+1}|s_t, a_t)$$

Sample next user action

$$o_{t+1} \sim P(s_{t+1})$$

- Problem
 - it is not always rational
 - this is similar to the N-gram dialogue act level simulations

NPFL099 2013LS 20/38

Bayesian approach

- Ideally the model for simulations and the dialogue system would be the same
- However, as typical for generative models:
 - generative models can be useful for classification
 - without being good for generation!
- The model for user simulations must be:
 - more constrained \rightarrow more (probabilistic) handcrafting
 - it needs longer context
 - it turns out to be complex and hard to maintain
- However, it appears to be the principled way to do

Error generation

- So far, we wanted from the user simulator reasonable behaviour
- However, for training a robust dialogue system we need a model of errors: ASR + SLU

- Ideally, we can control this error model using a simple variable: error rate
 - measure of the number of errors in the N-best lists / top hypothesis

Error generation

 We want to control both the accuracy of the top hypothesis and the distribution of the accuracy at different positions in the N-best list

Model for error generation

• Error model : accuracy = P(position in the N-best list)

Model for error generation

• Example implementation

$$P(n|err;\alpha) \approx e^{-\alpha \frac{n}{err}}$$

Having a position of the correct hypothesis

• We have to fill in the missing hypotheses

Model for error generation

- Sample from a dialogue act confusion model $d \sim P(d_{err} | d, err, n)$
- This is usually factored into

$$d \sim \prod_{i} P(dact^{i}_{err}|dact^{i}, err, n) P(sn^{i}_{err}|dact^{i}_{err}, sn^{i}, err, n)$$

$$P(sv^{i}_{err}|sn^{i}_{err}, err, n)$$

- And then the individual probabilities are usually handcrafted:
 - typically ignores err and n

Trained model for error generation

 Use logistic (multiclass) regression to train the model from errors generated by ASR, SLU

$$P(dact_{err}|dact, err, n) \approx e^{\theta^T \Phi(dact_{err}, dact, err, n)}$$

$$P(sn_{err}^{i}|act_{err}^{i},sn^{i},err,n) \approx e^{\theta^{T}\Phi(sn_{err},act_{err},sn,err,n)}$$

$$P(sv_{err}^{i}|sn_{err}^{i}, err, n) \approx e^{\theta^{T}\Phi(sv_{err}^{i}, sn_{err}^{i}, err, n)}$$

 Every time you change ASR (AM, LM) or SLU, you have to re-train these models

Word level user simulation

- In addition to dialogue act level simulation
 - implements reasoning and goal oriented behaviour
- It include the generation of sentences
 - e.g. using a corpus of dialogue act annotated sentences
- The confusion model then operate on words
 - it learns mapping between correct word strings and confused words
 - it can use again pre-recorded and consequently recognised corpus
 - however, some generalisation is needed to obtain larger variability in the output

Word level user simulation

- Tries to solve the problem of similarity of
 - inform(type=bar)

- "A bar please!"
- inform(drinks=beer) "Uh beer please!"
- and dissimilarity of
 - inform(type=restaurant) "A restaurant please!"

 In general, semantically similar items does not have to be similar on the word/phone level

Word level simulation

- Phone level simulation would be ideal
- However, this is far too complex
- It is more efficient to learn how to confuse individual words or word sequences
- Note: this is still too computationally expensive anyway

Word level confusion model

$$P(\tilde{a_u}|a_u) = \sum_{\tilde{w_u}} \sum_{w_u} P(\tilde{a_u}, \tilde{w_u}, w_u|a_u)$$

=
$$\sum_{\tilde{w_u}} \underbrace{P(\tilde{a_u}|\tilde{w_u})}_{\text{semantic decoder}} \sum_{w_u} \underbrace{P(\tilde{w_u}|w_u)}_{\text{confusion model}} \underbrace{P(w_u|a_u)}_{\text{utterance generation}}$$

$$P(\tilde{w}_{u}|w_{u}) = \sum_{\lambda} P(\tilde{w}_{u},\lambda|w_{u})$$

Schatzmann, J., Thomson, B., & Young, S. (2007). Error Simulation for Training Statistical Dialogue Systems. ASRU (pp. 2-7). Kyoto, Japan.

NPFL099 2013LS 31/38

Utterance generation model

• For error generation, a simple template generation model can be considered

Source: inform(food=Chinese, pricerange=cheap) CHINESE FOOD IN THE CHEAP PRICERANGE

- Template: inform(food=\$X, pricerange=\$Y) \$X FOOD IN THE \$Y PRICERANGE
- Unseen: inform(food=French, pricerange=expensive) FRENCH FOOD IN THE EXPENSIVE PRICERANGE
- Templates can be easily derived from the corpus using a database of slot values
- P(template|dialogue act) can be also collected

Word confusion model

 At the word-level, ASR confusions can be viewed as translations of a source utterance w_s to a confused target utterance w_t

$$P(\tilde{W}_{u}|W_{u}) = \sum_{\lambda} P(\tilde{W}_{u}, \lambda|W_{u})$$

Word confusion model

- There are many ways how to define this confusion model
- Nevertheless, all depend on some alignment of between w_s and w_t
- The easiest is to use a Levenshtein distance
 - automatically generated alignment
 - word level with costs defined on the letter/phone level
- This is a bit different from machine translation since we work with the same language on both sides

Word confusion model

- Once you get the alignments,
 - you can compute word / word sequence confusion model
 - e.g. "A BAR" maps to
 - "ALL", "ART", "A BAR", "A BAR", "A CAR", "BAR", "BAR", "BAR", "BAR", "CAR"
 - and corresponding probabilities
- Then the following can be used compute the probability of the alignment

$$P(\tilde{W}_{u},\lambda|W_{u}) \approx \prod_{i} P(\tilde{W}_{\lambda_{i}}|W_{\lambda_{i}},W_{\lambda_{i-1}},\tilde{W}_{\lambda_{i-1}})$$
$$\approx \prod_{i} P(\tilde{W}_{\lambda_{i}}|W_{\lambda_{i}})$$

Types of user simulation

• Dialogue act level, Word level, Speech level

Speech level user simulation

- In addition to word level simulation, it generate speech
- The generation of speech is done using TTS on correctly generated text
- The noise is added by simply mixing generated speech and some artificial noise
- The noise is controlled by its volume and type
- Problems:
 - The generated text has low variability and can be unnatural in some cases
 - The synthesised speech has low variability
 - Obviously, the acoustic noise is not responsible for all uncertainty in the SDS input NPFL099 2013LS 37/38

Thank you!

Filip Jurčíček

Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

