NPFL099 - Statistical dialogue systems

Dialogue management

Belief monitoring I

Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

Version: 20/03/2013

Outline

- What is a dialogue manager?
- Dialogue state definition
- Motivation for statistical SDS
- Dialogue state estimation
- State enumeration and pruning

Typical spoken dialogue systems

Dialogue state and policy

- Dialogue state is composed of variables needed to track the the progress of the dialogue
- Policy is implemented as a sequence of if/then decision

Example: TownInfo application

- Queries about
 - restaurants, bars, and hotels
- Search constraints
 - area, price range, stars
- Provides
 - address, postcode, phone number
- BUDS by B. Thomson, CAM, UK
 - Call (22191) 9888
- ALEX by DSG, UFAL, CZ;-)
 - Call (22191) 9889

Example of conversation

Turn	Transcription	Dialogue act
System	Hello. How may I help you?	hello()
User	Hi, I am looking for a restaurant.	inform(venue_type=restaurant)
System	What type of food would you like?	request(food_type)
User	I want Italian.	inform(food_type=Italian)
System	Did you say Italian	confirm(food_type=Italian)

Real user input

User	0.4 hi I am looking for a restaurant0.2 uhm am looking for a bar	0.7inform(venue_type=restaurant)0.3 inform(venue_type=bar)
System	Did you say that you are looking for a restaurant?	confirm(venue_type=restaurant)

Dialogue state

Dialogue state is used to track the progress of the dialogue

E.g. a set of random variables:

- venue_type
- food_type
- price_range
- area
- stars

User says

- Turn 1:
 - S: How may I help you?
 - Dialogue state:
 - venue type = None
 - food_type = None
 - price_range = None
 - U: inform(venue_type = restaurant)

Dialogue state update

- Turn 1:
 - S: How may I help you?

- Dialogue state:
 - venue_type = restaurant =
 - food_type = None
 - price_range = None
- U: inform(venue_type = restaurant)

System says

- Turn 2:
 - S: What type of food are you looking for?
 - Dialogue state:
 - venue type = restaurant
 - food_type = None
 - price_range = None

User says

- Turn 2:
 - S: What type of food are you looking for?
 - Dialogue state:
 - venue_type = restaurant
 - food_type = None
 - price_range = None
 - U: inform(food_type=Chinese)

Dialogue state update

Dialogue state is used to track the progress of the dialogue

- Turn 2:
 - S: What type of food are you looking for?
 - Dialogue state:
 - venue_type = restaurant
 - food type = Chinese
 - price_range = None

Dialogue state update

Ontology

- Used to define the structure of a dialogue state and dependencies between variables
- It can simplify building a new SDS for a new domain

Figure 2: Example Tree for TownInfo Application

Ontology

```
# top level tasks
task -> find (-entity, -method,
-discourseAct);
# define main entities in domain
entity -> venue(type, +area, +near,
-addr, -phone, -postcode, *reviews,
*rating, +pricerange, -price);
# places to eat
type -> restaurant(+food);
type -> pub(childrenallowed,
hasinternet, hastv);
type -> coffeeshop(food);
# attrbbtees
pricerange = ( ffree theapeap"
   mmddenatee | expemperejye");
area = (girton|kingshedges|arbury|
 citycentre | riverside | castlehill);
```

```
food = ( "American"
   "Chinese takeaway");
hasinternet = ( true | false);
hastv = ( true | false);
childrenallowed = ( true | false);
# descriptive lexical types
addr = ();
phone = ();
postcode = ();
price = ();
rating = ();
reviews = ();
```

Ontology

Defines

- all concepts in the domain
- their dependencies
- should be requested by the system (+)
- should not be requested by the system (-)

Dependencies:

- some concepts are applicable only for some values of parents concepts' values
- e.g.
 - hastv only if venue_type = pub
 - food only if venue_type = restaurant

TownInfo influence network

Store new information

Update old information

Dialogue state contains much more

- It should also store information about the context
- E.g.
 - what user requested
 - what user confirms
 - what system already informed about
 - what system confirmed

- Should also contain a variable for handling other semantic context
- "context node" possible values:
 - hello
 - bye
 - ack
 - thank you
 - request more
 - repeat
 - restart

Further expanded state

- Should store all info we gave to the user
- E.g.
 - names of the offered venues
 - the order of the offered venues

- To be able handle e.g. references
 - "No, I would the prefer the previous bar. Give me the address."

- To offer an alternative
 - "Do you have anything else?"
 - give a user a venue which was not talked about yet

Summary so far

- How to define dialogue state
- Use of domain independent ontology
- The sate must support general aspects of a dialogue
 - such as negotiation

Problem with this approach

- ASR is unreliable
 - WER 30% in real-life environment
- SLU makes mistakes too
 - Some utterances are ambiguous
- Example:
 - · User said:
 - I am looking for an inexpensive hotel.
 - ASR decoded:
 - I am looking for an expensive hotel.
 - SLU output:
 - inform(venue_type=hotel, price_range=expensive)

Example

U1: inform(venue_type=restaurant)

- Dialogue state:
 - venue_type = restaurant
 - food_type = None
 - price_range = None
 - stars = None

Example

U1: inform(venue_type=restaurant)

U2: inform(stars=five)

- Dialogue state:
 - venue_type = restaurant
 - food_type = None
 - price_range = None
 - stars = five

Restaurants usually do not have stars

Attempts to fix the problem

- Detect contradictions
 - Confirm the contradicting information
- Reject input with low confidence score
 - inform(venue_type=restaurant,stars=five) [0.3]

- How to set the threshold?
- Are we loosing some information?
 - What if we reject something 10x?

