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What is a dialogue manager?
Dialogue state definition
Motivation for statistical SDS
Dialogue state estimation

State enumeration and pruning
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Typical spoken dialogue systems

Dialogue manager

Generation Dialogue Policy
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Dialogue state and policy

Dialogue manager
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* Dialogue state is composed of variables needed to
track the the progress of the dialogue

e Policy is implemented as a sequence of if/then
decision
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Example: TownInfo application

e Queries about
e restaurants, bars, and hotels

e Search constraints
e area, price range, stars

* Provides
» address, postcode, phone number

« BUDS by B. Thomson, CAM, UK
. Call (22191) 9888

. ALEX by DSG, UFAL, CZ :-)
e Call (22191) 9889
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Turn
System
User
System
User
System

Example of conversation

Transcription

Hello. How may | help you?

Hi, | am looking for a restaurant.
What type of food would you like?
| want Italian.

Did you say Italian

Real user input

User

System

0.4 hi | am looking for a restaurant
0.2 uhm am looking for a bar

Did you say that you are looking for a
restaurant?

Dialogue act

hello()
inform(venue_type=restaurant)
request(food_type)
inform(food_type=lItalian)
confirm(food_type=ltalian)

0.7
inform(venue_type=restaurant)
0.3 inform(venue_type=Dbar)

confirm(venue_type=restaurant)
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Dialogue state

Dialogue state is used to track the progress of the
dialogue

E.g. a set of random variables:
e venue type

» food type

* price_range

e area

e stars
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User says

Dialogue state is used to track the progress of the
dialogue

 Turn 1:
 S: How may | help you?

* Dialogue state:

- venue_type = None
- food_type = None
— price_range = None

* U: inform(venue_type = restaurant)
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Dialogue state update

Dialogue state is used to track the progress of the
dialogue

e Turn 1:
* S: How may | help you?

Dialogue state update

* Dialogue state: —

- venue_type = restaurant —
- food_type = None
— price_range = None

* U: inform(venue_type = restaurant)
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System says

Dialogue state is used to track the progress of the
dialogue

e Turn 2:
« S: What type of food are you looking for?

* Dialogue state:

- venue_type = restaurant
- food_type = None
— price_range = None
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User says

Dialogue state is used to track the progress of the
dialogue

 Turn 2:
* S: What type of food are you looking for?

* Dialogue state:

- venue_type = restaurant
- food_type = None
— price_range = None

* U: inform(food_type=Chinese)
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Dialogue state update

Dialogue state is used to track the progress of the
dialogue

 Turn 2:
* S: What type of food are you looking for?

Dialogue state update
* Dialogue state:

- venue_type = restaurant -
- food_type = Chinese =
— price_range = None

NPFL099 2013LS 12/50



Ontology

» Used to define the structure of a dialogue state
and dependencies between variables
* |t can simplify building a new SDS for a new

domain
M EN
type me : r—/
restaurani//—“\

fnn musm decor

\ J \ J v

ItahanJ Jazz J "TOI"IISJ "central" J "Main Street"J

Figure 2: Example Tree for TownInfo Application
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Ontology

# top level tasks

task -> find (-entity, -method, food = ( "American"
-discourseAct); cen
| "Chinese takeaway");
# define main entities in domain

entity -> venue(type, tarea, +near, hasinternet = ( true | false);
-addr, -phone, -postcode, *reviews, hastv = ( true | false);
*rating, +pricerange, -price); childrenallowed = ( true | false);
# places to eat # descriptive lexical types
type -> restaurant(+food);
type -> pub(childrenallowed, addr = ();
hasinternet, hastv); phone = ();
type -> coffeeshop(food); postcode = ();
price = ();

# atrribbtess rating = ();
pricerange = ( ffeee} ¢héaheap" reviews = ();

| tmddezaeet éxpempéusjve");
area = (girton|kingshedges|arbury|

citycentre|riverside|castlehill);
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Ontology

* Defines
 all concepts in the domain

* their dependencies
« should be requested by the system (+)
* should not be requested by the system (-)

* Dependencies:
* some concepts are applicable only for some values of
parents concepts' values

c e.g.
- hastv only if venue type = pub

- food only if venue type = restaurant
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TownlInfo influence network

\ area
\ NN ea




Store new information

venue_type >

are )

