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Belief monitoring

e Some researchers:

enumerate the most likely states and prune the others

mixture model belief monitoring

- J. Henderson and O. Lemon, “Mixture model POMDPs for efficient
handling of uncertainty in dialogue management,” pp. 73-76, Jun. 2008.

e group similar states

- S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K.
Yu (2010). "The Hidden Information State Model: a practical
framework for POMDP-based spoken dialogue management."”

belief propagation

- B. Thomson and S. Young (2010). "Bayesian update of dialogue state: A
POMDP framework for spoken dialogue systems."
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Grouping similar states

* Hidden Information State model
* key idea — group states for which there is no evidence

that their probabilities differ

 this is similar to what we explored in the mixture
model approach

 however, we do not work with states directly
* instead, we have partitions aka groups of states

 S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K.
Yu (2010). "The Hidden Information State Model: a practical framework for
POMDP-based spoken dialogue management.”
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Hidden Information State basics
* |nitially, there is only one partition

 Then each turn,
* based on the observations (as in the mixture model)

and some domain ontology

* the partitions are expanded to accommodate new
evidence

- split the partitions matching the observations
— otherwise leave the partitions as they are

* Partitions are split according an ontology
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The ontology

* Defines of the structure of the states/partitions
» Defines prior for splitting of the partitions

# define main entities in the domain
entity -> venue(type, tarea, +near, -addr, -phone, -postcode,
*reviews, *rating, +pricerange, -price) [0.8];

# places to eat

type -> restaurant(+food) [0.3];

type -> bar(childrenallowed, hasinternet, hastv) [0.4];
type -> hotel(stars) [0.2];

# atributes

pricerange = ( free | cheap | moderate | expensive);

area ( girton | arbury| .. | citycentre | castlehill);
food ( American | "Chinese takeaway");
hasinternet = ( true | false);

hastv ( true | false);

childrenallowed = ( true | false);

stars = ( one | two | .. | five );
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Partition splitting

0.3

venue = None
food = None
pricerange = None
stars = None
1.00

0.4

0.3

venue = rest. venue = rest.
food = None 10 food = None
pricerange = None : pricerange = None
stars = None stars = None
0.50 0.19
venue = bar venue = bar
food = None 1.0 food = None
pricerange = None . pricerange = None
stars = None stars = None
0.40 0.16
venue = None venue = hotel
food = None 0.2 food = None
pricerange = None : pricerange = None
stars = None stars = five
venue = None
0.8 food = None
pricerange = None
stars = None

\4

0.56

inform(venue=restaurant)
inform(venue=bar) [0.3]
null() [0.1]

[0.6] inform(stars=five)

null() [0.4]

[0.6]
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Another view: partition splitting

S. Young et al. | Computer Speech and Language 24 (2010) 150-174

Turn 0 —

task

1 partition:  task() b= 1.0

Turn 1
0.4
task
venue
restaurant

4 partitions:b=0.6 task()

1.0

entity

type

S: How may | help you?

U: | want to find a <mumble>.
=> inform(task=find, type=restaurant)
inform(task=find, type=bar)

1.0
name S
1.0
drinks R
1l
food i

b=0.12 find(venue(restaurant(food=72, ...), name=2, ._))
b=0.16 find(venue(bar(drinks=7, ...), name=7, ...))
b=0.12: find(venue(type=?, name=2, ...))

NPFL099 2013LS 7/51



Partition splitting

» Although, no proper transition model defined
* it defines some prior on some types of states

* The ontology prevents generation of partitions not
supported by the ontology

 The way how the probability mass is distributed
depends on the order of splitting

 The most interesting is the observation model
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HIS observation model
- Observation model: p(o/]s,)

e HIS Observation model: p(Ot\ Stpat—l)
e factor the model into

- bigram dialogue act type model
- Iitem matching model

p( 0P, 3t—1)Np( T( Ot>‘ T(at—l))p(M(Ot:pt: 3t—1))