Statistical Spoken Dialogue Systems

- Main goal is to make the dialogue systems
 - robust
 - natural

- Robustness
 - accumulation information over multiple turns
 - accumulating information from N-best list
- Naturalness
 - trained from data / interaction with users

Information from multiple turns

- Accumulating the probabilities
- Turn 1:
 - inform(venue_type=restaurant) [0.5]
 - inform(venue_type=hotel) [0.4]

- Turn 2:
 - inform(venue_type=bar) [0.4]
 - inform(venue_type=hotel) [0.4]

Information from multiple hypotheses

- Accumulating the probabilities
- N-best list:
 - inform(venue_type=restaurant)&inform(price_range=cheap) [0.3]
 - inform(venue_type=hotel)&inform(price_range=expensive) [0.3]
 - inform(venue_type=hotel)&inform(price_range=cheap) [0.2]

POMDP motivation

- The previous behaviour can be elegantly handled by
 - Partially Observable Markov Decision Process (POMDP)
- Context can be used to resolve some ambiguity
- Context models can be optimised wit respect to the domain in hand

POMDP dialogue system #1

- POMDP DM can be naturally divided into two components:
 - belief monitoring
 - tracks what a user said a distribution over all states
 - action selection

We will talk about this later.

- decides what to do next a discrete action
- When a POMDP system is trained using reinforcement learning then it is optimised to maximise a reward function
 - e.g. average success rate, length of a dialogue, both, etc.

POMDP dialogue system #2

- Instead of tracking the state s, the dialogue manager maintains a distribution over all states: b(s)
- Policy explicitly takes into the account in the uncertainty in b(s)

POMDP dialogue system approximations

Each of the components uses its own set of approximation techniques to achieve real-time performance

Belief monitoring

- Maintains prob. distribution over all possible states: b(s)
- Belief state b(s)
 - can be modelled as input-output HMM

- a the system's action output
- o user's actions input

Naive belief monitoring

The exact inference is trivial

$$b(s;\tau) \propto p(o_t|s_t;\tau) \sum_{s_{t-1}} p(s_t|a_{t-1},s_{t-1};\tau) b(s_{t-1};\tau)$$

- The estimate depends on the dialogue model
 - parametrized by τ
- Problem is that there are too many states
 - e.g. 10 slots each with 10 values gives 10¹⁰ distinct states

Speeding things up

Some researchers:

- enumerate the most likely states and prune the others
- mixture model belief monitoring
 - J. Henderson and O. Lemon, "Mixture model POMDPs for efficient handling of uncertainty in dialogue management," pp. 73-76, Jun. 2008.
- group similar states
 - S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson and K. Yu (2010). "The Hidden Information State Model: a practical framework for POMDP-based spoken dialogue management."
- particle filters
 - J. D. Williams, "USING PARTICLE FILTERS TO TRACK DIALOGUE STATE," in Proceedings of IEEE ASRU, 2007.
- belief propagation
 - B. Thomson and S. Young (2010). "Bayesian update of dialogue state: A
 POMDP framework for spoken dialogue systems."

Enumerating and pruning

- Pruning less likely states
 - states with low probability are ignored
 - however, even after pruning, there are too many states

- Enumerate only states supported by observation hypotheses
 - T1:
 - inform(venue=restaurant) [0.6]
 - inform(venue=bar) [0.3]

Enumerating

Pruning

Dialogue model

- Model parameters can be estimated from some annotated data
 - very tedious
- Transition model: $p(s_{t+1}|s_t, a_t)$
 - models dynamics of the evolution of the sates
 - from a particular state to states generated based on the input observations/hypotheses
- Observation model: $p(o_t|s_t)$
 - models probability of the observations given a state

Mixture model belief monitoring

- Updating the dialogue state for each input hypothesis separately
- State probability depends only on observations
- Transitions allowed only between the "compatible states" given the observation
- Can be viewed as maintaining a set of dialogue managers executing in parallel

Enumerating

State merging

Pruning

- First
 - find similar states (e.g. share filled slots but not history, share some filled slots)
 - prune the less likely
 - add the pruned probability mass to the kept states
- Second
 - Prune states with low probability
 - Redistribute the probability mass
 - e.g. add the pruned probability mass to the initial state
- Pruning should not simply remove a hypothesis and renormalise, it should redistribute the probability of a pruned hypothesis to similar hypotheses

Pruning

Dialogue model

- Choice of the model can greatly simplify computation
- All prob. information comes only form the observation model
- **Transition model:**
 - $\sum_{s_{t+1} \in C(s_t, o_t)} p(s_{t+1}|s_t, a_t) = 1.0$ from a particular state to states generated based on the
 - input observations/hypotheses
 - probability is uniform for all compatible states
- Observation model:
 - $p(o_t|S_t)$
 - the model is further factorised to prevent data sparsity

Thank you!

Filip Jurčíček

Institute of Formal and Applied Linguistics
Charles University in Prague
Czech Republic

Home page: http://ufal.mff.cuni.cz/~jurcicek