T fm)

near
pricerange >

\ chlldren A >
has internet >

observation

inform(food type=Chinese)&inform(area=centre) NPFL099 2013LS 17/50




Update old information

venue_type >

area >

NN @ orice range >
\ \\

has internet

observation

inform(food_type=Chinese)&inform(area=centre) NPFL099 2013LS 18/50



Dialogue state contains much more
e |t should also store information about the context

 E.q.
 what user requested

nat user confirms

nat system already informed about

W
W
W
"

nat system confirmed
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Expanded state

Standard concepts

s @ T

conf venue_type .m
conf area -m
req venue_type
req area

food_type w
conf food_type inform(food=ltalian)

req food_type conf children
req children
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Expanded state

conf area -m D
req venue_type .O
req area w

food_type

@ food_@ confirm(food=ltalian)

req food_type conf children
req children

Variables to store
what the user is trying
to confirm
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Expanded state

onf venue_type
<D -
req area
O

food type

conf food_type request(hastv)
@food_type conf children

req children

Variables to store
what the user requested
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Expanded state

» Should also contain a variable for handling other
semantic context

e “context node” possible values:

* hello

* bye

e ack

* thank you

e request more
* repeat

e restart
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Further expanded state

Should store all info we gave to the user

E.gQ.
* names of the offered venues

* the order of the offered venues

To be able handle e.g. references
* “No, | would the prefer the previous bar. Give me the
address.”

To offer an alternative
* “Do you have anything else?”

e give a user a venue which was not talked about yet
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Summary so far
* How to define dialogue state
» Use of domain independent ontology
* The sate must support general aspects of a

dialogue
e such as negotiation
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Problem with this approach

* ASR is unreliable
« WER 30% in real-life environment

« SLU makes mistakes too
« Some utterances are ambiguous

 Example:
 User said:

- | am looking for an inexpensive hotel.
 ASR decoded:
- | am looking for an expensive hotel.

 SLU output:

- inform(venue_type=hotel, price_range=expensive)
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Example

 U1: inform(venue_type=restaurant)

* Dialogue state:
 venue_ type = restaurant

 food type = None
e price_range = None
e stars = None
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Example

 U1: inform(venue_type=restaurant)
o U2: inform(stars=five)

Contradiction

* Dialogue state:
 venue type = restaurant

 food type = None
e price_range = None

e stars =five __
i

Restaurants usually do not have stars

99 2013LS 28/50



Attempts to fix the problem

Detect contradictions
» Confirm the contradicting information

Reject input with low confidence score

* inform(venue_type=restaurant,stars=five) [0.3]

How to set the threshold?

Are we loosing some information?
 What if we reject something 10x?
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Statistical Spoken Dialogue Systems

 Main goal is to make the dialogue systems
e robust

 natural

 Robustnhess
e accumulation information over multiple turns

e accumulating information from N-best list

 Naturalness
e trained from data / interaction with users

NPFL099 2013LS 30/50



Information from multiple turns

= Accumulating the probabilities

= Turn 1: 4
= inform(venue_type=restaurant) [ 0.5]

= inform(venue_type=hotel) [0.4]

restaurant hotel bar

= Turn 2:
= inform(venue_type=bar) [0.4]

= inform(venue_type=hotel) [0.4]

restaurant hotel bar
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Information from multiple hypotheses

= Accumulating the probabilities

= N-best list:

* inform(venue_type=restaurant)&inform(price_range=cheap) [ 0.3]

« inform(venue_type=hotel)&inform(price_range=expensive) [0.3]

* inform(venue_type=hotel)&inform(price_range=cheap) [0.2]

restaurant hotel

bar

cheap

>

moderate expensive
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POMDP motivation

* The previous behaviour can be elegantly handled by
» Partially Observable Markov Decision Process (POMDP)

* Context can be used to resolve some ambiguity

« Context models can be optimised wit respect to the domain
In hand
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POMDP dialogue system #1

« POMDP DM can be naturally divided into two
components:

* belief monitoring
- tracks what a user said — a distribution over all states

e acti ' We will talk about this later.
action selection B

— decides what to do next — a discrete action

 When a POMDP system is trained using reinforcement
learning then it is optimised to maximise a reward function

* e.g. average success rate, length of a dialogue, both, etc.
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POMDP dialogue system #2