* T(...) - denotes the dialogue act type
* M(...) - denotes whether the observation matches
the partition and the system dialogue act
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Matching the user dialogue act

* The matching process is defined by a set of
heuristic rules

* To get positive match
* For inform, confirm dialogue acts

— the act slot values should equal to the partition values
* For affirm dialogue act
- tries to match the system's confirmed value

- e.g.
« S: confirm(food=English)
« U: affirm()

* For negate dialogue act
- the act slot value should not equal to the partition values
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HIS summary
» Efficiently groups similar states into partitions
» Updates performed only on partitions

» Although there is prior for splitting partition,
* it does no explicit model dynamics of states

* The model of splitting can be extended for
efficient partition merging and pruning

 The model allows for explicit tracking of
* “| do not want Chinese”
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Bayesian approach to belief monitoring

» Maintain prob. distribution over all possible states: b(s)

b(SHl)Np(OHI‘SHI)Zstp(stﬂ‘ a;, St) b(St)

NP( OHI)ZOM p(0t+1\5t+1)zstp( St+1‘at)St) b(St)
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Bayesian approach

* The key idea is to represent the model
e as a graphical model

* And then, to use general exact or approximate

inference methods
 to monitor the belief state
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Graphical models

* Provide simple way to visualize probabilistic
models

» Give insight into properties of the model, e.q.
conditional independence

* Help to understand complex inference methods

O :
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Bayesian Networks

BN is a directed graphical model consisting of
e nodes — random variables

 links — probabilistic relationship between random var.
 The basic idea Is to represent a complex
distribution by a product of simpler distribution

pla,b,c)=plalb,c) p(blc)p(c)
* This can be graphically represented as

a b
c NPFL099 2013LS 15/51




Factorization

e Factorization is not unique
* it can have many, theoretically equivalent, forms

pla,b,c)=pla|b,c)p(blc)p(c)

=plcla,b)p(bla)p(a)
. b : o
D K3
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Fully connected networks

f (=)

pla,b,c,d,e,f)=plela,b,c,d, f)pl(d|a,b,c,f)
plcla,b,f)plalb,f)p(blf)p(f)
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Marginalization

 Computing joint distribution of only some subset
of variables

p(a, b, c):Zdzezfp(a, b,c,d, e,f)

 Trivial. However, it can be slow.
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Partially connected networks
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Marginalization

* Marginalization on factored partially connected
network speeds up the inference

pla,b,e)=)., 2. > plela,d,f)p(dlc)p(cla,b)
p(blf) p(a) p(f)

 Use the fact that x distributes over +
xy+xz =  x(y+z)

2 multiplies + 1 addition 1 multiply + 1 addition
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Marginalization on factored joint dist.

* Here, you need
 |d|.|e|.|f] additions

 |d|.|e|.|[f|*S multiplications

pla,b.c)=2, 2. > .plela.d.f)p(dlc)p(cla, b)
p(blf) p(a) p(£)

 |n this case, you need
 |d|.|e|.|f| additions

 |d|.|f] + 3 multiplications

pla.b,c)=pla)p(cla, b)

pr(b\f)p(f)(de(dC)(Zep(e\a,d,f)))
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Conditional independence

* |Independence of two random variables
pla,b)=p(a)p(b)

e Conditional independence of two random
variables

pla, blc)=plalc) p(blc)

* The previous observation that with less links the
easier is the inference is equivalent to increasing
the number of conditionally independent variables
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Posterior distribution
* We are not much interested in joint distribution

* More often we want to know posteriors
» for some of the random variables given some
observed data
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Posterior given the some variables

« Jointa, b,d, fgivenc, e

pla,b,d, flc,e)=7?
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Posterior given the some variables

» Joint prob. of a, b, d, fgivenc, e

p(a, b,c, d,e,f)
plc,e)

pla,b,d, flc,e)=

p(a, b,c,d,e, f)
Zajb,d,fp(a, b,c,d,e,f)
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Posterior given the known variables

» Joint prob.ofa, b,d,fgivenc=C,e=E

a,b,c=C, d,eZE,f)
ple=C,e=E)

p<3,b,d,ﬂczcje:E):p(

p( a,b,c=C,d,e=E, f)

2. . .pla,b,c=C,d,e=E,f)

 The problem is not in the posterior itself

* The problem is in computing the normalisation
constant
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Dynamic Bayesian Networks
 Like a Bayesian network

 However, it can grow.

