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Outline

● Stochastic action selection 

● Policy gradients
● Actor Critics
● Natural Actor Critic
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Action selection

● Dialogue policy selects actions given the belief state
 

● Hand-crafted
● If                                              then request(food)
● If                                              then confirm(food = x)
● ...

● Deterministic

● Stochastic
● where     are the policy parameters 

a∼π(.∣b(. ; τ) ;θ)

max
x
p( food=x)<0.3

θ

π (b(. ; τ))=argmax
a '

Qπ(b(. ; τ) , a ' ; θ)

0.3<max
x
p ( food=x)<0.7
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Qπ (s , a )=r (s , a )+∑s '
P (s '∣s , a )Qπ (s ' ,π (s ' ))

Deterministic policies

● To get a dialogue policy one can define:
●             - expected future reward of 

– for taking action a 
– in state s 

● An optimal policy can be expressed as

● where 

R = ∑
t=1,s1=s , a1=a

r (st , a t)Q(s , a )

π (s )=argmax
a '

Qπ (s , a ' )

This is not generally available! 

Therefore it is approximated from data, e.g as in SARSA.
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Q-function approximation

● In the previous lecture, we approximated 

● Then, we used SARSA to compute the 
approximation

● Instead of parametric methods, non-parametric 
algorithms can be used

Qπ (b , a ; θ)≈θT⋅φ(b , a )

Qπ (b , a ;θ)≈θT⋅φ(b , a)
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Grid based approach
● In grid based approach

● Q-function is computed only at discrete points 

φ(b , a )
b , a
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Grid based approach
● Every time we need a Q value for (b,a)

● We find a nearest point 
● based on some metric 
● and use a Q value at the that nearest point

φ(b , a )

φ(b ', a ')

m(φ(b ,a ) ,φ(b ' , a '))

φ(b ', a ')

Q(b , a )≈Q(b ' , a ')
b , ab , a

b ' , a '
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K-Means approach

● Although the previous approach looks a bit adhoc
● it works

● However, more importantly it exhibits some interesting 
properties
● it is non-parametric aka K-Means

● In K-Means approach, Q value does not depend only on 
one (b',a) but on K values which are then averaged

<
φ(b , a )

Q(b ,a )≈w1Q(b ', a ')+w2Q(b ' ' , a ' ')+ ...
b , a
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Q function approximation using GP

● This can be generalised using Gaussian Processes 

● Gaussian Processes are 
non-parametric  Bayesian 
approach  for regression

● The idea is that Q(b,a) depends on all observed rewards 
at all visited (b,a) points
● and we are learning weights of theses grid points
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Stochastic policies

● So far, we considered estimation of 
approximation of a Q-function
● an expected cumulative reward for taking an action a 

in a belief state b

● This does not have to the most efficient 
thing to do

● When modelling a policy
● we are not really interested in the expected reward

● We want to know what to do next – an 
action
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Stochastic policy

● A stochastic policy models directly action 
selection process

● where    are the policy parameters

● Although each turn we sample the actions
● instead of taking the best action

● It can be shown that this can be optimal too

a∼π(.∣b(. ; τ) ;θ)

θ

π (b(. ; τ))=argmax
a '

Qπ(b(. ; τ) , a ' ; θ)
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Stochastic policy

● A convenient way to define a stochastic policy is

● Again, we use a extracted features to convert 
POMDP problem to MDP 

● The nice property of this Gibbs policy is that it is 
differentiable with respect to 

● Remember, we choose the approximation to be 
“nice”

a∣b. ; ;  ∝ e
T
⋅ a , b . ;

θ



 NPFL099 2013LS   14/32

Policy gradients method

● Objective is to maximize expected reward

● Gradient ascent

J (θ , τ)=E [ 1T∑t=1
T

r (st , a t)∣πθ , τ]

θ '=θ+β0∇θ J (θ , τ)

τ '=τ+β1∇ τ J (θ , τ)

Policy parameters update

Model parameters update
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Policy gradients method

● Learn to take an action given the observed 
history

● History (observed)

● We observe
● observations (e.g. users dialogue acts)
● actions (e.g. systems dialogue acts)

a t∣ht≈a t∣bht ;  ; 

ht={a 0 , o1 , a 1 , , a t−1 , ot }
actionobservation

This is what 
we really want!
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Objective function for POMDPs

● Although we do not observe a state of a 
dialogue, it is easier if we can work with it

● Full history (trajectory)

● Equivalent objective function:

 

● is expected reward of full dialogue history H

H T={hT , s0 :T }

J  ,=∫ pH ;  ,RH dH

unobserved states
Good for derivation! 