PODMP Dialogue manager

Speech
Understanding

>

User

i

Speech
Generation

0,
0,
0;

a~T(.|b)

Belief monitoring

b(s)

Y

Dialogue Policy

 |Instead of tracking the state s, the dialogue manager
maintains a distribution over all states: b(s)
* Policy explicitly takes into the account in the uncertainty

in b(s)
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POMDP dialogue system approximations

POMDP dialogue manager

~ | _________________
Speech g N Belief bs,)  Foatures |
Understanding | monitoring _ :
b
| | I
|
User | : — Database
|
| Y l _— ! :
Speech | Heuristic a~m(.|b)r— .
Generation | Mapping | Dialogue Policy :
Reward function

Each of the components uses its own set of
approximation techniques to achieve real-time
performance
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Belief monitoring

» Maintains prob. distribution over all possible states: b(s)

» Belief state b(s)
e can be modelled as input-output HMM

S
t+1

 a—the system's action - output
e 0 — user's actions - input NPFL099 2013LS 37/50



Naive belief monitoring

 The exact inference is trivial
b(S;T) OCP(Ot‘St;T) ZSH p(St‘ Ar—1554-1 ;T) b( St—1 ;T)

 The estimate depends on the dialogue model
e« parametrized by T

* Problem is that there are too many states
* e.g. 10 slots each with 10 values gives 10" distinct states
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Speeding things up
e Some researchers:

 enumerate the most likely states and prune the others
* mixture model belief monitoring

- J. Henderson and O. Lemon, “Mixture model POMDPs for efficient
handling of uncertainty in dialogue management,” pp. 73-76, Jun. 2008.

e group similar states

- S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K.
Yu (2010). "The Hidden Information State Model: a practical
framework for POMDP-based spoken dialogue management."”

 particle filters

- J. D. Williams, “USING PARTICLE FILTERS TO TRACK DIALOGUE
STATE,” in Proceedings of IEEE ASRU, 2007.

* belief propagation
- B. Thomson and S. Young (2010). "Bayesian update of dialogue state: A

POMDP framework for spoken dialogue systems."
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Enumerating and pruning

* Pruning less likely states
* states with low probability are ignored 5 =0.050

* however, even after pruning, there are too s,=0.100
many states

~ _—

— [~~~

 Enumerate only states supported by observation
hypotheses

e T1:
- inform(venue=restaurant) [0.6]
- inform(venue=bar) [0.3]
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Enumerating

venue = None venue = rest. venue = rest.
food = None food = None food = None
pricerange = None pricerange = None pricerange = None
stars = None stars = None stars = None
1.00 0.60 0.09
venue = bar venue = bar
food = None food = None
pricerange = None pricerange = None
stars = None stars = None
030 050
venue = None venue = None
food = None food = None
pricerange = None pricerange = None
stars = None stars = None
0.10 / / 0.01
) venue = hotel
We will talk about qeb food = Nome
. i pricerange = None
the transition and observation stars = None
probabilities later 0.40
| J
inform(venue=restaurant) [0.6] inform(venue=hotel) [0.6]
inform(venue=bar) [0.3] inform(venue=bar) [0.4]
null() [0.1]
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Pruning

venue = bar
food = None
pricerange = None
stars = None
050 |
venue = None
food = None
pricerange = None
stars = None
/ / 0.01
venue = hotel
food = None
pricerange = None
stars = None

venue = rest.
food = None
pricerange = None
stars = None
060 |
venue = bar
food = None
pricerange = None
stars = None
1030
venue = None
food = None
pricerange = None
stars = None
0.10
\4
inform(venue=restaurant) [0.6]

inform(venue=bar)

null()

[0.1]

[0.3]

0.40

venue = bar
food = None
pricerange = None
stars = None
0.50
venue = None
food = None
pricerange = None
stars = None
0.10
venue = hotel
food = None
pricerange = None
stars = None

inform(venue=hotel)
inform(venue=bar)

[0.6]
[0.4]

0.40
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Dialogue model|

 Model parameters can be estimated from some

annotated data
* very tedious

 Transition model: p(Sm\St, at)
 models dynamics of the evolution of the sates

* from a particular state to states generated based on
the input observations/nypotheses

. Observation model: p(o/s,)
* models probability of the observations given a state
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Mixture model belief monitoring