S2

s1
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Belief monitoring as DBN

ty

Y, discourse'
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Inference iIn SDS

* Most of the time, we are interested marginal

distributions, e.g.:

 p(g" type | a', ...)
 p(g" food | a', ...)

e p(d" type|a, ...)

G

l
al

=

discourse'

ull
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Inference iIn SDS

» Exact inference is intractable
* Approximation techniques are necessary

* Loopy belief propagation
 |nfers the marginal distribution for the nodes

* Expectation propagation
* Also infers parameters

« Maximise the likelihood of s

the dialogue model parameters
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Inference in Bayesian networks

Simple marginalisation is inefficient
Use dynamic programming

Belief propagation
e using dynamic programming

e exact on trees
e equivalent to Forward-Bacward algorithm for HMMs

If used on networks with cycles then it is inexact
e can be used iteratively — Loopy Belief Propagation

* it converges to some local optimum
* most of the time it works

NPFL099 2013LS 31/51



Belief propagation on a chain

 Compute p(sd) from p(s1,s2,53,54,s5)

p(SS):Z p(Sl,SZ, 53 S4,Ss>

51,859,853 84

2254 p(Ss\S4)ZS3 p(SJ%)ZSz 1’7(53‘52)2151 plsls) pls))

* Use dynamic programming
* aka message passing algorithm

aee e e s
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Forward message passing

pls)=2. plsls) 2. plsls:) 2. plsls) 2. plsls) pls)
pls)=2. plsfs) 2. plsfs) 2 plsls)m,,,(s)
p(s)=3, plsls)X, plsis)ma(s)

()= plsls)m (s

pls)=m,,(s)

L T L

NPFL099 2013LS 33/51



Backward message passing
5 ):ZSZP(SJSI)P(SI)Z% p(53|52)zs4p(54|53)255 plsis,)
§ )225217(52‘51)17(51)253 p(53‘52)254p(54‘53)m55->54(54)

pls)=2._plsls)pls)2 pls)s,)m,,,(s)

Sl Z D 52|S1 p s->s(52)

pls)=m,,(s)

L L L
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Message passing

:S):Z p(Ss|S4)Z P(S4|S3253)Z p<53:S3|Sz)ZS]p(52|51)p(51)

Z p 55|S4 Z D S4|S3 s-)s( Ss)

pls=8;)=m s-)s Z pls,s;=S Zs5 plsis,)

p(S3 :S3)stz->53(s3: S3)ms4-)53(53: S3)

m 952(52) EmSZ-)%(S?’)l m —>s4<S4) ms4-)55<55>

— — — —
R B

m(s) o m,.(s) Lm(ﬂ _

- - - -
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Belief propagation on a tree

* We are interested in p(s3 = S3)

p(S3=S3):m52_)53(S3:S3)m03_)53(s3:5'3)11154_,53(53:S3>




Belief propagation on a tree

* The same algorithm scales to an arbitrary tree

BT e E e R e e
e pgtg

* To compute marginals, compute messages first
e After one forward and backward sweep, all
marginals can be computed at once
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BP on a factored dialogue state

* |t is not a tree any more

: d method'
AV
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BP on a factored dialogue state
» Although not exact, perform belief propagation

* |terate until convergence
* there are multiple ways how the iterate

— Loopy belief propagation
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Thank you!

Filip JurCicek
Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek
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Approximation

» Although BP or LBP significantly reduces the
computational complexity, it is not enough

* Approximations

* Grouped belief propagation
- Enumerate only the values supported by the observations

* Constant change transition probabilities

- Some probabilities can be computed as a complement of
others
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Belief propagation example

 Assume a simple dialogue model only with one

node: food
 Having N values: Italian, Chinese, English, ...