All dependencies 
on s will cancel later
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Approximation of the gradient

=∫∇ p(H ; θ , τ)R(H )dH

=∫ p H ; ,∇ log p H ;  ,RH dH

∇ log p (H ; θ , τ)=
1

p(H ;θ , τ)
∇ p(H ; θ , τ)

● We used a “log-ratio trick”

∇ J (θ , τ)=∇∫ p(H ;θ , τ)R(H )dH
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Monte Carlo approximation 

∇ J (θ , τ)≈ 1
N∑n=1

N

∇ log p(H n ; θ , τ)R(H n)

● Monte Carlo approximation of the gradient

● by observing dialogues and received rewards

∇ J (θ , τ)=∫ p(H ; θ , τ)∇ log p(H ; θ , τ)R(H )dH
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Probability of a full dialogue history

● As a result

pH ;  ,= p s0∏
t=1

T

p ot∣st p st∣a t−1 , st−1 a t−1∣bht−1 ;  ; 

∇ J (θ , τ)≈ 1
N∑n=1

N

∑
t=0

T n

∇ log π(a t
n∣b(ht

n ; τ); θ)R(H t
n)

∇ log p (H ; θ , τ)=∑
t=0

T

∇ logπ(a t∣b(ht ; τ) ;θ)+const.
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Gibbs policy

● It is easy to get                                      as it is 
“linear” in

● However,                                    is impossible to 
compute analytically

● Φ is usually a handcrafted function which extracts  
non-continuous, very often binary features

∇ loga∣b. ; ; 


∇ loga∣b. ; ; 

a∣b. ; ;  ∝ e
T
⋅ a , b . ;
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Actor critic method

● Since we can compute 

● We can derive an algorithm for updating the 
policy parameters 

∇ loga∣b. ; ; 



● This results in

∇θ J (θ , τ)≈
1
N∑n=1

N

∑
t=0

T n

∇θ logπ(a t
n∣b(ht

n ; τ) ; θ)R(H t
n)
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Expected reward approximation

●           is an expectation over all rewards for
● which is not normally available and we have to 

compute it

●           can be approximated by a function which is 
compatible with the distribution

● the approximation cannot be arbitrary since the 
approximation can introduce some bias into the 
estimate gradient

R(H t
n) H t

n

R(H t
n)

π(a∣b(. ; τ); θ)

R(H n)≈R(H n ; w)=∑
t=0

T n

∇ θ log π(a t
n∣b(ht

n ; τ) ;θ)Tw+C
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Expected reward approximation

● To compute the expected reward

● Least squares can be used  
● replace                by observed rewards

at the end of dialogues

R(H t
n)

r n=∑
t=0

T

∇θ logπ(a t
n∣b(ht

n ; τ) ; θ)Tw+C ∀ n∈{1,... , N }

r n
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Actor critic algorithm

● Having the approximation of 

● We can construct a final gradient

● Interestingly, if you ignore the constant C you get 
faster convergence 

● removing it lowers the variance of the gradient

R(H t
n)

∇θ J (θ , τ)≈
1
N∑n=1

N

∑
t=0

T n

∇θ log π(a t
n∣b(ht

n ; τ) ;θ)

(∇θ log π(a∣b(ht
n ; τ) ;θ)Tw+C )
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Natural gradient

vanilla gradient
natural gradient

∇̃θ J (θ , τ)=F (θ)
−1∇ J (θ , τ)

● Geometry of the parameter space is important

Fisher information matrix
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Natural Actor Critic

● Uses natural gradient to update the policy 
parameters

● After substitution

∇̃θ J (θ , τ)≈F (θ)
−1 1
N∑n=1

N

∑
t=0

T n

∇ θ log π(a t
n∣b(ht

n ; τ); θ)

∇θ logπ(a∣b(ht
n ; τ) ; θ)Tw

∇̃θ J (θ , τ)=F (θ)
−1∇ J (θ , τ)
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∇̃θ J (θ , τ)≈F (θ)
−1 1
N∑n=1

N

∑
t=0

T n

∇ θ log π(a t
n∣b(ht

n ; τ); θ)

∇θ logπ(a∣b(ht
n ; τ) ; θ)Tw

Natural Actor Critic

● Therefore, it holds true

∇̃θ J (θ , τ)=F (θ)
−1∇ J (θ , τ)≈F (θ)−1 F (θ)w=w

One can notice that this is an estimate 
of the Fisher information matrix
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Natural Actor Critic

● The Fisher matrix does not have to be computed

● The core of the NAC method uses least squares 
algorithm to solve

● Update the parameters

r n=∑t=0

T n

∇θ logπ(a t
n∣bt

n ,θ)T⋅wθ+C ∀ n∈1,... , N

θ '=θ+βθwθ
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NAC: Summary
● Natural Actor Critic method is an iterative algorithm

● Sample some dialogues
● Collect relevant statistics 

– observations, actions, rewards
● Compute the natural gradient

● Using natural gradient is orders of magnitude more 
efficient

● NAC needs much more dialogues than GP-SARSA

r n=∑t=0

T n

∇θ logπ(a t
n∣bt

n ,θ)T⋅wθ+C ∀ n∈1,... , N
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Thank you!
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User simulation

● Ideally the POMDP dialogue systems would be 
optimised in interaction with real users

● The problem
● state-of-the-art techniques still needs to more than 

10000 dialogues 

● User simulators are used to train and test 
POMDP techniques

● User simulators are mostly hand-crafted, though 
parametrised
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User simulators
● Mostly implemented on the dialogue act level

● S: request(food_type)
● US: inform(food_type=Chinese)

● Many different implementations
● bigram model for dialogue act types and random sampling slots
● agenda based simulator
● using user model to sample user dialogue acts

g'
type

g'
food

d'
type

u'

a

g''
type

g''
food

d''
type

u''

a'

o' o''

d'
food

d''
food

method'

discourse'

method''

discourse''
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