» Updating the dialogue state for each input
hypothesis separately

« State probability depends only on observations

* Transitions allowed only between the “compatible
states” given the observation

« Can be viewed as maintaining a set of dialogue
managers executing in parallel

P. Crook, J. Henderson, O. Lemon, and X. Liu, “D1 . 3 : POMDP Learning for ISU

Dialogue Management,” Learning, no. February, 2010.
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Enumerating

HA1

venue = None
food = None
pricerange = None
stars = None
1.00

H2

venue = rest. venue = rest.
food = None H1 food = None
pricerange = None pricerange = cheap
stars = None stars = None
0.30 0.18
} H2 |
venue = bar venue = rest.
food = None food = Engl.
pricerange = None pricerange = None
stars = None H3 stars = e
//} 0.20 /} 0.09
venue = bar venue = rest.
food = None fogd = None
pricerange = cheap pricerange = None
stars = None stars = None
H1
/ 0.20 } 0.03
venue = None venue = bar
food = None food = None
pricerange = None pricerange = cheap
stars = None stars = None

0.30

|

0.12

inform(venue=restaurant)

inform(venue=bar)
inform(venue=bar)&inform(pricerange=cheap)

null ()

[0.3]

[0.2]

[0.3]

[0.2]

Hl:
H2:
H3:

inform(pricerange=cheap)

inform(food=English)

null ()

[0.6]

[0.3]
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State merging

venue = None venue = rest. venue = rest.
food = None HA1 food = None HA1 food = None
pricerange = None pricerange = None pricerange = cheap
stars = None stars = None stars = None
100 030 018
} H2 |
H2 venue = bar venue = rest.
food = None food = Engl.
pricerange = None SELEEEENEE = JGNE
stars = None SiEEss = blens
H3
0.20 0,09
H3 | |
venue = bar venue = rest.
food = None food = None
pricerange = cheap pricerange = None
stars = None stars = None
H1
/ 0.20 } 0.03
venue = None venue = bar
food = None H food = None
pricerange = None pricerange = cheap
stars = None H3 stars = None
0.30 ﬂ/ 0.26
Hl: inform(venue=restaurant) [0.3] Hl: inform(pricerange=cheap) [0.6]
H2: inform(venue=bar) [0.2] H2: inform(food=English) [0.3]
H3: inform(venue=bar)&inform(pricerange=cheap) [0.2] H3: null() [0.1]
H4: null() [0.3]
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Pruning

e First
 find similar states (e.g. share filled slots but not history,
share some filled slots)

e prune the less likely
e add the pruned probability mass to the kept states

e Second
* Prune states with low probability

» Redistribute the probability mass

- e.g. add the pruned probability mass to the initial state

* Pruning should not simply remove a hypothesis and
renormalise, it should redistribute the probability of a
pruned hypothesis to similar hypotheses
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Pruning

venue = None venue = rest. venue = rest.
food = None H1 food = None H1 food = None
pricerange = None pricerange = None pricerange = cheap
stars = None stars = None stars = None
1.00 0.30 0.18
} H2 |
H2 =
venue = bar venue rest.
food = None food = Engl.
pricerange = None e
stars = None H3 stars = MeEE
0.20 0.09
H3 | |
venue = bar WS e B
food = None fo?d e O
pricerange = cheap PSS o S one
stars = None sta = e
H1
0.20 ~
H4 /
venue = None venue = bar
food = None food = None
pricerange = None pricerange = cheap
stars = None H2 stars = None

P

0.30

Hl:
H2:
H3:
H4:

inform(venue=restaurant)
inform(venue=bar)

[0.3]

[0.2]

inform(venue=bar,pricerange=cheap)

null ()

[0.2]

Q&#\\\\~

0.12

v

Hl: inform(pricerange=cherap) [0.6]
H2: inform(food=English) [0.3]
H3: null()

48/50
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Dialogue model|

Choice of the model can greatly simplify computation
All prob. information comes only form the observation
model

Transition model:
. ZStHEC(S o ) p( SH'I ‘Sf? al‘) — 10

. from a particular state to states generated based on the
input observations/hypotheses

» probability is uniform for all compatible states

Observation model:
* p( Ot‘ St)

* the model is further factorised to prevent data sparsity
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Thank you!

Filip JurCicek
Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek
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