* Transition probability for the food node
p( fOOdtH ‘fOOdt) :pfoodtﬂ,foodt

 We need N*N parameters

8
i
8

00 oo@ ood ood

(2)-
®
£
O,
Eh
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Grouped belief propagation

 Message to the food {t+1} node is
mfoodﬁ food, ( fOOdtH ): Zfoodt P (fOOdH 1|f00dt)

mfood ™ foodt( f OOdt)

m 0,~ food, ( f OOdt)

* For every value of the food node, we have to sum
over N values
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Grouped belief propagation
* This can be greatly simplified

* At the beginning, we do not have evidence that
probabilities of some values differ

My04 5 food,,, ( food,. ) — Z food P (fOOd «1]100d r)

mfood ™ foodt( f OOdt)
= const.

orequalto O
in some models

m 0,~ food, ( f OOdt)

Infoodﬁfoodt+1 ( fOOdHl ) — Infoodt_l - food, (fOOdt)

m 0, food, ( fOOdt)
2.y P(100d,, |fo0d )
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Grouped belief propagation

* To implement this

* \We have special node value N = None

* \We do not enumerate values with O prob.
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Grouped belief propagation

M4 5 food (food, = Italian) = p( food, = Italian| food,= N) m( food,= N)

M504, » food, ( food,= N ) =1 =M 404 3 food ( food, = Italian >

_>

p(None)

= 1.0

(@)

_>

p(Italian)
p(None)

= o

ood1 ood
=

Italian NPFL099 2013LS 46/51




Grouped belief propagation

Mg » foa, P\ F00dy = Italian )= > tod— lalian Fnelish N pl food, = Italian| food, = food)
m_ .. (food, = food)

M0 > food, (food,= English)= Z food= Ttalian. Enelish, N pl food,= English|food,= food)

m_ dz( food, = food)

Mtp0d,» food, (fOOdz — N) =1- Z food= Itaian , English M 450, » food, ( f00d2 =1 OOd)

> @ < ooy » ood
p(None) = 1.0 p(Italian) = 0.9 p(English) = 0.7
p(None) = 0.1 p(Italian) = 0.29
T p (None) = 0.01
ltalian English
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Constant change transition probs

* Assume this prob. distribution for the following
example

pl food.,,,|food,)=0, ¥ food..,= food,
pl food.,,|food,)=0,¥ food.,,# food,

* Then the following can be simplified

Myyod  fooa, P\ F00dy = Italian )= > o= Talian English. N pl food, = Italian| food, = food)
m_z.. (food, = food)
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Constant change transition probs

Myyod » oo, P\ F00dy = Italian )= > tod= lalin English. N pl food, = Italian| food, = food)

m_ .. (food, = food)

 Expand the sum
Myo0d - food, P (fOOdz = [talian ) —-
pl food, = Italian|food,= Italian) m.. food, (food, = Italian)
Z tood—Engtish N P (food,= Italian| food,= food)m 0 (food, = food)

* Factor out the constant change transition prob.
M 304 5 food, pl food,=Italian)=.
pl food, = Italian| food,= Italian) m. food, (food, = Italian)

62 Z food= English, N m, food, ( fOOdl - fOOd)
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Constant change transition probs

M 304  food, pl food,=Italian)=.
pl food, = Italian| food,= Italian) m. food, (food,= Italian)

62 Z food= English, N 1t food, ( fOOdl = fOOd)
* Replace the sum by a complement

M 304 5 food, pl food,=Italian)=.
pl food, = Italian|food,= Italian) m. food, (food,=Italian)
0,(1 —1nﬂfoodz(1‘“ood1 = Italian))
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Summary

 Talked about

* Grouping similar states (HIS)

» Factoring the dialogue states (BUDS)

* Loopy Belief Propagation on general graphs
* Grouping values in nodes

» Constant change transition probabilities
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